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Suslin has shown that a set is a Borel set if and only if both it and 
its complement are analytic sets [14]. Kleene has proved an analo­
gous theorem for the hyperarithmetical sets [7; 9] . Those hierarchies 
are so naturally constructed that we can establish significant proposi­
tions with the aid of them. A lot of effort was made to construct a 
natural hierarchy for i^-sets. They are, however, incomplete and 
contain only a small portion of I^-sets [ lo] . The situation was the 
same for the A^-functions of the natural numbers1 and, if we consider 
the reason why our trials failed [13 ; 18], we should say that some new 
principles were required to settle our problem. Shoenfield [20] con­
structed for the first time a complete hierarchical classification of the 
Ag-functions. Namely, he showed, by the aid of the effective version 
of the uniformization principle of Kondô [ i l ; l ] , that every A -̂
function is constructible from a A^-ordinal and conversely. Ours has 
the same character as his in the use of the uniformization principle. 
We shall define another classification and shall prove it to be com­
plete by using that principle.2 We shall study our classification in 
relation to the hyperdegree of Kleene and shall prove that it is 
neither fine nor coarse. Although we have not done so, comparison 
of the two complete classifications may be worthy of study. 

CLASSIFICATION. Let y be the unique solution of the condition 
(a)(Ex)P(f3, â(x)).z We shall then say that y is defined by the sieve 
P and P is a sieve for y. Let us denote by °\i the set of functions 7 
defined by recursive sieves. Let Tpt$ be the set of sequence numbers 
in P@) which are neither secured nor past secured [8]. For any re­
cursive sieve R, there is a recursive sieve Q for which the identity 
TR,P=TQ,P = QW holds for every /?. For 7 in % we shall denote by 
r(y) the smallest of the ordinals r(7i2 t7) where R are recursive sieves 
for 7. V is the set of 7(7) for 7 in "U. If 7 is in "IL, 7 is evidently a 

1 A problem of Tugué [24, p. 117] was negatively solved by him and us. I t was 
also solved by Shoenfield [2l] and Gandy [5]. 

2 Theorem 1 is a precise formulation of a statement of Kondô's. See our Remark to 
Theorem 1. 

3 Notations are those of [6; 7; 8; 9 ] . Some notations are also borrowed from [ l l ] . 
We shall use 2*, n* notation of [ l ] . A* is the intersection of the 2* and n* families 
[20]. Following notations are used: {xo, • • • , xn) for p*<> * • • • * px

n", P(a) for the set of 
sequence numbers u for which P(a, u). 
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Ag-function. Conversely to this we have the Theorem 1. In the proof 
of the Theorem 1 we shall make use of the 

PRINCIPLE OF UNIFORMIZATION. Every Ill-set can be made uniform 
by aXIî-set [ i l ; 1; 19]. 

THEOREM 1. Every /^-function y is hyper arithmetical in some /3o in 
the set «ll.4 

PROOF. By our hypothesis, there are recursive predicates 5»- (i = 0,1) 
for which 

y(y) = z s (Eff)(a)(Ex)So(y, z, ft a, *) 

s (pXEaHx)Si(y,z,p,a,x). 

By the uniformization principle, we may assume 

(EpHaXEx)Si(y, z, ft a, x) s (Eip)(a)(Ex)Si(y, z, ft a, x). 

As 5» are made uniform, for any (y, z), there is a uniquely determined 
function ft^ for which 

(a)(Ex)Si(y9 z, ft a, x) -> fi = fty,,>. 

Let /3o be defined by the condition: 

ft>«y, z, t)) = ^, .>(0, 

|8o(Ô = 1 for/ ^ <(Oo, (Öi, (Ö2>. 

There are recursive predicates Ri (7) 1.3 for which 

(a)(Ex)Si(z, y, \tp((y, z, t)), a, x) = (a)(Ex)Ri(z, y, ft a, x). 

For those i?t-, 

(E0)(a)(Ex)Si(y, z, ft a, a?) - (a)(£^)i?f-(y, 2, 0O, a, x). 

Consequently y is hyperarithmetical in /So- On the other hand, j80 is 
in ^ as it is defined by the following condition : 

(0U(Ö0,(Ö1,(Ö2> 5**->/9(0 = 1]& 

(y)(z)[(a)(Ex)R0(y, z, ft a, x) V (a)(JE*)*i(y, a, ft a, *)]. 

