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1. Introduction. A Hurwitz function is a function/(z) with / (n)(0) 
= integer for n = 0, 1, 2, • • • . An integer valued function is a function 
g(z) with g(n)= integer for w = 0, 1, 2, • • • . 

I t is well known that every transcendental Hurwitz entire function 
and every transcendental integer valued entire function must be at 
least of exponential order, type 1 and log 2 respectively, which are 
the best possible values. (Example: ƒ(z) —ez, g(z) = 2\) 

Various improvements on these facts have been studied to a con­
siderable extent. I t is the purpose of this note to establish the precise 
dividing line for the growth of these entire functions below which one 
finds only polynomials. 

2. Hurwitz entire function and integer valued entire function. 
DEFINITION. Let 

rn 
4>(r) = m a x — — — • (r ^ 0) 

(1) « r(n + 1) 
= exp(r - (log r)/2 - (log 2TT)/2 + l/(24r) + 0(1 A2)). 

THEOREM 1. Let \p(r) be any increasing function such that f or every 
N, there exists an r^, so that yp(r)>rN for all r>r^f, then there exists a 
nondenumerable set of transcendental Hurwitz entire functions which 
satisfy 

(2) Mir) < *to + Hr) 
for all r>R> where R is a suitable positive number depending only on 
$(r). Here M(r) is the maximum modulus off{z) at \z\ = r . 

THEOREM 2. A Hurwitz entire function is a polynomial if 

(3) Mir) < 4>{r) + rN 

for some N and all r>r0. 

THEOREM 3. There exists a denumerable infinite set of transcendental 
integer valued entire functions which satisfy 

(4) Mir) <2r - rN 

for any fixed N and all r > r0. 
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THEOREM 4. With any \f/(r) as in Theorem 1, an integer valued entire 
function is a polynomial if 

(5) M(r) <2r- *W 

for all r>R. 

COROLLARY 1. For every e > 0 there exists a transcendental Hurwitz 
entire function with 

\/2îrre~rM(r) 
(6) lim sup ~ — — r < 1, 

r ->oo / 1 + € \ 

while every Hurwitz entire function for which 

y/lire~rM(r) 
(7) lim sup ~ r g 1 

r—•«» 

(1+1sr) 
is a polynomial. 

3. Two points Hurwitz entire function. Both authors have con­
sidered entire functions all of whose higher derivatives are integral 
valued at several integral points. While the results are satisfactory 
as far as the minimal order of such transcendental functions is con­
cerned, we have been able to determine so far the minimal type only 
in the case of two points. In the particular case in which the functions 
are Hurwitz entire functions at two consecutive integers, say z= 0 and 
z—l (i.e., entire function ƒ(z) for which ƒ(n)(s) = integer at JS = 0, 1; 
n~0, 1, 2, • • • )» much of the analysis to prove Theorems 1 and 2 
can be carried out to give sharper results on their rate of growth. 

THEOREM 5. Let cj>(r) and \f/(r) be as in Theorem 1. Then there exists 
a nondenumerahle set of transcendental Hurwitz entire functions at 0 
and 1 for which M(r) <<fr(r(r + l)) +\f/(r) for r>R where R depends 
only on ${r). 

THEOREM 6. If f(z) is a Hurwitz entire function at 0 and 1 which 
satisfies M(r) S<t>{r(r — l)) for all r>r0 then f(z) is a polynomial. 

COROLLARY 2. There exist transcendental Hurwitz entire f unctions at 
0 and 1 with M(r) < e x p ( r 2 + r — log r+o(log r)) while every Hurwitz 
entire function at 0 and 1 for which M(r) <exp(f2 — r — log r+o(log r)) 
is a polynomial. 
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4. Indication of proof. 
PROOF OF THEOREM 1. Let 0Sni<n2< • • • <m< • • • be a se­

quence of integers such that «»-+i > 4n* and \[/(r)>2n%~1 for any r > w»/4. 
Then the function f(z) = T^ln zni/tij\ has the described property. 
I t is clear that any infinite subsequence of our sequence {w,-} gives 
rise to a transcendental Hurwitz entire function whose rate of growth 
is not greater than that of ƒ (z) and there are nondenumerably many 
such subsequences. 

