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The purpose of this research is to prove that the well-known theo­
rem in the theory of linear operators in Hilbert space [l, p. 147] 
indicated in the title holds for nonlinear operators and to a certain 
extent for noncontinuous ones, and to provide a constructive method 
for solving the equations involved. 

DEFINITION 1. The numerical range of a mapping T: 3C-->3C of a 
complex Hilbert space into itself with domain 3D(T) is the set of com­
plex numbers 

((Txi — Tx2, %i - x2) ^ ) 
3 l ( r ) = < n — — — | ^ ; xx T* *2> *i , *2 G 3>(T) > • 

In the case of linear mappings, we recall, this is a convex set, 
which, if the mapping is maximal normal, has a closure coinciding 
with the convex hull of the spectrum [l, pp. 131, 327]. 

We shall let || r | | denote the Lipschitz norm of T, namely, 

, \\Txi-Tx*\\ 
II 2l| = sup -Tj j p -

xi^xt \\Xi — X2\\ 

We shall also use the weaker norm—called the cross-Lipschitz norm 
—that results from replacing in the above definition the increment 
Txi — T%2 by its component orthogonal to %\ — x2. In general, we define 
the p-cross-Hölder norm ( O ^ p ^ l ) as the quantity 

If | | r | | ^ < oo we say that T satisfies a cross-Holder condition of ex­
ponent v. The cross-Lipschitz norm corresponds to v~l and shall 
simply be denoted HTJI"1*; for finite-dimensional normal linear map­
pings it measures the size of the spectrum. In these definitions we 
have implicitly assumed that the variables range over the whole do-
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main of T, but they may be restricted to any subset of 3D(T) to pro­
duce relativized notions. Thus a cross-bounded mapping T is just one 
satisfying a O-cross-H older condition over any bounded set, and a 
locally cross-bounded mapping is a mapping cross-bounded in some 
neighborhood of each point of its domain. 

Continuity will be partially replaced by the following notion where, 
as usual, whole arrows denote strong convergence, and half arrows 
weak convergence in 3C. 

DEFINITION 2. A mapping T: 3C—>5C is said to be demiclosed if for 
any directed set of vectors {xa}, 

%a —> #, Txa —A y imply x £ £>(T) and y = Tx. 

We say that T is sequentially demiclosed if the above is asserted for 
sequences only. 

This closedness is naturally associated with the continuity—often 
called "demicontinuity"—from the strong topology in the domain to 
the weak topology in the range. 

In the sequel, (Br(s) will denote the open ball of radius r about z, 
and (&r(z) its closure. 

These preliminaries settled, we may now state our main result. 

THEOREM 1. Let T: 3C—»3C be a locally cross-bounded, sequentially 
demie osed mapping vanishing at x — 0, defined on the closed ball 
(Br(0)P\3C relatively to a sub space 5C dense in 5C and demicontinuous 
over any finite-dimensional convex set therein. Furthermore, let X be a 
complex number at a positive distance d = d(k, T) from the numerical 
range of T. Then, the equation 

(1) Xx = Tx - y 

has a unique solution x£(B r(0)n3C for any 3>£(Brd(0), and the operator 
( r—X/)" 1 thus defined is Lipschitzian with norm ^d^ÇX, T). 

The one-to-oneness of the mapping T\=T—\I, and the Lip­
schitzian character of its inverse result a t once from the following 
inequalities: Since d(X} T) is the distance from X to the numerical 
range, 

. . I ( Txi — Tx2, x± — x2) 
/ON I (T*Xl ~ Tx*2> *i -" **) = il ïïl > 

(2) I \\xi - x2\\
2 

è^(x, r)||^~^2||
2, 

for any Xi and x2 in S)(T). Then by Schwarz* inequality, 

(3) | | rx*i - rx*t|| è d(\, T)\\X! - *,||. 

Xi ~ X2
 2 
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Thus the only point in question is the assertion that the range of T\ 
covers (Brd(0) completely. This is a consequence of the next two 
lemmas applied to T\. 

LEMMA 1. Let T: 3C—>3C be a continuous mapping of a finite-dimen­
sional Hilbert space into itself defined on the closed ball (Br(0), vanishing 
at the origin and satisfying 

(4) | (Txi - Tx2} %i - x2) | è d\\xi - x2\\
2, xh x2 G £>(r), d > 0. 

Then T is one-to-one, its range contains (Brd(0), and [11Z-" X[| ^d~l. 

PROOF. AS above, one proves that T is one-to-one with a Lipschitzian 
inverse. Hence T is a homeomorphism, and by Brouwer's Domain 
Invariance Theorem [2, p. 156] maps interior points into interior 
points and sets up a one-to-one correspondence between the bound­
aries. The origin, being the image of a point interior to the domain, is 
interior to the range and, since || Tx\\ ^ d||#||, is at a distance ^rd from 
the range boundary. Thus (&rd(0) C(R(T). 

