THE GEOMETRY OF IMMERSIONS. I
BY EDGAR FELDMAN!
Communicated by Deane Montgomery, May 27, 1963

We hereby announce some general methods for higher order differ-
ential geometry. OQur main tools are a generalization of the general
position theory of Whitney and Thom, and a characteristic class
theory for higher order bundles having given higher order connec-
tions.

The second part of this announcement will deal with applications
of this machinery to some problems of geometric singularities. One
application will be to count the number of umbilic points on an im-
mersed hypersurface. Full details will appear in a separate publica-
tion.

1. pth order osculating maps. It is known [4] that on each smooth
manifold X a sequence of smooth vector bundles { 7%(X) }k=1,2,... over
X can be canonically constructed. T,(X) is called the bundle of pth
order tangent vectors over X, and T1(X) is just the tangent bundle of X.
These bundles furthermore satisfy short exact sequences

0= Tpa(X) = Tp(X) — 07T1(X) — 0

where 07T1(X) denotes the p-fold symmetric tensor product of the
tangent bundle. It is also known that to each smooth map f between
manifolds X and Y there is canonically defined a pth order differential
To(f): To(X)—T,(Y) which is a homomorphism of smooth vector
bundles covering f. For each smooth f there is the following family
of commutative diagrams of vector bundles with exact rows,

0—— Tpos(X) —— T5(X) ——— 0°T3(X) —— 0
$ Tpa(f) 1 T(f) 10°Ty(f)
00— T, (V) > To(Y) > 02T(Y) —— 0.

If the dimension of X is #, then the fiber dimension of T,(X) is
n-41 nt+p—1
gy =nt ("7 )+ ("TETN.
2 ?
The smooth sections S(T,(X)) of T,(X) will be called the pth order

1 This research was supported by the following contracts: NONR-266(57) and
NSF-G-19022. It consists of part of the author’s doctoral dissertation at Columbia
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vector fields. They are just the gth order linear partial differential
operators generated by the vector fields ¢= p.

DEFINITION. A pih order (p>1) symmetric linear conneciion on a
manifold X is a linear connection D on T,(X) such that:

(1) D,T=9-T,v&S(T'(X)), TES(T,(X)) and - function composi-
tion,

2) R| S(T'p-1(X)) =0 where R is the curvature tensor of the con-
nection D. For p =1 we will use the usual notion of a symmetric linear
connection. Then the following generalization of a well-known classi-
cal theorem [1; 2] can be proven.

ProOPOSITION 1.1. Let X be a smooth manifold. The set of pth order
symmetric linear connections on X are in a 1-1 correspondence with
smooth splittings of the short exact sequence

0 — Tp(X) = Tppa(X) — 07+ T;(X) — 0.

Finally, if X is a Euclidean space there exists a canonical set of split-
tings of the above exact sequences given by the linear structure on X.

We will now fix the following data and notation for the next few
sections. Let X and Y be manifolds of dimension # and N respec-
tively. Let C(X, Y) denote the space of C* functions from X to ¥ with
a sufficiently strong topology. Let I(X, ¥) and E(X, Y) be the spaces
of immersions and embeddings of X in Y respectively. I(X, ¥) and
E(X, Y) are known to be open subsets of C(X, Y). Let (Di)k=1,23,-..
be a sequence of kth order symmetric linear connections on ¥, De-
note by the same letter Dy the map from T}41(Y)—T%(Y) which
splits the exact sequence

0— Tk(Y) - Tk+1(Y) - 0k+1(Y) —0

induced by D;.

DerFINITION. Let fECX, V). Let V,T,(f): To(X)—=Ty(Y) be
the smooth vector bundle homomorphism covering f defined by
DyDy « + + DpyTp(f). VoTp(f) is called the pth order osculating map
of f with respect to the connections (Dg)g=12, - «

REMARK. Explicit reference to the connections will be dropped
whenever no confusion can arise.

2. Transversality theorems.

DEFINITION. Let £ = (r: E—B) be a smooth fiber bundle with fiber
F. The pair of spaces (K, K’) is said to be an admissible submanifold
of E if

(1) K is a submanifold of E,

(2) K’ is a submanifold of F, and
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(3) there exists an atlas A= {(U, ¢>U)} of E such that
du (@ (U)NK) = U XK' for all (U, ¢v) EN.

