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1. Introduction. The telegrapher’s equation
*u du %u

1 —+2a—=¢2—
) a2 at ox?

where a and ¢? are positive constants, is treated in [1], as follows.
Let N(¢) be the Poisson process with constant intensity a (see below).

Denote by E{ . } expected values with respect to this process, and
by T(¢) the random time defined by

t
2) T@®) = f (—1)N g,
0
Then, if v(x, t) is any smooth solution of the wave equation
®) 9%y , 9%y
— T C ——
a2 ox?

the function u(x, {)=E {v(x, T(t))} satisfies (1), with

lim u(x,t) = »(x, 0)
-0+

and
i 6u( 0 dv @, 0)
im — (x,0) = — («, 0).

o+ 0 ot
Kac observes that this is the restatement, in the language of con-
tinuous stochastic processes, of a result of Goldstein [2], who, start-
ing with a Poisson-type random walk, asymptotically obtained solu-
tions of (1). The proof in [1] goes via direct computation, which
may be done also in the case of the Laplacian in several space dimen-
sions. That some sort of similar result must hold in even greater
generality, and with a more elegant proof, was suggested by Professor
Kac, to whom the author is indeed grateful. The purpose of this note
is to present such a result.

2. The Poisson process. Given a non-negative, continuous func-
tion a(f), defined on [0, «), one may associate with it a Markov
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process, called the “Poisson process with intensity ¢” as follows: Our
process, which we write N(¢) for short, starts at zero, i.e., N(0) =0,
and, for ¢=s, we have

0 ifm <O,

mN@—N@=m%=llZfﬁjim{—flww

:lifmg 0,
m!

8

1 ifm=0and¢=-s.

Asin [3, pp. 159-160], N(¢) may be considered as a random variable,
ie., N@)=N({, w), oEQ, where Q is the set of all functions w: t—w(f)
= N(¢, w), from [0, ) to the non-negative integers, which are zero
for t=0, continuous from the right, and nondecreasing, and which
have only finitely many discontinuities in each finite ¢ interval. Thus
P is a probability measure on (R, @), where @ is the o-algebra gener-
ated by all sets of the form {w|N(t, w) =%k} for =0, k a non-negative
integer; E{-} is the associated expectation operator. Finally, for our
process N(¢), we define the random variable T(t) =T(¢, w) as in (2),

3. The basic identity. We now prove the following:
LEMMA. Let v(t) be twice continuously differentiable in (—7, 7). If
we define
u(®) = E{o(T()},
then u(t) satisfies
(4 W) + 20()u' () = E{v""(T(®)}, 0<t<r,
with

lim «(#) = v(0)
-0+

and
lim #'(f) = 2(0).
t—0+
Proor. Since |T(t)| =t, the second assertion is immediate. For
each w, T is an absolutely continuous function of ¢, and 07T/d¢ is
bounded from above in absolute value by 1, and approaches 1 as
t—0+. By the chain rule, we obtain

aT
w({) = E {v’(T(t)) = (t)} .
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Applying the bounded convergence theorem, the last assertion fol-

lows. Finally, we observe that (4) is now equivalent to the linear
integral identity

u(2) = v(0) + 2/(0) fot exp[—Z fofa(s)ds:l dr

+f0td*rfof exp[—ZLra(s)ds]E{v”(T(B))}dO

By the Weierstrass approximation theorem, it suffices to prove (5)
for v(t)=¢*, k=0, 1, 2, - - - . For k=0, (5) is immediate. For k=1,

®)

u(t) = E{T()} =f0 E{(—1)"®}dr

But
E{(—1)v®} = %( 1)*P{N(7) = k} —exp[ 2f a(s)ds]

Thus, it remains to prove (5) for k=2. If we introduce
1
a(t) = -k—l- E{ T"(t)}

we have, by Fubini's theorem again,

¢ Tk 73
() = f dif dry_q - - - f dTIE{(_1)N(f1)+-..+N(rk)}.
0 0 0

But, if 11S7:S - -+ STiye, we have
E{(—1)N @+ +N e}
= E{(—1)N G0+ 4N ()N (rksn)=N (ki) }
= E{(—1)V e+ N0} Bf(—1)N trea)=N e}

since N(7r42) —N(741) is independent of N(r1), - -+, N(7x). As in
our previous calculation, we get

Th+2
E{(—= 1)V m-Nee) = exp [ -2 f a(s)ds:l .

Tk+1

Thus, we obtain (replacing 742 and 74,1 by 7 and 6, respectively)

or2(t) = LtdeTexp[—Zfo'a(s)ds] o(0)do
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which is just (5), for the case v(f) =¢**+2, k= 0. Thus, our proof is com-
plete. We note that a similar computation of the moments of T, using
the Laplace transform (which works only for constant a) is carried
out in [1].

4. Scope of the method. If L is any reasonable linear operator on
functions ¢ =¢(x) defined for x in some region Q of E*, and v=1v(x, t)
varies continuously with ¢, we may expect that

LE{v(x, T())} = E{Lvo(x, T®))}.

Since E{ . } is in fact given by a Stieltjes integral (see our remark be-
low), this will certainly be true when L is a linear operator taking
D'(Q2) (the space of distributions on Q) into itself, continuous in the
Schwartz topology. For any such operator, we have at once the fol-
lowing

THEOREM. Let v(x, t) be twice continuously differentiable in t for each
xEQ and tE(—1, 1), and let it satisfy there

(6) 9—23 = Ly
at?
Then u(x, t) = E{v(x, T(t))} satisfies
)] ﬂ + 2a(2) % = Lu in QX (0, )
a2 ot
with
lim u(z, t) = v(x, 0)
-0+
and

lim 2w, ) = = (5,0)  forz€Q
im —(x, ) = — (x or x .
1—0+ Of ’ ot ’

REMARKS. The transformation discussed above can be given a com-
pletely nonprobabilistic form. For, we may write

u(x, ) = f v(x, s)dsa(s, t)
where a(s, £) =P{T(t) <s}. (Since @=0 for s< —f and a=1 for st
the integral above is really taken between —¢ and £.) But, using the
lemma, « is easily seen to be a solution of the simple telegrapher’s
equation
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(8) ?j_a_ ~+ 2a(?) -(-93 = 9—2-?- fort> 0,all s
ot o 9s?
with
als, 0) = Ho(s)
and

da 0) =
-5;(3, ) = — do(s)

where Hy(s) is the Heaviside unit function with jump at s=0, and
8o(s) is the Dirac distribution centered at s=0. The representation
of a solution of (7) as an expectation may be of some interest, how-
ever, in obtaining a priori estimates; proceeding rather crudely, we
observe the following: If ||-|| is any reasonable norm on functions
¢(x) defined on Q, then

sup [luf] = sup |lof],
0=t<7 —rStsT

where # and v are as above. Hopefully, more detailed information
may be obtained by exploiting the growth of a(¢).

Added in proof. Through conversation with Louis Nirenberg we
have been made aware of the following two facts: The transformation
above, in its classical form, is an example of a transmutation oper-
ator (J. Delsarte, Sur certaines transformations fonctionelles relatives
aux équations linéaires aux derivées partielles du second ordre, C. R.
Acad. Sci. Paris 206 (1938), 1780-1782). Furthermore, one may de-
duce that «a(s, £) must be a probability distribution from a maximum
principle for hyperbolic equations (H. Weinberger, 4 maximum prop-
erty of Cauchy's problem, Ann. of Math. (2) 64 (1956), 505-513).
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