NEW AND OLD PROBLEMS FOR ENTIRE FUNCTIONS
LOUIS DE BRANGES

An entire function is a function which is defined and differentiable
in the complex plane. Although there is an extensive classical theory
of such functions, they are now best known for their occurrence in
the theory of integral transformations. The first problem is therefore
to obtain integral representations of entire functions.

The representation theory of entire functions as L? Fourier trans-
forms is due to Paley and Wiener [18]. Consider the Fourier repre-
sentation of a function

F(x) = f f@)e=tdi

in L? when its Fourier transform f(x) vanishes outside of some finite
interval [—a, a]. In this case, if F(x) is suitably redefined in a set of
measure zero, it is the restriction to the real axis of an entire function
F(z) which satisfies the inequality

PG+ s [ |5 e — o)/

in the complex plane. Paley and Wiener show that an entire function
which satisfies this inequality and is square integrable on the real
axis is the Fourier transform of an L? function which vanishes outside
of [—a, a]. Actually they show more, but this is a technical point for
which I refer to Boas’s book on entire functions [2].

The significance of the theorem is that it reduces the study of the
L? Fourier transformation to the study of entire functions which are
square integrable on the real axis. Corresponding to any given num-
ber ¢ >0, there is a Hilbert space of entire functions, characterized
by an inequality in the complex plane. These Paley-Wiener spaces
are contained isometrically in L2. They are totally ordered by inclu-
sion. Their union is dense in L? and their intersection contains no
nonzero element. A knowledge of these spaces is sufficient to deter-
mine the Fourier transformation. The problem now is to obtain a
similar characterization of functions which are representable for other
integral transformations.
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An admissible transformation must obviously bear a close relation-
ship to the Fourier transformation. Now the Fourier transformation
may be looked upon as the eigenfunction expansion for the self-
adjoint operator —d/dx in L?, and it is closely related to the eigen-
function expansion for —d?/dx? It is natural to look at the eigen-
function expansions for more general selfadjoint, second-order differ-
ential operators in L2. A general discussion of such expansions is
given by E. C. Titchmarsh [21], and it is only necessary to rephrase
his discussion in the language of entire functions, so as to generalize
the Fourier situation.

My approach to the problem is based upon the work of M. H.
Stone [20]. Stone’s analysis of second-order differential operators
depends on the theory of symmetric transformations in Hilbert
space. A linear transformation H in a Hilbert space is said to be sym-
metric if the relation (Hf, g)=(f, Hg) holds whenever it makes sense
—that is, whenever f and g are in the domain of H. A symmetric trans-
formation is like a selfadjoint transformation, but differs from it in
that the inverse of H —w, which exists when w is not real, need not
be densely defined. This fact is responsible for the connection be-
tween symmetric transformations and complex function theory.

1 make this connection by considering Hilbert spaces, whose ele-
ments are entire functions, and which have these properties:

(H1) Whenever F(g) is in the space and has a nonreal zero w, the
function F(z)(z—w)/(z—w) is in the space and has the same norm as
F(z).

(H2) For every nonreal number w, the linear functional defined
on the space by F(z)— F(w) is continuous.

(H3) The function F*(z)=F(z) is in the space whenever F(2) is,
and it always has the same norm as F(2).

Now consider a transformation, multiplication by z in the given
space, which takes F(z) into zF(z) whenever F(z) and zF(z) are in
the space. The axiom (H1) says that multiplication by z is symmetric
and has deficiency index (1, 1). The axiom (H2) says that multiplica-
tion by z is a closed transformation. The axiom (H3) says that
multiplication by 2z is real with respect to a conjugation which coin-
cides with complex conjugation of function values on the real axis.
It turns out that there is a close relationship between such trans-
formations and the theory of entire functions in Boas’s book [2].