LEMMA 2. Let T: 3C—>3C be a cross-bounded mapping, taking the origin 
into the origin, defined on a closed ball (8r(0)P\3C relatively to a linear 
subspace 5C dense in 3C, demicontinuous over any finite-dimensional con­
vex set therein, and satisfying (4). Then f or any 3>£(Brd(0) there is a 
unique x£(Br(0) and a sequence {xk}o G£)(T) such that 

(5) xk - » xf Txk —* y. 

PROOF. With the help of a sequence {e^}^ of positive numbers 
converging to zero we construct two vector sequences {^}o° and 
{zk}o satisfying 

(6) xk G 5r(0) r\ JC, H l̂l ^ e*, Txk- y + zkE 3C, 

as follows : We set x0 = 0 and take for z0 any vector of norm g €0 such 
that Tx0 — y+z0Çz3Z. Then, assuming x0, • • • , xk-i, z0, • • • , zk-i 
constructed, we take for xk a vector in the finite-dimensional sub-
space of X (letting ( ) denote "space spanned by") 

flÇfc-i = (TXQ - y + zo) 0 (Txi - y + »i> 0 • • • 

0 (Txk-i - y + »jb-i> 

satisfying the equation 

(8) £*-ira* = E*-iy, 

where Ek^i is the orthogonal projection onto 3C&-i; then we choose for 
zk just any vector meeting requirements (6). The restriction of Ek~iT 
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to <Br(Q)r\3Cjfc_i is continuous and satisfies (4), and so the existence 
of Xk is guaranteed by the previous lemma. 

Having constructed these sequences we investigate some of their 
properties. From (8) it follows Ek-i(Txk-y) = 0 , that is 

(9) (Txh ~ y, Txh - y + zh) « 0, A « 0, 1, . . . , * - 1. 

Moreover, since x0, • • • , x&GSCfc-i, 

(10) (Txk - y, xh) = 0, h = 0, 1, • • • , *. 

We are now in a position to show that Txk-^y. In the first place, 
since Txk--y is orthogonal to Xk — x0 it is equal to the component of 
Txk — Txo orthogonal to Xk — x0 minus the corresponding component 
of y, and hence, by the cross-boundedness of T, its norm is bounded 
by a constant independent of k. Then, for any u perpendicular to 
Uo 3Zk) 

(Txk - y,u) = {{Txk — y + zh) — zk, u) = - (zk, u) 

for all values of fe, whereas for any UÇ\}Q Xk, 

(Txk - y, ») = 0 

from a k0 on. Therefore, lim&H>00 (Txk — y, u)~0 for any ^ in the dense 
subspace (U °̂ 5fC^)©(U^ 3Cfc)x. On account of the boundedness of 
{Txk—^y}^ this implies Txk—^y. 

The #A/S form a bounded sequence and therefore have a weak limit 
point x at least. Suppose Xkn *X, By (4) and (10), if kn>km, 

A\XK ~ **JI2 ^ I ( ? X - 2X,, **» - *Ü I 
(11) â | ((STa*. - y) - (ZX, - y), xK - **J | 

whence letting n-* » first, 

(12) 4 » - aaJI» g <Z lim sup ||a*. - **J|> g | (Txkm -y,x)\ 
n-*oo 

and then w—» oo, 

(13) J lim sup ||x — %J|2 g lim sup | (Txkm — y, x) | = 0. 

Thus we have found an x£(Br(0) and a sequence {#fen} such that 
%kn-*x and Txkn—*y. The uniqueness of x follows at once from the 
limiting form of (4) which says that if xf and x" correspond to yf 

and yn respectively, then | (y'—y", xf-~x")\ èd | | x ' — x"||2. This com~ 
pletes the proof, 

A number of corollaries can be derived from Theorem 1 by either 
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specializing the hypotheses or by combining them with others. For 
T's defined on (B(0) the theorem holds under the hypotheses of demi-
continuity and cross-boundedness. In this case, however, F. E. 
Browder—to whom this proof was made available—has been able to 
prove by a transfinite argument that cross-boundedness is super­
fluous [3]. Yet, if the mappings are only densely defined this require­
ment cannot be entirely deleted, as the example of linear symmetric 
mappings with nonsymmetric adjoints shows [l, p. 149]. The search 
for weaker conditions to replace cross-boundedness that would per­
haps apply to differential operators is a most pressing need of this 
theory. 

An interesting extension brought to the author's attention by 
G. J. Minty has to do with the idea of replacing the global numerical 
range—a rather unwieldy object—by the "local closed numerical 
range"—a smaller and easier to handle set. Letting 

((Txi— Tx2, xi—x2) ,, ,, ) 
(14) 9 l r ( r ) = j ,, _ •• ; *i, * a e » ( T ) , 0 < | | * i - * , | | ûr> , 

we define the local closed numerical range of T as the set 91*(T) 
= rir>o 3 l r ( r ) . Then, if T is defined all over 5C, Theorem 1 remains 
valid with 91* (T) in place of 3d (IT). 

