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We hereby announce some general methods for higher order differ­
ential geometry. Our main tools are a generalization of the general 
position theory of Whitney and Thorn, and a characteristic class 
theory for higher order bundles having given higher order connec­
tions. 

The second part of this announcement will deal with applications 
of this machinery to some problems of geometric singularities. One 
application will be to count the number of umbilic points on an im­
mersed hypersurface. Full details will appear in a separate publica­
tion. 

1. pth order osculating maps. I t is known [4] that on each smooth 
manifold X a sequence of smooth vector bundles { Tk(X)} k-ix... over 
X can be canonically constructed. TP(X) is called the bundle of pth 
order tangent vectors over X, and Ti{X) is just the tangent bundle of X. 
These bundles furthermore satisfy short exact sequences 

0 -> Tr-i(X) -> TP(X) -> OTitX") -> 0 

where OpTi(X) denotes the p-îold symmetric tensor product of the 
tangent bundle. I t is also known that to each smooth map ƒ between 
manifolds X and Y there is canonically defined a pth order differential 
Tp(f)". TP(X)-*TP(Y) which is a homomorphism of smooth vector 
bundles covering ƒ. For each smooth ƒ there is the following family 
of commutative diagrams of vector bundles with exact rows, 

0 > TP^(X) • TP(X) • 0*Ti(X) > 0 

iïV-iC/) [Tp(f) iOTiC/) 
0 > 7Vi( F) > TP( Y) > 0*Ti( Y) > 0. 

If the dimension of X is w, then the fiber dimension of TP(X) is 

, v /n+l\ (n + p - 1\ 

K*fl—+( 2 ) + • • • + ( ; )• 
The smooth sections S(TP(X)) of TP(X) will be called the pth order 

1 This research was supported by the following contracts: NONR-266(57) and 
NSF-G-19022. It consists of part of the author's doctoral dissertation at Columbia 
University, 1963. 
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vector fields. They are just the gth order linear partial differential 
operators generated by the vector fields qSp* 

DEFINITION. A pth order (p>l) symmetrie linear connection on a 
manifold X is a linear connection D on TP(X) such that: 

(1) D9T = vT,vES(T(X)), TES(TP(X)) and • function composi­
tion, 

(2) R\ S(Tp-i(X))**0 where R is the curvature tensor of the con­
nection D. For p « 1 we will use the usual notion of a symmetric linear 
connection. Then the following generalization of a well-known classi­
cal theorem [l; 2] can be proven. 

PROPOSITION 1.1. Let X be a smooth manifold. The set of pth order 
symmetric linear connections on X are in a 1-1 correspondence with 
smooth splittings of the short exact sequence 

0 -> TP(X) -> TP+1(X) -> 0*>+xTi{X) -> 0. 

Finally, if X is a Euclidean space there exists a canonical set ôf split­
tings of the above exact sequences given by the linear structure on X. 

We will now fix the following data and notation for the next few 
sections. Let X and F be manifolds of dimension n and N respec­
tively. Let C(X, F) denote the space of C00 functions from X to F with 
a sufficiently strong topology. Let I(X, Y) and E(Xt Y) be the spaces 
of immersions and embeddings of X in F respectively. I(X, F) and 
E(Xf F) are known to be open subsets of C(X, F). Let (2?*)*-I,M."» 

be a sequence of &th order symmetric linear connections on Y. De­
note by the same letter Dk the map from Tk+i(Y)->Tk(Y) which 
splits the exact sequence 

0 -* Tk(Y) -> rA+1(F) -> W+l(Y) -» 0 

induced by Dk. 
DEFINITION. Let /GC(X, F). Let \/PTp(f): TP{X)^TX{Y) be 

the smooth vector bundle homomorphism covering ƒ defined by 
DiD2 • • • Dp~iTp(f). VPTp(f) is called the pth order osculating map 
of f with respect to the connections (Dk)k^\x 

REMARK. Explicit reference to the connections will be dropped 
whenever no confusion can arise. 

2. Transversality theorems. 
DEFINITION. Let £= (ir: E-+B) be a smooth fiber bundle with fiber 

F. The pair of spaces (K, K') is said to be an admissible submanifold 
of EU 

(1) K is a submanifold of £, 
(2) K' is a submanifold of Ft and 
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(3) there exists an atlas 21= {(£/, $u)} of E such that 
</>u(K-l(U)r\K) = UXK' for all (U, 4>u)E%. 