DEeFINITION. Let é=(w: E—B) and & =(x": E'—B’) be vector
bundles. Denote by Hom(E, E’) the vector bundle over B X B’ with
fiber Hom(E,, E,) over (x, ¥) €B X B’ induced in the obvious way
from £ and £'.

Let E be a smooth vector sub-bundle of T,(X). Let fEC(X, Y).
We then define a map Ag(f): X—Hom(E, T1(Y)), which is a section
over the graph of f defined by Az(f)(x) = V,To(f)|E.
€Hom (E,, TI(Y)f(:c))-

TrHEOREM 2.1. Let (K;, K!) be a finite set of disjoint admissible sub-
manifolds of Hom(E, T1(Y)). Let A=(fECX, V)| As(f)(X) meets K,
transversally for all ©). Then A is open and dense in C(X, V).

THEOREM 2.2. Let F be a closed subset of X such that X —F is a
smooth manifold. Let E be a vector sub-bundle of T,(X). Let (K;, K!) be
a finite set of disjoint admissible submanifolds of Hom(E, T1(Y)). Let
foECX, Y) such that Ag(fo) is transversal to all the K; on F. Let
Cr(fo)=(@ECX, Y): g| F=fo| F). Then the set of g& Cr(fo) such that
Ag(g)(X) meets the K, transversally for all © is dense in Cr(fo).

3. Nondegenerate immersions and homotopies. Let »(z, ) denote
the fiber dimension of T,(X) throughout this note.

DEFINITION. Let fEC(X, V). f is said to be pth order nondegenerate
if the pth order osculating map V,T,(f): To(X)—T1(Y) is of max-
imal rank on each fiber.

REMARK. If N=v(n, p) then pth order nondegenerate maps are kth
order nondegenerate for £ <p. Hence they are immersions.

TueOREM 3.1. If N=v(n, p) —n or if N=v(n, p)-+n the set of pth
order nondegenerate maps are open and dense in C(X, V).

COROLLARY L. If n <N =v(n, p) —mn, the set of pth order nondegener-
ate immersions (embeddings) are open and dense in (X, V) (E(X, Y)).

CoroLLARY 1. Let FC X be a closed subset such that X — F is @ mani-
fold. Let fo&€C(X, Y) be a map which is pth order nondegenerate on F.
Let Cr(fo)=(ECX, Y):g|F=fi|F). If N<v(n, p)—n or if
NZv(n, p)+n, then the set of g& Cr(fo) which are pth order nondegen-
erate on X, is dense in Cr(fo).

Let I=[0, 1] be the closed unit interval.
DEeFINITION. Let fo, EI(X, V) (E(X, Y)). Assume that fo and f;
are pth order nondegenerate. A smooth homotopy F:IXX—Y is
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called a pth order regular homotopy (pth order isotopy) between fo and
frif

(@) F|XX{0}=fs,

(b) F|X X {1} =f, and

(c) F lX X {t} =f; is a pth order nondegenerate immersion (em-
bedding) for every t&1.

THEOREM 3.2. Let fo and fi1 be a pth order nondegenerate immersion of
XinY.

@) If N=v(n, p)+n-+1, and if fo and f1 are homotopic, then they
are pth order regularly homotopic.

(b) Let fo and fi also be embeddings. If

N z max(v(n, p) + n + 1, 22 + 3)

and if fo and fi are homotopic, then they are pth order isotopic.

) If n<N=Zv(n, p)—n—1, and if fo is regularly homotopic to fi,
then they are pth order regularly homotopic.

(d) If n<N=Zv(n, p)—n—1, if fo and f1 are isotopic embeddings,
then they are pih order isotopic embeddings.

The theorems of this section are proved by using the general theo-
rems stated in the last section.

4. pth order normal bundles and conormal bundles. N.B. Let
¢=(w: E—~B) and £ =(v': E'—B’) be vector bundles. Let h: E—E’
be a vector bundle homomorphism covering f: B—B’. Denote by A!
the vector bundle homomorphism from E to f~1E’ over B, canonically
induced from 5.

DEFINITION. Let f: X—Y be a pth order nondegenerate immersion.

