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A linear set EC (0, 1) is said to be a set of uniqueness (set U) for
trigonometric expansion if no trigonometric series exists (except van-
ishing identically) which converges to zero in the set CE complemen-
tary to E. Following Nina Bary we shall say that E is a set of unique-
ness “in the wide sense” (set U*) if no Fourier-Stieltjes series exists
(except vanishing identically) which converges to zero in CE. If E is
a closed set U* it means (see [1, Vol. 1, pp. 344-359, Vol. 2, p. 160])
that E does not carry any measure whose Fourier-Stieltjes coefficients
tend to zero. If E is a closed set U (i.e. of uniqueness “strict sense”)
it means that E does not carry any measure or pseudo-measure (cf.
[2]) with coefficients tending to zero.

DEFINITION. A real sequence of numbers {#,}; will be said to be
“badly distributed” modulo 1 if there exists at least one character-
istic function X (x) of open interval AC (0, 1) periodic with period 1
such that

X coe 4 X(u, 1
lim sup () + + X <f X(x)dx = !Al
0

K=o K

when |A| stands for the length of A.!
REMARRK. It is easy to see that under this hypothesis there exists a
A with rational end-points having the same property.

TueoreM. Let EC (0, 1) be a linear set such that there exists an in-
finite sequence of positive integers {n.}y increasing to infinity, with the

1 Professor Salem died June 20, 1963, in Paris.
1 The reader will convince himself that all the argument which follows is applicable
in the case we suppose lim inf >A.
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property that for every x CE, the sequence {n,x} is badly distributed
modulo 1. Then E is a set of the type U*.

We shall make use of the three following known lemmas:

LemMA I (see [1, Vol. 2, pp. 145, 160]). In order to prove that a closed
set does not carry a nonvanishing measure with Fourier-Stieltjes coeffi-
cients tending to zero, it is sufficient to prove that it does not carry a
positive measure having this property.

LemMA II (see [1, Vol. 2, p. 144]). Let

L
du ~ Z cneh—inz

-0

be a Fourier-Stieltjes series and let
X(.')C) ~ 2 ,yne?n'nz

be the Fourier series of the characteristic function X (x) of an interval
AC(0, 1). Then if the Fourier-Stieltjes coefficients c, tend to zero as
n— , one has

1 1 1
lim X(mx)dp = covo =f X(x)dx'f du(x).
m=o 0 0 0

LemMA 111 (see [1, Vol. 2, p. 160]). A set E which is the union of a
denumerable infinity of closed sets F, each of which is of the type U*,
s also of the type U*.

Proor oF THE THEOREM. Taking into account the remark following
the definition of “bad distribution,” we see that to every x & E cor-
responds a characteristic function of open interval with rational end-
points, thus belonging to a denumerable family {Xm(x) }1“’ . Let E, be
the subset of points x of E corresponding to the same function X, (x).
E is the union of all the sets E,,.

The set E, is itself the union of sets E,. (b a positive integer
1=k < «) such that

Xm(mx) + « + + + Xn(nex)

K

1
<f Xn(x)dx for K= h.
0

The set E, ; is in turn the union of sets E,, 1,., where

( Inlmd o d X0 ) Xadr — —

K

where s takes all positive integral values.
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Since X,(x) is lower-semicontinuous, the set E, 1, is closed. We
shall show that it is of the type U*. Suppose, in fact, that it carries a
positive (see Lemma I) nonvanishing measure dp with Fourier-Stieltjes
coefficients tending to zero. Multiplying (1) by du and integrating
with respect to du we set

me(nlx)du+ <o —I—me(n,‘x)d,u

K
1

< < fo lX,,,dx)( fo 1d,t(x)> - f°s " k= 7).

Since for k—  the first member tends (Lemma II) to fUndx- [idu(x),
this leads to a contradiction, and E, 4, is a U* set.
It is now enough to use Lemma III to prove the theorem since E is
the union of the denumerable family E,, 4,, (m, &k, s positive integers).
ArpLicATION. Consider the set of numbers in (0, 1) written in the
dyadic system x=¢€/2+ - - - +€/2+ - - - (&=0, 1) having the
property that

. e+ +ea 1
hmsup—~————-———-——<—2—-
K

This set is of the type U*. This is an immediate consequence of our
theorem if we remark that e,= X (2*x) when X (x) is the characteristic
function of the interval (1/2, 1). (Here the family X,, is reduced to
a single interval.?)
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2 Added in proof. The application given here is nothing but the easy part of an
important paper of I. I. Pyatetski-Shapiro (Moskov. Gos. Univ. UZ. Zap. 165, Mathe-
matika 7 (1954), 79-97), where he constructs a set U* which is not a set U. It suggests
the following question, that the authors were not able to solve: is the set of non-
normal numbers x (i.e., numbers x such that lim sup (a+ « ++ +ex)/K>1/2 or
lim inf <1/2) a set U*? In other words, is it a set of measure zero with respect to
every positive measure whose Fourier coefficients tend to zero at infinity?