So far we have only been concerned with the existence of solutions 
of (1) and their uniqueness, but nothing has been said as to how 
these solutions could be effectively computed. An adequate technique 
for this purpose has proved to be that of successive averaging which, 
under conditions not quite as general as those of Theorem 1, but 
sufficiently general still, leads step by step to the desired solution, 
furnishing the theoretical basis for a simple, broad, and flexible com­
putational strategy. The idea is to attain the solution as the limit of 
successive averages 

(15) %k = (1 — a*)afc-i + ak\-
l(TXk-i - y) 

built from an original approximation xQ by adequate choices of the 
averaging factors a&. In expounding this theory we shall assume T 
defined on a closed ball (Br(0) and X will be taken as a complex number 
T^O at a positive distance d(k, T) from the numerical range of T. Due 
to the fact tha t T is not everywhere defined, one may not always 
succeed with schemes like (IS), but converging modified averaging 
schemes like the following 

(16) xk = (1 - o*)**-i + ak\-
l(Txk-i - ôk-iy) 

can be proved to exist in all cases and, in fact, in very many different 
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ways. This result, however, is still at a purely existential level for so 
far we know no way of constructing such schemes. It is only when we 
assume that T satisfies a cross-Holder condition of exponent Z>>1 /2 

tha t a truly recursive procedure for the determinations of the c^'s 
and ôk s can be explicitly prescribed. For simplicity's sake we shall 
confine our attention to cross-Lipschitzian T's. The following two 
lemmas, which we shall state without proof, form the core of the 
averaging theory: 

LEMMA 3. If x0G(Br(0) is not a solution of (1) and a is such that 
xa=(l-a)Xo+a\-l(Txo-y)Ç.'ër(0)i then 

( ' | | z \ * . - y | | 2 ( l7Ï)' 
where 

d2(\, T) 
(18) R 

d^X,T) + (\\T\\±y 
a (T\x0 — T\xay XQ — xa) , A 

(19) 7 = = ^ r M lu + 1 -
RX \\XQ ~ Xa\\2 

This lemma points to the fundamental fact that the error com­
mitted in solving equation (1) could be made strictly smaller from 
one approximation to the next if one only knew that a can be chosen 
so that | y | < 1 . This calls for a study of the mapping a—*y, which is 
precisely the content of the next lemma. 

LEMMA 4. If x0G(Br(0), and \\y\\+\\T\x0 — y\\£rdÇk, T), then the 
mapping of the complex plane into itself 

a (T\x0 — T\xa, x0 — xa) 
(20) a - > 7 = — jj rr + 1 

JKA II Xo — #a|| 

is a homeomorphism having as domain the set of a's for which \\xa\\ 'è.r 
(closed circular disc), and as range a closed domain containing the closed 
unit disc about the origin. Furthermore, its inverse is Lipschitzian with 
norm £R\\\/dÇK, T). 

We have thus obtained more than we had the right to hope for, 
because it is not only possible to find a n a for which | y | < 1 , but for 
any such 7 an a exists. The combination of these two lemmas leads, 
after some manipulation, to the final result: 

THEOREM 2. Let r=3C—>5C be a continuous, cross-Lipschitzian map­
ping defined on (Br(0) vanishing at the origin, X a complex number 
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different from zero at a positive distance <Z(A, T) from the numerical 
range of T, and y a vector in (Brd(0). Then for any sequence of complex 
numbers {yk}\ satisfying 

(21) | 7*| II, Z ( l - U|2)= «, 
1 

the vector sequence {xk}o starting with Xo — 0 and recursively constructed 
as follows : 

(22) xk = (1 — a*)afc-i + 0Lk\~
l(Txk-i — bk-iy), 

where 

(23) S , _ 1 = l - ( n ^ { l + [ l - J R ( l 

and ak satisfies 

(24) \\xk - Xk-i\\2(7k — 1) = — (7\#A - rxafc-i, a* - **_i), 
ivA 

caw be continued indefinitely and converges to the solution of (1). Fur* 
thert if x is the solution, 

(25) H** ~ 4 ^ 2(1 " * " 6 \ {1 + [1 - *(1 - I 7.1-)M. 

The theory further asserts that if the numerical range is either 
bounded, or viewed from A under an angle less than w, or both, then 
there are choices of the y&'s satisfying (21) for which the correspond­
ing a^'s are all of the same absolute values in the first case, of the same 
argument in the second, and are all equal in the third, these asser­
tions holding asymptotically if the corresponding properties hold 
only locally. Moreover, if | | y | | â ^ ( X , T)/2 then the ô&'s can all be 
replaced by 1. 
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