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1. Introduction, The telegrapher's equation 

d2u du d2u 
(1) + 2a — = c2 

dt2 dt dx2 

where a and c2 are positive constants, is treated in [ l ] , as follows. 
Let N(t) be the Poisson process with constant intensity a (see below). 
Denote by E {•} expected values with respect to this process, and 
by T{p) the random time defined by 

(2) T(t) = f (-l)N^dr. 

Then, if v(x, t) is any smooth solution of the wave equation 

d2v d2v 
(3) = c2 

dt2 dx2 

the function u(x, t) = E{v(x, T(t))} satisfies (1), with 

lim u{x, t) = v(x, 0) 
*-*o+ 

and 

du dv 
lim — (x,0) = — (x,0). 
«-*o+ dt o t 

Kac observes that this is the restatement, in the language of con­
tinuous stochastic processes, of a result of Goldstein [2], who, start­
ing with a Poisson-type random walk, asymptotically obtained solu­
tions of (1). The proof in [ l ] goes via direct computation, which 
may be done also in the case of the Laplacian in several space dimen­
sions. Tha t some sort of similar result must hold in even greater 
generality, and with a more elegant proof, was suggested by Professor 
Kac, to whom the author is indeed grateful. The purpose of this note 
is to present such a result. 

2. The Poisson process. Given a non-negative, continuous func­
tion ait), defined on [0, <*>), one may associate with it a Markov 
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process, called the "Poisson process with intensity a" as follows: Our 
process, which we write N(t) for short, starts at zero, i.e., iV(0)=0, 
and, for t^s, we have 

fO 

P{N(t) ~N(s) =m} = 

if m < 0, 

u:-(r)dr 

ml 
• exp — I a(r)dT if m ^ 0, 

if m = 0 and t = s. 

As in [3, pp. 159-160], N(t) may be considered as a random variable, 
i.e., N(t) = iV(J, co), co G12, where 0 is the set of all functions co: t-^co(t) 
= iV(/, co), from [0, °o) to the non-negative integers, which are zero 
for t = 0, continuous from the right, and nondecreasing, and which 
have only finitely many discontinuities in each finite t interval. Thus 
P is a probability measure on (12, Ct), where d is the cr-algebra gener­
ated by all sets of the form {co| N(t, co) = k} for / ^ 0 , k a non-negative 
integer; E{ •} is the associated expectation operator. Finally, for our 
process N(t), we define the random variable T(t) = T(t, co) as in (2)# 

3. The basic identity. We now prove the following: 

LEMMA. Let v(t) be twice continuously differentidble in ( — r, r ) . If 
we define 

u(t) = E{v{T(t))}, 

then u(t) satisfies 

(4) u"(t) + 2a(t)u'(t) = E{v"(T(t))}, 0 < / < r, 

and 

lim u(t) = v(0) 

lim «'(/) = z/(0). 

PROOF. Since \T(t)\ St, the second assertion is immediate. For 
each co, T is an absolutely continuous function of t, and dT/dt is 
bounded from above in absolute value by 1, and approaches 1 as 
t—>0 + . By the chain rule, we obtain 

»'(0 = Js|i/(r(0)^-(o}. 
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Applying the bounded convergence theorem, the last assertion fol­
lows. Finally, we observe that (4) is now equivalent to the linear 
integral identity 

u(t) = v(0) + v'(0) f exp F - 2 f a(s)ds 1 dr 

+ ƒ dr f \xpl -2 f * a(s)ds\E{v"(T(d))}dO. 