Boas studies entire functions in relation to a line, which is con-
veniently chosen as the real axis. His principal tool is a representa-
tion theorem for analytic functions in a half-plane. In the case of
entire functions, this representation amounts to a factorization into a
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Blaschke product and an entire function which has no zeros in the
upper half-plane (y>0). A fundamental concept in his work is that
of an entire function which has no zeros in the upper half-plane. He
secures a zero-free half-plane by requiring that

| E(x — iy)| < | E(x+ iy)]

for y>0. An entire function of exponential type necessarily satisfies
this inequality if it has no zeros for y>0 and if it satisfies some gen-
eral condition of growth. For example, if E(z) and E*(z) are linearly
independent, it is sufficient to have

lim sup y~!log | E(—iy)| < lim sup y~ log l E(iy) |
as y—-— .
If E(2) is an entire function which satisfies this inequality, I will

write E(2)=A(3) —1B(z), where A(2) and B(z) are entire functions
which are real on the real axis, and

K(w,2) = [B(s)d(w) — A(5)B(w)]/[r(z — ®)].
Let 3¢(E) be the set of entire functions F(2) such that

el = [ F@/E@ 1 <

with integration on the real axis, and such that
| F@) | = ||FI[PK(, 2)

for all complex z. Then 3C(E) is a Hilbert space of entire functions
which satisfies (H1), (H2), and (H3). For each complex number w,
K (w, 2) belongs to 3C(E) as a function of z and

F(w) = (F(1), K(w, ))

for every F(2) in 3C(E). A Hilbert space, whose elements are entire
functions, which satisfies (H1), (H2), and (H3), and which contains
a nonzero element, is equal (isometrically) to 3C(E) for some such
entire function E(z).

For example, let E(a, 2) =e~%, where ¢ >0. Then, 4 (a, 2) =cos(a3),
B(a, z) =sin(a 2), and

sin(az — aw)
K(a,w,2) = ————— *
w(z — @)

(The index a is written as a new variable to avoid awkward sub-
scripts.) The space 3¢(E(a)) is the space of entire functions F(2) such
that
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7l = [ 170t < o,

since E(a, 2) has absolute value 1 on the real axis, and such that
| B+ iy) [* < || Fl[2(e2ev — &%)/ (4my)

for all complex z=x-47y. In other words, 3¢(E(e)) is the Paley-
Wiener space of L? functions whose Fourier transforms vanish outside
of [—a, a]. An entire function F(z) belongs to 3¢(E(a)) if, and only
if, it can be represented as

F(z) = f et*if(f)dt,

where f(x) belongs to L? and vanishes outside of [—a, a].
If an entire function F(2) belongs to the space 3¢(E(a)), the Par-
seval relation for Fourier integrals can be applied to give

f | F@) |24t = 27rf_:|f(l) |2dz.

The Parseval relation can also be applied to the Fourier series ex-
pansion of f(x) in L?(—a, @), and this gives

2 ()] - ot

It follows from these two formulas that

[ ot - 2 x]o(2)

where the summation is taken over the integers. The formula is used
by Boas [2], who deduces it, as I have just done, by combining the
L? theory of Fourier series with the L? theory of Fourier integrals.

My work on Hilbert spaces of entire functions originates in the
discovery [8] that this formula has a simple direct proof which is
independent of Fourier analysis. The formula is a special case of a
general formula whose statement requires a space 3¢(E). (That is
how the space was discovered.) To state the formula, I will suppose
that ¢(x) is a continuous determination of the phase of E(x). Then
¢(x) is an increasing function of real x which has a positive derivative
everywhere. The formula is

2
’

J 1rormopa= £ 1 roszo
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where the summation on the right is over all real ¢ such that ¢(¢)
=q (modulo 7). With the possible exception of at most one value of
o modulo , this formula is valid for every F(z) in 3C(E).

We have seen that the formula is closely related to the theory of
the L? Fourier transformation in the case that E(3)=e"% In this
case it is an expression of the relationship between Fourier series and
Fourier integrals. That a similar formula is valid for a general space
3C(E) suggests that there should be some generalization of the Fourier
transformation associated with such a space. Such a transformation
always does exist, and is obtained by considering spaces 3(E(a))
which are contained isometrically in the given 3¢(E).

To avoid minor technical difficulties, I will suppose that the func-
tions E(2) and E(a, 2z) have no real zeros. Under this hypothesis, the
spaces JC(E(e)) contained isometrically in 3C(E) are totally ordered
by inclusion. That is, if 3¢(E(a)) and 3C(E(d)) are contained isometri-
cally in 3C(E), and if E(a, 2) and E(b, 2) have no real zeros, then either
3¢(E(a)) must contain 3C(E(d)) or 3¢(E(b)) must contain JC(E(a)).
Furthermore, there always exist spaces 3¢(E(a)) contained properly
in any given 3C(E) if 3¢(E) is not one-dimensional. The family of such
spaces is associated with a first-order differential operator in much
the same way as the Paley-Wiener spaces are associated with —id/dx.
The eigenfunction expansion for the differential operator is then the
required integral representation.

