ORDINARY MEANS IMPLY RECURRENT MEANS

BY R. V. CHACON

Communicated by J. L. Doob, July 20, 1964

Introduction. Let (X, \mathfrak{M}, μ) be a σ -finite measure space, let T be a positive linear operator from $L_1(X)$ to $L_1(X)$ whose norm is less than or equal to one. Let $\{w_k\}$, $k \ge 1$, be a sequence of non-negative numbers whose sum is one and let $\{u_k\}$, $k \ge 0$, be the sequence defined by $u_n = w_1 u_{n-1} + \cdots + w_n u_0$, $u_0 = 1$. Set, for any pair of functions f in $L_1(X)$ and f in $L_1(X)$, f in $L_1(X)$,

THEOREM 1. The ratios $Q_n(f, p)$ have a finite limit almost everywhere on the set where p > 0.

The method of proof given by Baxter is a considerable and non-trivial application of the methods given in [4]. The theorem reduces to that of [4] if one takes $w_1=1$, $w_k=0$, $k\geq 2$. The purpose of the present note is to show that the theorem of [4] yields Theorem 1 directly and in a stronger form. The stronger form of Theorem 1 gives convergence almost everywhere on the set where $\sum_{0}^{\infty} u_k T^k p > 0$ and answers a question raised in [3]. Our proof is also sufficient to yield the theorem of [1] (see [7]).

1. **Proof.** Let (I, \mathfrak{A}, m) be the measure space obtained by taking I to be the positive integers, \mathfrak{A} the Borel field of all subsets of I, and m the measure given by $m(\{1\})=1$ and, for $i \geq 2$, by

$$m(\{i\}) = 1 - w_1 - \cdots - w_{i-1}, \quad \beta_n = w_n/(1 - w_1 - \cdots - w_{n-1}),$$

 $n \ge 2, \ \beta_1 = w_1.$

Let P be the transformation of $L_1(I)$ to $L_1(I)$ defined by left multiplication by the matrix

$$P = \begin{pmatrix} \beta_1 & 1 - \beta_1 & 0 & 0 & \cdots \\ \beta_2 & 0 & 1 - \beta_2 & 0 & \cdots \\ \vdots & \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots & \vdots \end{pmatrix}.$$

We use P to denote the transformation and the matrix and represent the elements of $L_1(I)$ as column vectors. It follows easily that ||P|| = 1,

that P is positive and, setting $P^n = (p_{ij}(n))$, that $u_n = p_{11}(n)$, $n \ge 0.1$

Taking $(Y, \mathfrak{F}, \gamma)$ to be the direct product of (I, \mathfrak{R}, m) and (X, \mathfrak{M}, μ) and U the direct product of P and T, it follows that U is a positive linear operator from $L_1(Y)$ to $L_1(Y)$ and that the norm of U is less than or equal to one. We may therefore apply the ratio theorem of [4] to U with $\tilde{f}(y) = f(i, x) = \delta_{i1} \cdot f(x)$, $\tilde{p}(y) = p(i, x) = \delta_{i1} \cdot p(x)$ to obtain Theorem 1 with convergence almost everywhere on the set where $\sum_{0}^{\infty} u_k T^k p > 0$, since $U^k f(i, x) = p_{1i}(k) T^k f(x)$, $U^k p(i, x) = p_{1i}(k) T^k p(x)$ and $p_{11}(k) = u_k$.

BIBLIOGRAPHY

- 1. L. Baez-Duarte, An ergodic theorem of Abelian type, Abstract 64T-336, Notices Amer. Math. Soc. 11 (1964), 467.
- 2. G. Baxter, An ergodic theorem with weighted averages, J. Math. Mech. 13 (1964), 481-488.
- 3. ——, A general ergodic theorem with weighted averages, Abstract 64T-326, Notices Amer. Math. Soc. 11 (1964), 464.
- 4. R. V. Chacon and D. S. Ornstein, A general ergodic theorem, Illinois J. Math. 4 (1960), 153-160.
- 5. J. L. Doob, Renewal theory from the point of view of the theory of probability, Trans. Amer. Math. Soc. 63 (1948), 422-438.
- 6. A. Garsia and S. Sawyer, Remarks on the ergodic theorem with weighted averages (to appear).
- 7. G.-C. Rota, On the maximal ergodic theorem for Abel-limits, Proc. Amer. Math. Soc. 14 (1963), 722-723.

Brown University

¹ This is related to renewal theory. See [5] for a discussion of relevant facts.