REMARK. Our Theorem 1 is closely related to a result of Shoenfield 
[20, Theorem, p. 136]. By his Theorem all Aj-functions are well 
ordered naturally. If we apply a result of Addison [2] to his, we can 
see that every A^-function is hyperarithmetical in a A^-ordinal and 
conversely. We can see from this that the relation between the two is 
deep, and so comparison of the two classifications may throw light 

4 See [9, Theorem XXIV], [7, Theorem 5 and Theorem 9], 
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on the family of the Aa-functions. In this respect, the following ques­
tion raised by the referee may be fundamental: Is our classification 
essentially different from that given by the natural ordering of the 
constructible sets, i.e., does Odlf3^0dly always follow, for 0, y in Tl, 
from the proposition that the hyperdegree of 0 is lower than that of 7? 

For P £ T ) , we denote by C„ the set of functions 7 hyperarithmetical 
in some /3o in «U for which T(ft)=z>. By our Theorem 1, U^-'Q CV is 
identical to the family of the A^-functions. Conversely the order v of 
the class Cv corresponds to the complexity of their members. That is, 

THEOREM 2. For ft, ft in «U, r(j80) = r(ft) only if ft is hyperarith­
metical in ft. 

PROOF. Let Ri be recursive sieves for which r(ft) ==r(ÎÊf*>). As 
r(ft) = r(ft) and ft is defined by the sieve RQ, 

0 = 0O == (Eur) [\I> is an isomorphism of ]?o into J?i * 1 

s (Ea)(*)3(ftft,a,«) 

where S (ft 7, a, x) is a recursive predicate. We see thus ft is hyper­
arithmetical in ft [9]. 

We shall give a theorem related to our Theorem 2. 

THEOREM 3. For ft, /Si i# CU, ft is hyperarithmetical in /So if awd tffz/y 
ifr(ft)<^°. 

PROOF. Let Ri be a recursive sieve for ft for which r(ft) = r(ftf l )). 
If r(ft) <co?°, then there is a partial recursive predicate m<Pon recur­
sive in ft whose order type is that of r(ft) [8, Proposition A] . For 
this predicate, 

0 = 0!== (Eur) [& is an isomorphism of Ri ° into Xmn m < °n] 

s (Ea)(x)S(l3, 0o, a, x) 

(5(0, 7, a, #) is partial recursive and 

Xftax 5(0, 0o, a, x) is completely defined) 

s (Ea)(x)R(f3, (3o, a, x) 

(R(0, 7, a, #) is recursive by [7, Lemma lj) . 

As in the proof of Theorem 2, 0i is hyperarithmetical in 0O. Con­
versely, let 0i be hyperarithmetical in ft. Evidently j3 = ft is a 2}-
predicate in 0O. The well ordered relation <• on 2?^ is reduced in 
the following way: 
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r — <0l> i 

s <• r s [s < r &s, rE Ri ] 
s (E/3) [p = fa & s < r & s, r & Rt ] 

s (Ea)(x)S(s, r} /50, a, #) 

(5 recursive, as £ = 0i is Si in /?0). 

The relation < • is a 2}-well ordering in j80 and consequently its order 
type r(/3i) is <w?° [12, p. 246].5 

By our Theorem 2, every two elements of 'll are comparable with 
respect to hyperdegree. If we use this fact with the Theorem 3, we 
have a corollary which shows our classification is not too fine. 

COROLLARY 1. The following three conditions are equivalent f or /30, ft 
in 01: 

0o < fiu Ji < Ji\ F\fio] ^ ft.6 

PROOF. If /30<|8i, then o#gT(/3i) by our Theorem 3 and then 
<$<<# by [15, Theorem 6]. Let us assume c#<<#. By [22, Corol­
lary 6.2] and by our Theorem 2, /3o<j8i and by [22, Corollary 6.1] we 
have ^[jSo] ^ & . The last implication is immediate from [7, Theorem 
4] and the transitivity of the hyperdegree [9, p. 210]. 

