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I. Introduction. In [4] Schur proved the following beautiful result.
If H is a subgroup of the symmetric group of degree m, S,, and x(o)
is a character of degree 1 of H, then

m
® det 4 £ 2 x(o) I] awwir
o€EH t=1
for any m-square positive semi-definite hermitian matrix 4. Observe
that if H is the identity group, the inequality (1) is the Hadamard
determinant theorem det A £ [[7, a.:. In [3] it was conjectured that
per A= [I™, @ and in [2] this inequality was proved. Here
per A= Z,esm HZ’;I @10ty 1S the permanent of 4.
The purpose of the present paper is to announce some inequalities
for the general matrix function

@ dm®=§m@ﬂww

We shall see subsequently that Schur’s inequality (1) is an immediate
corollary to our Theorem 4.

I1. Main results.

TaEOREM 1. If N is m-square mormal with characteristic roots
N, * My then

1 m
3) || = — 22 | milm
m =1
In case x=1, we have the following generalization of the van der
Waerden conjecture in the non-negative hermitian case [3; 5].

THEOREM 2. Let A be an m-square positive semi-definite hermitian.
Let the ith row sum of A be denoted by ri, 1+ =1, - « -, m, and suppose
>m o ri=r>0. Then
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@ d(4) z B IT | ri|2/rm

=1
where h is the order of the group H. Equality holds in (4) if and only
if either (i) A has a zero row, or (ii) p(A) =1, where p(A) is the rank of A.

Let Qn.. be the totality of strictly increasing sequences w of length
m chosen from 1, - - -, #, 12w = -+ + Swx=#n. lf v and 7 are any
two sequences of length m chosen from 1, - - -, , then 4 [w|7] is
the m-square matrix whose (7, j) entry is @uw;.;, t=1, -, m,
j=1,+ -+, m. In case w, 7€ Qm» then 4[w|7] is an m-square sub-
matrix of 4.

THEOREM 3. Let A be an n-square positive semi-definite hermitian
matrix with characterisiic roots == -« + * =0ayn. Lhen

m 1 m m

(5) H an—iy1 S dy(4 [wl w]) = — Z a; .
$=1 m =1
THEOREM 4. If A is mXn and B is n Xm, then
(6) | 4(4B) |* = d,(44%)3,(B*B).

In case x =1 equality holds in (6) only if (i) A has a zero row, or (ii) B
has a zero column, or (iii) A =DPB* where D is a diagonal matrix
and P s a permutation matrix.

This result without any discussion of equality is found in [3].
Schur’s result can now be stated.

CoROLLARY 1. If A is an m-square positive semi-definite hermitian,
then
) det 4 < dy(A).

This inequality is easily proved from (6) as follows. Let 4 =X*X
where X is an m-square triangular matrix. Then

det 4 = det X*X = det X det X*
= dy(X)d(X*) = dy(IX)d(X*I)
S (G (X* X))V (d(X* X)) = dy(4).

Let T',u,» denote the set of #™ sequences w=(wy, * *  , Wn), 1 Sw; =7,
i=1, - - -, n, and define an equivalence relation in T, , by w~7 if
and only if there exists a ¢ ©H such that w'=(wsqy, * * *, Wotm))
=(71, + * *, Tm) =7. For o€, let »(w) be the number of c € H for

which w’=w. By A we shall denote a fixed system of distinct repre-
sentatives for the equivalence relation. For example, if H=S,, we
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can choose A to be the set of Cp,nim—1 nondecreasing sequences
Y NE S Yme

The following result underlies Theorem 1 and is of some interest in
itself.

THEOREM 5 (GENERALIZED CAUCHY-BINET EXPANSION). Let A be
mXn and B be n Xm matrices. Then

(8) dx(AB) = Z dx(A[ly et ,ml 7])dx(B['YI 17 Sty m])

yea VY
It is well known that certain relations must obtain between
subdeterminants of a matrix (the quadratic relations). It is a useful
fact that in the case of a unitary matrix a related result is true for the
general function d,. For each t=1, - - - , n and Y& , let m:(y) de-
note the multiplicity of occurrence of the integer ¢ in v.

THEOREM 6. If m=mn and U is an n-square unitary matrix, then for
each t=1, - - -, n

m(y)
© > | &Uly[1, -+ D[ = 1.
vea ¥(7)
A matrix is called doubly stochastic if every row and column sum
is 1. Generalizing what is currently known about the van der Waer-
den conjecture we have as an immediate consequence of Theorem 2:

COROLLARY 2. Let A be an m-square doubly stochastic positive semi-
definite hermitian matrix. Then, if h is the order of H,

(10) dl(A) g —h‘ *
m'm.