The precise formulation of these expansions is necessarily compli-
cated because of its generality. It is found in my Transactions papers
[10-13] on Hilbert spaces of entire functions. As a special case the
theory contains a new and more precise eigenfunction expansion for
second-order differential operators.

A second fundamental problem in the theory of entire functions is
the problem of polynomial approximation and, more generally, the
problem of approximation by entire functions of exponential type.
Among such problems the Bernstein problem on weighted polynomial
approximation is one of the most interesting. This problem should
be thought of in relation to the Weierstrass approximation theorem
and M. H. Stone’s generalization of it. It is now well known that
the theorem is closely related to the Krein-Milman theorem on ex-
treme points of compact, convex sets. What is not so well known is
that the same relationship persists between the Krein-Milman theo-
rem and the problem of weighted polynomial approximation.

My formulation of the problem follows that of H. Pollard [19]. Let
w(x) be a continuous function of a real variable, with positive values,
such that the product P(x)w(x) remains bounded on the real axis for
every choice of polynomial P(x). The problem is to determine what
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functions f(x) can be approximated uniformly on the real axis by
such weighted polynomials P(x)w(x). Such functions f(x) are neces-
sarily continuous and have limit zero at infinity, and I will confine
myself to functions with these properties. By the Hahn-Banach
theorem, f(x) is the uniform limit of weighted polynomials if, and
only if, [f(£)du(t) =0 whenever u(x) is a function of bounded variation
such that [P(¢)w(t)du(t) =0 for every polynomial P(x). It is obviously
sufficient to confine oneself here to the convex set of such functions
u(x) which are real valued and have total variation at most 1. By a
theorem of Krein and Milman, the set of all such functions u(x) is
determined by its extreme points. It turns out that the extreme func-
tions have many interesting special properties. They are always step
functions with an infinite number of jumps. The jumps for any given
extreme choice of u(x) occur at the zeros of an entire function of
minimal type. This means in particular that the jumps form a se-
quence of zero density. A consequence is that f(x) can be approxi-
mated uniformly on the whole line by weighted polynomials if, and
only if, it can be approximated uniformly by weighted polynomials
on every real sequence with density zero [7]. Similar results have
been obtained independently by P. Malliavin [17], using methods of
potential theory.

A third fundamental problem in the theory of entire functions is
the problem of local operators. The problem is due to H. Pollard and
is the subject of my thesis [4]. If K(x) is a measurable function of
real x, define a corresponding operator K(H) on absolutely conver-
gent Fourier transforms,

1@ = [ eau
by
K@) S = [ =K@
whenever
flK(t)d/.c(t)l < .

The operator K(H) is said to be local if whenever two functions f(x)
and g(x) in the domain of the operator agree in the neighborhood of
some point %o, then K(H)-f(x) and K(H) -g(x) agree in a neighbor-
hood of x¢. For example the operator K (H) is local if K(2) is an entire
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function of minimal exponential type. Conversely, if the operator
K(H) is local and if it contains in its domain two different functions
which agree in the neighborhood of a point, then K(x) is the restric-
tion to the real axis of an entire function of minimal type which
satisfies

(1) f (1 + )tlog* | K@) | dt < .

A consequence is that an entire function K(z) of minimal exponential
type, which does not satisfy (1), determines an operator which has in
its domain no nonzero function which vanishes in an interval. This
fact is of interest in connection with the work of N. Levinson [16] on
Fourier transforms of nonvanishing functions. The theory of local
operators leads to a new and simple proof of Levinson’s results. It
also allows them to be extended in the following way. If K(x) is a
measurable function of a real variable which does not satisfy (1)
and if log IK (x)l is uniformly continuous, then there exists no non-
zero function in the domain of K(H) which vanishes in any interval.
A consequence is the theorem that an absolutely convergent Fourier
transform fei=tdu(t), which is not identically zero, cannot vanish in
any interval if there are too many gaps in the support of the meas-
ure determined by p(x). A sufficient condition for this is that u(x)
is constant in each interval (a,, b,) of a sequence of disjoint intervals
to the right of x=1, whose lengths b,—a, are bounded away from
zero, and which satisfy