By the Weierstrass approximation theorem, it suffices to prove (5) 
for v(t)=tk, fe = 0, 1, 2, • • • . For fe = 0, (5) is immediate. For fe=l, 

u(t) ~ Sir®] = f'EK-ir^dr. 
J o 

But 

E{(-1)* ( T ) } = ÎL(-l)kP{N(r) = fe} = e x p T - 2 fTa(s)ds\ 
Jfc=0 L ^ 0 J 

Thus, it remains to prove (5) for fee2. If we introduce 

<rh{t)=^-E{T*{t)) 

we have, by Fubini's theorem again, 

<Tk(t) = f dnf^dn^-.- fT'dTlE{(-l)N™+--+N™}-
J o J 0 *J 0 

But, if T i^T2^ • • • ^T/C+2, we have 

£J ( _ l)2V(u)+- • •+2Vr<T*+j)j 

= E{(~l)NiTl)+'"+NiTk) (—l)NlTk+2)-NiTk+l)\ 

= £{ (—l )^(n )+ -"+ iV(r&) | £J(_l)2\r(r*+2)-tf(T*+i)J 

since N(Tk+2)—N(Tk+i) is independent of iV(ri), • • • , N(Tk). AS in 
our previous calculation, we get 

r f rft+2 "I 

E{(-l)tf<r*+>>-*<T*+i>} = e x p _ 2 I a(j)<fr . 

Thus, we obtain (replacing T&+2 and T*+I by r and 0, respectively) 

o-*+2(2) = 1 dr I exp - 2 I a(s)ds \<rk(0)dd 
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which is just (5), for the case v(t) = /*+2, k^O. Thus, our proof is com­
plete. We note that a similar computation of the moments of T, using 
the Laplace transform (which works only for constant a) is carried 
out in [ l ] . 

4. Scope of the method. If L is any reasonable linear operator on 
functions <£ = <£(#) defined for x in some region 0 of En

> and v = v(x, t) 
varies continuously with /, we may expect that 

LE{v(x, T(t))} = E{Lv(xy T(t))}. 

Since E { •} is in fact given by a Stieltjes integral (see our remark be­
low), this will certainly be true when L is a linear operator taking 
3D'(0) (the space of distributions on £2) into itself, continuous in the 
Schwartz topology. For any such operator, we have at once the fol­
lowing 

THEOREM. Let v(x, t) be twice continuously differentiable in tfor each 
x £ f l and / £ ( —r, r ) , and let it satisfy there 

d2v 
(6) = Lv. 

dt2 

Then u(x, t)=E{v(x, T(t))} satisfies 

d2u du 
(7) h 2a(t) — = Lu in SIX (0, r) 

dt2 dt 
with 

and 

lim u(x, t) = v(x, 0) 
*-»0-f 

du dv 
lim —(x, t) = — (x, 0) for # £ Œ. 
t-+o+ dt dt 

REMARKS. The transformation discussed above can be given a com­
pletely nonprobabilistic form. For, we may write 

ƒ 00 

v(x, s)d8a(s, t) 
— Oft 

where a(s, t)=P{ T(t) Ss}. (Since a = 0 for s^ —t and a = l for s^t 
the integral above is really taken between — / and t.) But, using the 
lemma, a is easily seen to be a solution of the simple telegrapher's 
equation 
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d2a da d2a 
(8) h 2a(f) — = for t > 0, all s 

dt2 dt ds2 

with 

and 

a(s, 0) = H0(s) 

da 
— (s, 0) = - So(s) 
dt 

where Ho(s) is the Heaviside unit function with jump at 5 = 0, and 
8o(s) is the Dirac distribution centered at s = 0. The representation 
of a solution of (7) as an expectation may be of some interest, how­
ever, in obtaining a priori estimates; proceeding rather crudely, we 
observe the following: If ||-|| is any reasonable norm on functions 
0(x) defined on 0, then 

sup ||«|| = sup ||v||, 

where u and v are as above. Hopefully, more detailed information 
may be obtained by exploiting the growth of a(t). 

Added in proof. Through conversation with Louis Nirenberg we 
have been made aware of the following two facts : The transformation 
above, in its classical form, is an example of a transmutation oper­
ator (J. Delsarte, Sur certaines transformations fonctionelles relatives 
aux équations linéaires aux dérivées partielles du second ordre, C. R. 
Acad. Sci. Paris 206 (1938), 1780-1782). Furthermore, one may de­
duce that a(s, t) must be a probability distribution from a maximum 
principle for hyperbolic equations (H. Weinberger, A maximum prop­
erty of Cauchy's problem, Ann. of Math. (2) 64 (1956), 505-513). 
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