DEFINITION. Let £ = (7r:E—>B) and £' = (71-': E'—•B') be vector 
bundles. Denote by Hom(£, E') the vector bundle over BXBf with 
fiber Hom (E*, E / ) over (x, y)Ç:BXB' induced in the obvious way 
from £ and £'. 

Let E be a smooth vector sub-bundle of TP(X). L e t / £ C ( X , F). 
We then define a map A#(/) : X—»Hom(E, 7\(F)) , which is a section 
over the graph of ƒ defined by AE(f)(x) = V ^ r ^ / ) ] Ex 

GHom(E„ Tx(Y)m). 

THEOREM 2.1. L ^ (i£;, Kj) be a finite set of disjoint admissible sub-
manifolds of Hom(E, Ti(F)). Let A = (f<EC(X, Y)\AE(f)(X) meets Ki 
transver sally f or all i). Then A is open and dense in C(X, F). 

THEOREM 2.2. Let F be a closed subset of X such that X — F is a 
smooth manifold. Let E be a vector sub-bundle of TP(X). Let (Ki, Ki) be 
a finite set of disjoint admissible submanifolds of Hom(E, 7\(F)) . Let 
foGC(X, F) such that A^(/0) is transversal to all the Ki on F. Let 
Crifo) = (gE.C(X, F) : g| E= /o | F). Then the set of gECF(fo) such that 
àE(g)(X) meets the Ki transver sally for all i is dense in CV(/o)« 

3. Nondegenerate immersions and homotopies. Let v(n, p) denote 
the fiber dimension of TP(X) throughout this note. 

DEFINITION. Let fÇiC(X, F). ƒ is said to be pth order nondegenerate 
if the pth order osculating map \?PTp(f): Tp(X)—*Ti(Y) is of max­
imal rank on each fiber. 

REMARK. If N^v(n, p) then pth order nondegenerate maps are &th 
order nondegenerate for kSp- Hence they are immersions. 

THEOREM 3.1. If N^v(n, p)—n or if N^v(n, p)+n the set of pth 
order nondegenerate maps are open and dense in C(X, F). 

COROLLARY I. If n<NSv(n, p) — n, the set of pth order nondegener­
ate immersions (embeddings) are open and dense in I(X, F) (E(X, F)). 

COROLLARY II . Let FQX be a closed subset such that X — F is a mani­
fold. LetfoÇiC(X, Y) be a map which is pth order nondegenerate on F. 
Let CF(f0) = (geC(X, Y):g\F=fo\F). If N^v(n, p)-n or if 
N^v(n, p)+n, then the set of gÇ.CF(fo) which are pth order nondegen­
erate on X y is dense in CF(fo). 

Let / = [0, l ] be the closed unit interval. 
DEFINITION. Let /0 , fiGI(X, Y) (E(X, F)). Assume that / 0 and fx 

are pth order nondegenerate. A smooth homotopy F: IXX—>Y is 
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called a pth order regular homotopy {pth order isotopy) between ƒ<> and 

/ i i f 
(a) F | X x { 0 } = / o , 
(b) 7 ? | X x j l } = / i , a n d 
(c) i7] .XTX {̂ } =ƒ* is a pth order nondegenerate immersion (em­

bedding) for every / £ ƒ . 

THEOREM 3.2. Let ƒ o andfi be a pth order nondegenerate immersion of 
Xin Y. 

(a) If Nètv(n, p)+n + l, and if f o and fi are homotopic, then they 
are pth order regularly homotopic. 

(b) Let /o and fi also be embeddings. If 

N ^ max(j>(w, P) + n + 1, In + 3) 

and if fa andfi are homotopic, then they are pth order isotopic. 
(c) If n<N^v(n, p)—n — li and if f o is regularly homotopic to fu 

then they are pth order regularly homotopic. 
(d) If n<N^*p(n, p)—n — l, if fo and fi are isotopic embeddingsf 

then they are pth order isotopic embeddings. 

The theorems of this section are proved by using the general theo­
rems stated in the last section. 

4. pth order normal bundles and conormal bundles. N.B. Let 
£ = (TT:£-»£) and £' = (TT': £ ' - * £ ' ) be vector bundles. Let h\E-+E' 
be a vector bundle homomorphism covering/: B—*B'. Denote by h\ 
the vector bundle homomorphism from E to f~lE' over B, canonically 
induced from h. 