(2) Z (bn - an)g/(anbn) = 0,

If a is a given positive number, the operator K(H) is said to be
a-local if whenever two functions f(x) and g(x) in the domain of
K(H) agree in a neighborhood [k—a, h+a] of a point %, then
K(H) f(x) and K(H)-g(x) agree at k. If the operator K(H) is a-local
and if it contains in its domain two different functions which agree
in an interval [k—a, h+a], then K(x) is the restriction to the real
axis of an entire function K(2) of exponential type at most ¢ which
satisfies (1). The converse, however, is false. An entire function K(2)
of exponential type ¢ which satisfies (1) need not define an a-local
operator. An unsolved problem is to determine what additional con-
ditions are needed on K(3) to yield an a-local operator. A sufficient
condition is that

ek (iy) = o(y)

as !y[ —> . This condition is known to be necessary if



1964) NEW AND OLD PROBLEMS FOR ENTIRE FUNCTIONS 221
nmw
2+ K(—
a

Some typical properties of a-local operators are satisfied if K(2) satis-
fies some smoothness condition on its modulus, for instance if

9 yf log [1 + | K (&) |2]dt
—_ Sc< »
9y w (¢ =22+

is bounded above for ¥ >0. But the operator K (H) need not be a-local
under this hypothesis.

The a-local operator problem can be reformulated as an approxi-
mation problem for entire functions of exponential type and methods
from the Bernstein problem can be applied. The extreme point meth-
od leads to a reformulation of the problem in terms of infinite partial
fraction decompositions.

An interesting new contribution to local operators was recently
made by Beurling and Malliavin [1]. Suppose that the operator
K(H) is a-local and that it has in its domain a function which van-
ishes in an interval of length 2¢ and which does not vanish identi-
cally. Then for every positive choice of ¢ no matter how small, the
domain of the operator contains a function which vanishes outside of
an interval of length € and which does not vanish identically.

The local operator problem is closely related to a problem of
Levinson [16] for the growth of entire functions of minimal exponen-
tial type along a line. Let (\,) be a sequence of real numbers with
unit density, so that

< oo,

limX\,/#n =1

as n—-+ » and as #— — «, # integral. Does there exist a noncon-
stant entire function K (z) of minimal exponential type which remains
bounded at the points (\,)? He shows that no such function exists if

[ A\a — 2| < e(n),
where e(x) satisfies

f (1 + 2)~%e(t) log | t/e(t) | dt < o

and some smoothness conditions. On the other hand he is able to
construct such functions under general conditions in which

f (1 + ) e(t) = .
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There is a gap between these two conditions due to a logarithmic fac-
tor in the integrand.

It is a general principle in the theory of differential equations that
a nontrivial local operator is always unbounded. The principle has a
precise formulation in Fourier analysis. An entire function of mini-
mal exponential type is a constant if it remains bounded on the sup-
port of a measure whose Fourier transform vanishes in an interval.
My approach to Levinson’s problem is to construct a step function of
bounded variation whose jumps occur in the given sequence (\,) and
whose Fourier transform vanishes in an interval.

Let ¢(x) be a uniformly continuous, increasing function of real x
such that

f(l + )| ¢(t) — wt|2dt < .

Then for any given number @, 0 <a <, there exists a nonconstant
step function u(x), whose jumps occur only at points x where ¢(x)
=0 (modulo 7), such that fei*du(¢) vanishes in [—a, a]. The theorem
is given in my paper [14] on applications of spaces of entire func-
tions. I have since been able to weaken the hypothesis to

f(1 + )7 ¢(t) — wt| dt < .

If N\, is defined so that ¢(\,) =#nm, then the jumps of u(x) occur in the
set of points (\,). If I define

x) = | & — ¢(@)/r],
then
I )\n - 1’Iz| = e(n).

In this notation my principal hypothesis reads
f 1+ &) e(t)dt < .

The result closes a gap in Levinson’s book.

Levinson’s construction of entire functions of minimal exponential
type which are bounded on a given real sequence is difficult and re-
quires more than thirty pages. It is therefore of some interest to note
that an existence theorem can be obtained from the above stated
results on nonvanishing Fourier transforms. If K(x) is a function
which does not satisfy (1), if ]K(x)[ =1, and if log IK(x)[ is uni-
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formly continuous, then there exists a nonconstant entire function
F(2) of minimal exponential type such that 'F (x)l <|K (x)| for all
real x. It follows that if (a., b,) are disjoint intervals to the right of
x=1, if their lengths are bounded away from zero, and if (2) holds,
then there exists a nonconstant entire function of minimal exponential
type which remains bounded on the real complement of U(a,, b,).
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