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Introduction. Relations between elements of a free group lead 
directly to identities for all groups, which are of considerable im­
portance. In 1958 R. C. Lyndon [7] initiated a study of relations in 
free groups; in particular Lyndon proved that if gi, g2, g are elements 
of a free group and 

2 2 2 
glg2 = g , 

then gi, g2, g generate a cyclic group. Since then a number of general­
izations of this theorem have been obtained by E. Schenkman [lO], 
John Stallings [12], and Gilbert Baumslag [ l ; 2], The most recent 
result of this kind proved by M. P. Schutzenberger [ i l ] (cf. also 
R. C. Lyndon and M. P. Schutzenberger [8]) and, independently, 
also by Arthur Steinberg [13], states that if 

p Q r 
gig* = g J 

where now p, q and r axe integers greater than 1, then again gi, g2, g 
generate a cyclic group. 

Similarly, if instead 

grlgrlgigi = gr (r>l), 

then once more gi, g2, g generate a cyclic group (M. P. Schutzenberger 
[ l l ] , Gilbert Baumslag [3], and A. Karass, W. Magnus and D. 
Solitar [6], and Arthur Steinberg [13]). 

The purpose of this note is to announce the following theorem 
which contains both the aforementioned theorems as special cases. 

THEOREM 1. Let w = w(xi, 
X2» * * * j •X'n ) be an element of a free group 

F freely generated by Xif #2, • • • , xn which is neither a proper power nor 
a primitive,2 If gi, g2, • • • , gn, g dr e elements of a free group connected 
by the relation 

w(gu ft, • • • , gn) = gm (tn> 1), 

then the rank of the group generated by gi, g2, • • • , gn, g is at most n—\. 
1 This work has been supported by a grant from the National Science Foundation, 

Grant G. P. 27. 
2 An element in a free group is termed primitive if it can be included in a set of 

free generators. 
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The authors would like to justify this joint announcement of work 
done independently by pointing out that Theorem 1 was obtained 
first by Baumslag although a more general result was already implicit 
in the Ph.D. thesis of Steinberg. 

It is worth noting that the two proofs of Theorem 1 are completely 
different. On the one hand, Steinberg makes use of the Freiheitssatz 
of Wilhelm Magnus [9]. The information obtained in this way is so 
precise that a more general result than Theorem 1 can be obtained. 
Baumslag's proof, on the other hand, is less incisive, making use of 
residual properties and groups with unique roots (cf. [4; 5]). How­
ever, it seems likely that this approach might well be of value in 
treating analogous questions for other varieties of groups. Conse­
quently, both proofs are of independent interest; they will appear 
separately, in detail, elsewhere. 
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