DEFINITION. L e t / : X-+Y be a pth order nondegenerate immersion. 
(a) Let N>v(n, p). Then S7pTp(f)\Tp(X)->f~lTi(Y) is a mono-

morphism on each fiber. Let NpjtY(X) = cokernel(VPTp(f)\). 
Np,f,Y(X) is called the pth order normal bundle of X in Y with respect 
tof. If Y=RN, denote NPtftY(X) by NpJ(X) and call it the pth order 
normal bundle of X with respect to ƒ. 

(b) Let N<v(nyp). WPTp(f)\: Tp^-^f^T^Y) is an epimorphism 
of vector bundles over X. Let KvJ%Y(X) = kernel( VPTP(J) !). KPtf tY(X) 
is called the pth order conormal bundle of X in Y with respect to f. 
Similarly if Y—RN, KpjtY(X) is denoted by Kpj(X) and is called the 
pth order conormal bundle of X with respect to f. 

PROPOSITION. Let f: X-+Y be a pth order nondegenerate immersion. 
(a) IfN>v{n,p) thenf^Tl{Y)^Tp{X)@NpJ>Y{X). 
(b) IfN<v(n, p) then T^X^f-^Y) @KpJ,Y(X). 
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COROLLARY. Furthermore assume that Y=RN. 
(a) If N>v(n, p) then XXRN^TP(X) ®NpJ(X). 
(b) IfN<v{n} p) then TP(X)^XXRN®KpJ(X). 

REMARK. Let Y=RN, and let N>v(n, p). Letf:X->RN be a pth 
order nondegenerate immersion. Then it is possible to construct a 
map GPtr(f) and a map GPtx(f) of X into suitable Grassmannians 
in an analogous way to the first order case, which will be a pth order 
Gauss tangent map and a pth order Gauss normal map off respectively. 
If N^v{n, p) +n + lt GPtT(f) and G>,jv(jO are the classifying maps for 
TP(X) and NP)f(X) respectively. If /o and f\ are any two pth order 
nondegenerate immersions of X in RN(N*tv(nf p)+n+l) the homo-
topy between GPiT(fo) and Gp,T(fi) and the homotopy between 
Gp,N(fo) and Gp,N(fi) given by the bundle classification theorem can 
be geometrically realized by the maps G>,r(/0 and Gy ,#(ƒ*) given by 
a pth order regular homotopy. 

5. The pth fundamental form. Let us return to the situation where 
F and its connections are arbitrary. 

DEFINITION. Let/ : X—> F be a pth order nondegenerate immersion. 
Assume that N>v(n> p). Let us denote by f~l(Pp) the "pull back" of 
the splitting Dp of 

0 -* TP(Y) ~* Tp+iiY) -> Q*+lTi(Y) -> 0 

to a splitting of 

0 -*f-iTp(Y) -*f-*Tp+1(Y) -> O ' + y - ^ F ) ~> 0. 

Let icP,f'.f~lTi(Y)-*Npj1Y(X) be the canonical projection onto the 
cokernel of S7PTp{f)\. Consider the vector bundle homomorphism 
over X defined by W ^ K A ) • • • tKDp)Tp+l{f)\: TP+1(X) 
-+Np,f,Y(X). This homomorphism vanishes on Im(Tp(X)—>Tp+i(X)). 
Hence there is induced a unique vector bundle homomorphism over 
X, vPtf: 0^1T1(X)^NPtftY(X). vpj is called the (p +1) st fundamental 
form of the pth order immersion ƒ. 

PROPOSITION. Let ƒ: X—>F be a pth order nondegenerate immersion. 
Let N>v(n,p). 

(a) If k<p then vpj is a monomorphism of vector bundles over X. 
(b) If k^p then the following short exact sequences are satisfied 

0 -» v^AWT^X)) -> #*-i,/,y(X) -> NktftY(X) -> 0. 

COROLLARY. If k^p then 

NuAx) ^ vxAWTiix)) e . . . e ^/(o*^*)) e NktftY(x). 
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6. Counterexamples. In this section always assume that the target 
space Y equals RN. However the connections on Y can be arbitrary. 
Standard characteristic class arguments [3 ; 4; 5] give us the following 
results. 

THEOREM 6.1. (a) P2CK) cannot be pth order nondegenerately im­
mersed in 2?"C2,p)+i> jf p _. Ss+5 or if p = Ss+3, for s any non-negative 
integer. 

(b) P2(C) cannot be second order nondegenerately immersed in 
j£K4,2)+3# 

(c) P*(R) cannot be pth order nondegenerately immersed in JR"<2»»>-1f 
if P = Ss+1, or if p = Ss+3, for s any non-negative integer. 

REMARK. These examples show that Theorem 3.1 is in some sense 
optimal. 
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