Equality holds in (10) if and only if A= Jn, the matrix all of whose
entries are 1/m.

To see this, simply set each ;=1 and r=m in (4). The equality
can hold if and only if every row of 4 is a multiple of the first row.
Since each row sum is 1 it follows that all the rows are identical, say
(@1, * * +, Gim). Since the jth column sum is 1 it follows that a;;=1/m
and hence 4 = J,.

CoROLLARY 3. If A 1is an m-square matrix with singular values
Gz - - ZQm, then

lm 2m
(11) |d(A) P = =2 i
m

ge=1
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In case x=1 the equality holds in (11) if and only if A =DP where D
is a diagonal matrix each of whose main diagonal entries have the same
absolute value and P is a permutation matrix corresponding to a permu-
tation in H.

This follows directly from (6) and (3).

COROLLARY 4. Let N be an m-square normal matrix and let A = NN*
= N*N. Let A2 denote the unique positive semi-definite determination
of the square root of A. Then

(12) | de(N) | < dy(AV2).

If x=1 and (12) is equality, then N is of the form DPA'* where D
is a diagonal matrix and P is a permutation matrix.

COROLLARY 5. If N is an m-square doubly stochastic, normal and has
non-negative eniries, then

(13) per v < 2707
m

The inequality s strict unless either N is a permutation matrix or m=2
and N=J,.

The characteristic roots of N do not exceed 1 in modulus and
exactly p(N) of them are nonzero. Thus (13) follows immediately from
(3). Now suppose (13) is equality. Then every nonzero characteristic
root of N is of modulus 1. By the Perron-Frobenius theorem [1] we
obtain P and Q, permutation matrices, such that PNQ is a direct
sum of primitive matrices [1]. The moduli of the characteristic roots
of N and PNQ are the same and p(N)=p(PNQ). Thus each of the
primitive main diagonal blocks in PNQ has precisely one character-
istic root equal 1, the rest 0. Thus PNQ is a direct sum of matrices

Tmgpy 2=1, -+, r, m;=2, 1=1, - - -, r, together with an k-square
identity matrix: r=p(N) —£k, p(N) =k =0. Suppose >0. Then
room;! N h+r r r
perN=perPNQ=H——m-=p( )= = > .
- mii m r r r
' Rt 2mi Xmi JIm
=1 =1 =1

Hence

r r mi—1
H m,-l g r H ms .

gl 1=1

This implies =1, m;=2 and PNQ=1I,,_;+J.. But then per PNQ=3}
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while p(PNQ)/m=(m—1)/m. Thus m=2. If r=0, N is clearly a
permutation matrix.

CoOROLLARY 6. If A is an m-square doubly stochastic matrix with non-
negative entries, then

(14) per 4 = (EEA—)>”2.

m
Equality holds in (14) if and only if A is a permutation matrix.
This follows from (13) and the fact that per 4 < (per(4*4))*/2 [3].

III. Method of proof. Let V be an n-dimensional unitary space
with inner product (x, ¥) and let V) be the tensor product of V with
itself m times. For x,&EV, ¢=1, - - -, m, define the symmetry oper-
ator

T(xl ® ¢t ® xm) = Z X(o-)xv’l(l) ® AR ® xa"l(m)-

cEH
Then T?=hT, T*=T where & is the order of the subgroup H. Set
Xk *xx,=T(x1® -+ - ®@xn) and observe that
(15) (%1%« + % Dy 1% - - -k Ym) = hdy(4)

where a;; = (x., ¥;). The inner product in (15) is the standard one in
Ve, (6@ -+« @%my MO + + + @Ym)= L1y (xi, ). It turns out
that Theorem 5 is a restatement of Parseval’s Theorem in the sym-
metry class of tensors T(V™). We then apply (8) to a matrix of the
form U*D U where D is diagonal and U is unitary to obtain Theorem 6.
We can prove the inequality (3) as follows. Let N

= U*diag(p, - - +, 1a)U and set c.,=|dx(U['y|1, <., m])!2 for
v&A. Then from Theorem 5
Cy - my (7)
ld| =] X m 11 | el
yeEA "(‘Y) t=1 1eA V('Y) t=1
> mdy) | ml
G‘/ t=1
- yeA V('Y) m

= —-—th(v)|ml"‘

yea V(‘Y) m =1

=-—Z | ne|m th(v)c"=——z | 7¢]m.

t=1 YeEA V('Y) el
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The remaining results can be proved by similar techniques. Thus
inequality (4) is obtained by projecting a decomposable element of
the symmetry class T(V®™) onto a suitable tensor and using the
Cauchy-Schwarz inequality.

The discussion of the cases of equality requires special and some-
what involved arguments.
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