PROOF OF THEOREM 2. For a Hurwitz entire function ƒ(z) 
== ]Cjfc°»o &kZk/kl we have #* = integer and 

(8) (M(r))2 â - ^ /" | ƒ(*) \*-\iz\ = £ i ^ £ ,2,. 
2?rf^ |#|^. *«,<> (fel)2 

Pick TX^TQ SO tha t <j>(r)>rN for all r > m then for any k>ti we have 
|öfc| S I , since otherwise (i.e., |a*;| ^ 2 ) we should have (M(r))2 

= 4(0(r))2>(^>(r)+r^)2 when rh/T(k + l)=<l>(r) or r « f e + è > r i con­
trary to (3). Assume now \dk\ = 1 for some sufficiently large k, then 
considering r so that </>(r)=rk/T(k + l) we have, by (8), that am = 0 
for all k/4:<m<k wherever a* 5^0, k>ko. U f(z) is transcendental we 
can pick &o<&i<fe so that a ^ ^ O , ak27

£0 and am = 0 for hi<m<k<i. 
This gives that for sufficiently large choices of &i, &2 we get M(r) >4>{r) 
+rN, contrary to hypothesis. 

PROOF OF THEOREM 3. For any integer valued polynomial P(z) of 
degree n>N with a positive leading coefficient, an entire function 
g(z) = 2z — P(z) is a transcendental integer valued entire function 
which satisfies (4) and we have denumerably infinite set of such func­
tions. 

PROOF OF THEOREM 4. The function g{z) must have the form g(z) 
= P(z)+Q(z)-2z where P(z), Q(z) are polynomials. The condition (5) 
requires that Q(z) must be a constant and \Q\ 5*1. The fact that 
g(n)= integer for w = 0, 1, 2, • • • gives that Q be a rational number 
Q — t/s> (ty s) = l, \t\^s, t, s— integer. Considering the periodicity 
(mod p) of g (z), we have that no prime p can be a factor of 5 and 
hence 5 = 1 . This gives that the only possible values of Q be 0 and 
± 1 . If Q = 0, then g(z) is a polynomial, if Q— ± 1 , then g(z) does not 
satisfy (5). 

PROOF OF COROLLARY 1. I t is a direct application of the asymptotic 
expansion (1) with Theorems 1 and 2. 

PROOF OF THEOREM 5. If f{z) is a Hurwitz entire function with 
M(r)—x(r)> then g(z)=f(z(z—l)) is a Hurwitz entire function at 0 
and 1 with M(r)£x(r(r + 1)). 



306 DAIHACHIRO SATO AND E. G. STRAUS [March 

PROOF OF THEOREM 6. Denoting [t] for the greatest integer not 
exceeding t, we can expand f(z) in a series 

CO 

(9) ƒ(*) = Z flnz[(n+1)/21-(z - l)[«'«/[»/2]I 
n=0 

with the coefficients 

(10) Ö„ = <h — • 
2iri . ƒ , , , _ . ^t(^-H2>/2] . (f - 1) [Ori-D/2] 

Now /(s) is a Hurwitz function at 0 and 1 if and only if an — integer 
for n = 0, 1, 2, • • • . If we choose r so that <l>(r(r — 1)) 
= = ( f ( r - l ) ) [ n / 2 ] / h / 2 ] ! , then we have 

\an\ <M(r)- [n/2]\/(r^^(r-l)^+l^^)èM(r)/cj>(r(r-1)). 

Thus, if Af(r) ^</>(r(r— 1)) for r > r 0 then | a n | < 1 and hence an = 0 
for w>Wo. This means that ƒ(z) is a polynomial. 

PROOF OF COROLLARY 2. Consequence of Theorems 5 and 6 with 
asymptotic expansion (1). 

5. Remarks. 
1. While Theorems 1 and 2 give the exact dividing line between 

the denumerable and nondenumerable sets of Hurwitz entire func­
tions, the similar dividing line for the integer valued entire functions 
is still unsettled. 

2. In view of Corollary 2, we see that there remains the question 
of the best constant — l^c<l so that all transcendental Hurwitz 
entire functions at 0 and 1 must satisfy M(r) >exp(r2+cr+o(r)) for 
arbitrarily large r. 

3. We can recapture the precision attained in the one point case if 
we modify the region in which we maximize \f(z)\, by replacing the 
circle \z\ —r by a lemniscate 12(2?—1)| =r2. Thus we have 

THEOREM 7. Let 

(11) J f * « = max | / ( s ) | . 
!*<*-l)|=r2 

If f(z) is a Hurwitz entire f unction at 0 and 1 and M*(r) <<j>(r2) +rN for 
some N and all r>R, then f(z) is a polynomial. On the other hand, if 
\[/(r) is as in Theorem 1, then there exists a nondenumerable set of trans­
cendental Hurwitz entire functions at 0 and 1 with M*(r) <(t>(r2)+\[/(r), 
r>R. 
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