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In the study of linear differential systems with a single time lag we 
are led to the study of the nature of the zeros of the characteristic 
exponential polynomial, which are in general infinite in number. In 
questions of stability the primary problem is determining the nature 
of the real parts of these zeros, stability only occurring if the real 
parts are all negative. The most notable achievement in this line is 
that of Pontrjagin [2] which states that if the exponential poly­
nomial lacks a principal term (see Bellman and Cooke [l, p. 440]), 
it has an infinite number of zeros with arbitrarily large positive real 
parts. What happens when there is a principal term has until now 
not been discussed. This paper proposes to fulfill that need. 

In many applications it is possible to vary the coefficients slightly, 
and, in so doing, alter the zeros slightly. With only a finite number 
of zeros with positive real parts it may be possible to alter the coeffi­
cients in such a way as to achieve stability. If an infinite number of 
zeros with arbitrarily large positive real parts occurs, any hope of 
stabilizing the system vanishes. 

We will consider a linear differential system with time lag r having 
as its characteristic equation 

(1) F(z) = zn + as»-1 + • • • - Keide~TZ(zm + hzm~l + . • • ) = = 0 

where r > 0, K ^ 0 and 0 ^ 0 are real constants and a and b are complex 
constants. 

THEOREM I. If n>m: the number of zeros of F(z) with positive real 
part (or lying in any right half plane) is finite; if KT^O, F(Z) has an 
infinite number of zeros with arbitrarily large negative real part, 

II. Ifn = m: when K^O F(z) has an infinite number of zeros given by 

(2) (l/r)(log K + i(0 + Ikir)) + o(l) 

as k= 0, ± 1 , ± 2 , • • -, and only a finite number of other zeros. If K<1, 
F(z) has only a finite number of zeros with positive real part. If K>\, 
F(z) has only a finite number of zeros with negative real part. 

III . If n<m: the number of zeros of F(z) with negative real part (or 
lying in any left half plane) is finite; if K5^0, F(z) has an infinite num­
ber of zeros with arbitrarily large positive real parts. 
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PROOF. Clearly III follows from I by replacing z by — z and multi­
plying by e~TZ. 

I. Choose any real number a. Suppose F(z) has an infinité number 
of zeros with real part greater than a. These must approach infinity 
since F(z) is an entire function. Since | e~TZ\ is bounded by e~Ta to the 
right of a, we have F(z) =zn(l+o(l)). Thus F(z) is asymptotic to 
zn giving a contradiction. The proof of the existence of an infinite 
number of zeros of F(z) with arbitrarily large negative real part is 
due to Pontrjagin [2]. 

II . As in I, choose any real a. \e~~TZ\ is then bounded to the right 
of a by e~ra, and F(z) = zn(l -Keiee-TZ + 0(l/\ z\ )). By use of Rouché's 
Theorem we see that the zeros of F(z) become arbitrarily close to the 
zeros of 1— Keiee~TZ and there can be none elsewhere. Hence these 
zeros have the form (2). 

Clearly these asymptotic zeros ultimately lie on the same side of 
x = 0 a s log K, i.e., in the right half plane if K> 1 and in the left half 
plane if K<\. 

To consider zeros in any left half plane, replace z by —z and 
multiply by e~TZ. In so doing we find the result is the same as before. 

In many situations, for example, feed back systems, K is a param­
eter which can be chosen more or less arbitrarily. If r = 0, there are 
many well-known tests to determine stability as well as to determine 
which values of K lead to stable systems. At present these techniques 
are lacking for differential-difference systems, at least in French, 
German or English translations. It is hoped that the absence of suita­
ble techniques will soon be remedied. 
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