(a) Let N>v(n, p). Then V,T,()!T,(X)—f1Ty(Y) is a mono-
morphism on each fiber. Let N, ;y(X) = cokernel( V,T,(f)})).
N,.7,v(X) is called the pth order normal bundle of X in Y with respect
to f. If Y=RY, denote N, ,; v(X) by N, ;(X) and call it the pth order
normal bundle of X with respect to f.

(b) Let N<w(n, p). VoTp(f)): Tp(X)—f1T1(Y) is an epimorphism
of vector bundlesover X. Let K, 7,v(X) =kernel( V,To(f)1). Kp.7,v(X)
is called the pth order conormal bundle of X in Y with respect to f.
Similarly if Y=R¥, K, ; v(X) is denoted by K, ;(X) and is called the
pth order conormal bundle of X with respect to f.

PROPOSITION. Let f: X—Y be a pth order nondegenerate immersion.
(@) If N>v(n, p) then f1T(Y)2T,(X) ® N, s, v(X).
(b) If N<w(n, p) then To(X)2f'T1(Y) ®K, s, v(X).
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COROLLARY. Furthermore assume that ¥ =RV,
(@) If N>v(m, p) then X X RV2T(X) & N, s(X).
(b) If N<v(n, p) then T,(X)=X XR¥ @K, (X).

REMARK. Let Y=RY, and let N >»(n, p). Let f: X—R¥ be a pth
order nondegenerate immersion. Then it is possible to construct a
map G, r(f) and a map G,,x(f) of X into suitable Grassmannians
in an analogous way to the first order case, which will be a pth order
Gauss tangent map and a pth order Gauss normal map of f respectively,
If N=v(n, p)+n+1, G r(f) and G, x(f) are the classifying maps for
T,(X) and N, ;(X) respectively. If fo and f; are any two pth order
nondegenerate immersions of X in R¥(N =v(#n, p)+n-+1) the homo-
topy between G,,r(fo) and G, r(fi) and the homotopy between
G,,n(fo) and G, ~(f1) given by the bundle classification theorem can
be geometrically realized by the maps G, r(f:) and Gy »(f:) given by
a pth order regular homotopy.

5. The pth fundamental form. Let us return to the situation where
Y and its connections are arbitrary.

DEFINITION. Let f: X— Y be a pth order nondegenerate immersion.
Assume that N>»(n, p). Let us denote by f~(D,) the “pull back” of
the splitting D,, of

0> Tp(Y) > Tpp(Y) - 0PHITY(V) — 0
to a splitting of
0 — fTy(Y) = f1Tp(Y) — 0Hf-1Ty(¥) — 0,

Let mp,7: f1T1(Y)—N,,7,v(X) be the canonical projection onto the
cokernel of V,T,(f)!. Consider the vector bundle homomorphism
over X defined by 1w, f(D) + ¢ - fTHDp) Tpra(N)!: Tpa(X)
—N,,7,v(X). This homomorphism vanishes on Im(7,(X)—Tp41(X)).
Hence there is induced a unique vector bundle homomorphism over
X, vp,5: 0PI T(X) >N, r,v(X). v,p,s is called the (p+1)st fundamental
form of the pth order immersion f.

PROPOSITION. Let f: X—Y be a pth order nondegenerate immersion.
Let N>v(n, p).

(@) If k<p then v, s is a monomorphism of vector bundles over X.

(b) If k=p then the following short exact sequences are satisfied

0 — 241,7/(0*T1(X)) = Ni—1,4,7(X) = Ny z,v(X) — 0.
COROLLARY. If k< p then
Nisv(X) =2 9,(0Ty(X)) © + + + © 1—1,,(0*T1(X)) © Ny, v(X).
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6. Counterexamples. In this section always assume that the target
space Y equals R¥, However the connections on ¥ can be arbitrary.
Standard characteristic class arguments [3; 4; 5] give us the following
results.

THEOREM 6.1. (a) P:(R) cannot be pth order mondegenerately im-
mersed in R*?2+ 4if p=8s+5 or if p=28s+3, for s any non-negative
integer.

(b) P2(C) cannot be second order mondegenerately immersed in
Rv(4,2)+3'

(c) P2(R) cannot be pth order nondegenerately immersed in R*»-1
if p=8s+1, or if p=_8s+3, for s any non-negative integer.

REMARK. These examples show that Theorem 3.1 is in some sense
optimal.
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