By our Corollary 1 and [4, Theorem 1 ] we have the 

COROLLARY 2. For some ^function y} y is not in the set %,? 

T H E SET CU. We have defined a complete classification U^t) C„ of 
the Aj-functions and have showed how those subclasses Cv are related 
to each other. We shall give in this section some examples of Aj-
functions which belong to °ll. From those examples, we may be al­
lowed to say our classification is not a coarse one. We have to use in 
the proof of Theorem 4 the 

ISOMORPHISM THEOREM. There is a partial recursive functional 
Af[<£, \//] with the following properties [16, Theorem 18]: 

1°. If <f> and \{/ are 1-1 functions^ then \xM[<t>, \f/](x) is completely 
defined. 

2°. If a and j8 are 1-1 equivalent3 with respect to <t> and \p, then a and 
(3 are isomorphic with respect to M[<j>,\l/]. 

6 Mr. H. Tanaka called our attention to the fact that the method of [12] can be 
used to show that every 21-well ordering represents a constructive ordinal. 

6 ^ and < are used for hyperdegree. F[p] is the representing function of the 
predicate Xa(a)(J5:^)rf'1(â(^), a, a). 

7 We can use the principle of uniformization [23, Theorem 2 ], and our Theorem 2 
instead of [4, Theorem l ] and our Corollary 1. 

8 Although those notions were defined for the sets of natural numbers [l7; 16] 
they can be extended to the functions of natural numbers. 
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Conversely to the Corollary 1, we have the 

THEOREM 4. /ƒ ft is in "ll, then F[/30] is also in 01. 

PROOF. Let yp(t) be the representing predicate of the relation 
M[(t)o<o(t)i &t=((t)o, (t)i)]. There is a recursive predicate 
<2(ô, ft w, v, u) [25] such that y$ is uniquely defined by the condition: 

(07(0 ^ 1 & (w)(Ev)(u)Q(y, ft w, v, u) & 

(5) [(w)(^)(«)5(ô, ft w, v, u) -> « ( 7 ( 0 = 0 -> «(/) = 0)]. 

As was proved in [7, Lemma 6], there is a recursive function v\(a) 
for which 

s 7 / » « l , 2 e x p y i ( a ) > ) = 0. 

Let p(7, a) be the partial recursive function fit 7((1, 2 exp ?i((a, £)))). 
Evidently /3 = Xa p(7/S, a). As ]8o is in 01, there is a recursive sieve R for 
]8o. By [6, Theorems II, VI] and [7, Lemma l ] , there is a recursive 
predicate ^1(7, a, x) such that 

(3) (Ex)R(Xa p(y, a), a, x) = (Ex)Ri(y, a, x) 

for 7 and a lor which XxR(kap(y, a), a, x) is completely defined. As 
in the case for R, there is a recursive predicate Qi(S, 7, w, «;, u) such 
that 

(4) ( « ) 6 f o ^a p(y> a)> w> v> u) - MQi(8> y y w> ̂ > «) 

for ô and 7 for which XuQ(d, Xa p(y, a), w, v, ^) is completely defined. 
If \a p(y, a) is completely defined, those requirements are clearly met. 
We shall show that the function 7^° is uniquely defined by the condi­
tion (a)(Ex)Si(y, a, x) with Si recursive: 

(t)y(t) S 1 & [Xa p(y, a) is completely defined] & 

(5) (a)(Ex)R1(y, a, x) & (w)(Ev)(u)Qi(y, 7, w, v, u) & 

(d)[(w)(Ev)(u)Q1(Ô, y, w, v, u) -> (t)(y(t) = 0-•«(/) = 0)]. 

Let us assume 7 = 700. By the equivalences (2), (3) and (4), 

[Xa p(y, a) is completely defined] & Xa p(y, a) = ft) & 

[(a)(Ex)R1(y, a, x) s (a)(Ex)R(fi0, a, x)] & 

(5)[(w)(Ez;)(w)êi(5, 7, w, u, «) s (w) (Et>) («)5(«, ft, w, r, «)]. 

As ]8o is defined by the sieve R and 7^° is the solution of the condition 
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(1), we see y satisfies the condition (5). Conversely let 7 be a solution 
of the condition (5). As Xa p(y, a) is completely defined, 

(a)(Ex)Ri(y, a, x) = (a)(Ex)R(\a p(y, a), a, x) 

and consequently j80 = X#p(7, a). We can now see 7 is identical to 
7/3°. We have proved thus y130 is in 11. 

