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Let B(D) denote the class of all bounded holomorphic functions on
the connected open subset D of the Riemann sphere, and call a bound-
ary point 2o of D removable if every f& B(D) has a holomorphic ex-
tension to an open set which contains D and 2,. Boundary points
which are not removable are called essential. It is known [4] that if
2o is an essential boundary point of D, then there exists f& B(D),
with ||f||p=1, whose cluster set at z, is the entire closed unit disc.
(The symbol H f”s denotes the supremum of the numbers | f(2)] asz
ranges over the set S.) Thus, from one standpoint at least, it appears
that every essential boundary point 2z, of D has associated with it
some f& B(D) whose singularity at 2, is as bad as a singularity can be
at any boundary point.

Nevertheless, there are situations in which a set of essential bound-
ary points has many of the properties that are usually associated with
interior points. The following construction illustrates this.

Let E be a nonempty compact subset of the real axis R, subject
to only one condition: we require that m(E) =0, where m denotes
one-dimensional Lebesgue measure. Let Ao, A1, Ay, - - - be positive
numbers such that Ag<1, \ty— 0, and

1 3 ()t = .
k=1
Let 2,=x%,+4y, (n=1, 2, 3, - - -+ ) be points in the open upper half-

plane, located so that the set of all limit points of {z,} is precisely
E, and put

) an = inf{Xo, yah1, (3A2)?, (3aMa)?, - - - -
Since \;— =, we have o, >0, and we can therefore choose 7, so that
A3) 0 < 1y < 27™yuam

and so that the closed circular discs A, with radius 7, and center
at 2,417, are disjoint; (2) and (3) imply that
o Ao if 2=0,
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Finally, let D be the complement of
(5) EU AU AUAY .-

and let I', be the boundary of A,. Note that « &D.

THEOREM 1. If D is constructed as above, then D has the following
properties:
(1) Every point of E is an essential boundary point of D.
(ii) Every f&B(D) can be extended to D\JE by the Cauchy formula
=1 f(w)
(6) (&) = f() + 2. — dw,

w1 2miJdp, wW—3

n

and the derivatives f® can be extended to D\JE by

)
(7 f®(z) = n=1 - f P dw

(iii) The series (6) and (7) converge absolutely and uniformly in the
closed lower half-plane G, and the inequalities

(8 17

hold. In particular, f, f', "', - + - are uniformly continuous on G.
(iv) If fEB(D) and if ||fllz=||f||p, then f is constant.
) If f(x) =0 for infinitely many x EE, then f(z) =0 for all zED.

(k)“G = k‘)\]’:”f“D (k =1, 2’ 3’ c )

The proofs are quite straightforward. Since every neighborhood of
every point of E contains some A,, we have (i). Since every f& B(D)
has nontangential boundary values almost everywhere on each T,
and since m(E) =0, it is easy to see that (6) and (7) hold for all
2&D. If 2EG, the absolute value of the nth summand in (6) is no
larger than y;'7./|f||p, the absolute value of the #th summand in
(7) does not exceed

) Ely = |f|| o,

and hence (ii) and (iii) follow from (4).
In particular, we have

(10) 1Az = Mdlfllo

if f(0)=0. If “f”p=1, if f is not constant, and if f(»)=a, we can

apply (10) to the function
f—a

(11) §= -
1 —af

and conclude that
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Xo + lal

(12) Ifll= = T Tl

<1
This gives (iv).

The inequalities (8), combined with our assumption (1), imply that
the restriction of every f&EB(D) to the real axis R lies in a quasi-
analytic class [3]. If xo&FE is a limit point of real zeros of f, then
f®(x0)=0 for k=0, 1, 2, - - - (by repeated application of Rolle’s
theorem to the real and imaginary parts of f on R). The quasi-
analyticity of f therefore shows that f vanishes on R, and hence on
D, which proves (v).

Thus E acts like a set of interior points as far as the Cauchy for-
mula, the uniqueness theorem, and the maximum modulus theorem are
concerned.

Let us now consider the algebra A4 (D), consisting of all uniformly
continuous holomorphic functions on D, which is a Banach algebra
relative to the norm ||f|| p, whose maximal ideal space is the closure
D of D in the Riemann sphere [1], and whose Silov boundary is

If E is countable, for instance, and if D is as in Theorem I, (v) shows
that we obtain an example of a sup-norm algebra in which each func-
tion is determined by its values on a very small subset of the Silov
boundary.

Finally, consider the so-called B-topology on the algebra B(D).
This was introduced by Buck [2] and is also called the “strict” topol-
ogy; a typical B-neighborhood of a function f&B(D) is determined
by a continuous real function ¢ on D, positive on D and 0 on 8D,
and it consists of all g& B(D) for which

(14) (g = nello < 1.

If D is the unit disc, Buck has proved (unpublished) that the only
B-continuous complex homomorphisms of B(D) are the evaluations
at points of D. Rubel and Shields (in a paper which is in preparation)
have recently extended this to any D whose boundary has no com-
ponent consisting of a single point. This result cannot be extended
to every D, however, even if every boundary point of D is essential:

TueOREM II. If D is as in Theorem 1, if xEE, and if ®(f) =f(x),
then ® is a B-continuous homomorphism of B(D).

It is clear that ® is a homomorphism, and the Cauchy formula (6),
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with z=x (and with the curves I', replaced by nearby curves in D),
shows that ®(f) is obtained by integrating f with respect to a finite
measure in D. This shows that ® is 8-continuous [2, p. 99].
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