Let us now show that the function F[f3o] is in °\i. By [7, Theorem 
4] and [8, Theorem II ] both with uniformity in /3, there are 1-1 re­
cursive functions <£(a) and 0i(a) for which 

w r ., 
K(a)o) = ( a J i s P M W a ) ) = 0. 

By [8, Theorem I] with uniformity in /3 and footnote 28, there is a 
recursive function £i(/3, a) which is 1-1 for every /3 and for which 

F\fi](o) =y«l,2expMft f l)>). 

Let 77(18, a) be the partial recursive function 

Jf [Xty(Ô, X*<1, 2 exp {iOS, *)>](*) 

and p2(ô, a) be the partial recursive function jxt ô(#i((a, / ) ) )=0 . By 
the isomorphism theorem, 17(18, a) is general recursive and 

(7) y»(a) = F[0](v(fi, a)). 

In the same way as Ri and Qi were constructed from i£ and Q, we 
can construct recursive predicates R2 and S2 such that 

(a)(Ex)R(\a p2(5, a), a, x) = (a)(E#)2£2(ô, a, x), 
(8) 

(a)CEa)Si(Xa 5(?7(X/ p2($, t), a)), a, x) s (a)(E#)S2(ô, ce, x) 

for every ô for which X/ p2(ô, /) is completely defined. We shall see 
jF[j80] is defined by the following condition (a)(Ex)S(ö, cv, x) with 5 
recursive : 

[\a p2(d, a) is completely defined] & 

(a)(Ex)R2(Ô, a, x) & (a)(Ex)S2(8y a, x). 

Let us assume that 5 be a solution of the condition (9). By the 
equivalence (6), we see \a p2(3, a) =/So and then 

(a)(Ex)Si(\a 8(rj(Po, a)), a, x) 

by (8). As 7^° is defined by the sieve Si and 77(180, a) is a permutation of 
natural numbers, Xa 8(77(180, a)) =7^0 and consequently 5 = ^[jSo]. The 
converse implication can be proved by using (6), (7) and (8). 
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Let < 7 = \\yzy({y, z)) = 0 ] be a well ordering. The ^-completion 
7T of y [3] is defined by the following condition: 

(/)TT(0 ^ 1 & (0 [T(0 = 0->* = <(Oo, (0i> & (flo ^ 1] & 

(Ox«o, /)) = 7 » & (0[*«i, *» = 0-^* = <(Oo, (0i) & 
((Oo is in the field of <*)] & 

(u)(t)[(u is the first element of <v) -> TT((1, <«, *») = 0] & 

(u)(v)(t)[(u is the successor of v in the ordering <y) 

- x « l , <«, *») = F[)UT((1, (V, *»)](*)] & 

(w)($)(/)(w is a limit element in the ordering < 7 ) 

- • ( T « l , <«, (5, ƒ » » = 0 = » « 1 , <*, *») = 0 & 5 < * « ) ] . 

We have9 the following 

COROLLARY. If <y is a well ordering and y is in 01, then ^-completion 
ir of y is in 01. 

REMARK. Analogously to our Corollary, we can define partial 
hierarchies of the A|-functions. Let < 7 be a well ordering. We can 
define a sequence 0J of representing functions of sets for z in the field 
of the relation <y by the following condition: 

1°. If z is the first element of <y, then 6y is identically zero. 
2°. If z is the successor of y in <y, then 0J is equal to F[dy]. 
3°. If 2 is a limit element in < *, then 0J(O = 0 if and only if (0i < yz 

and %((*)<>) =0.^ 
If 7 is a A^-ordinal, then every 0J is a Ag-function and so 0J is a par­

tial hierarchy of the Aj-functions which is necessarily incomplete. I t 
might occur that the hyperdegree of 7 is not reached by those of 0J 
for some 7, and this fact may prevent us from constructing a com­
plete hierarchy for the A^-functions from below. 

I thank Professor Motokiti Kondô for his constant encouragement 
and valuable aid in the preparation of the paper. 
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