FREE AND DIRECT OBJECTS

BY Z. SEMADENI¹

Communicated by Edwin Hewitt, July 18, 1962

1. General considerations. Let \mathfrak{B} be a bicategory; the following terms are supposed to be familiar to the reader: object, morphism (= map of the class in the question), equivalence (= isomorphism) injection, surjection (= projection in the sense of [13; 9]). A morphism $\alpha: A \to B$ is called a retraction (and B is called a retract of A) if there exists a cross-section $\beta: B \to A$ i.e., a morphism such that $\alpha\beta$ is the identity $\epsilon_B: B \to B$. If this is the case, α must be a surjection and β must be an injection. Map (A, B) will denote the set of all morphisms $\alpha: A \to B$.

An object S will be called a *singleton* if Map(S, A) is not void and Map(A, S) consists of exactly one morphism for every object A; dually S is a *cosingleton* if $Map(A, S) \neq \emptyset$ and Map(S, A) consists of exactly one morphism for every A. All singletons and cosingletons are equivalent (if they exist). S is a singleton and a cosingleton simultaneously if and only if it is a null object. An example of a singleton which is not a null object is a one-point space in the category of topological spaces.

 $\{A_t\}_{t\in T}$ being a set of objects, ΣA_t and ΠA_t will denote the free and direct join of it (cf. [12, §12]) with monomorphisms $\sigma_t \colon A_t \to \Sigma A_u$ and epimorphisms $\pi_t \colon \Pi A_u \to A_t$, respectively.

PROPOSITION 1. If \otimes has a singleton or a cosingleton, then the monomorphisms $\sigma_t \colon A_t \to \Sigma A_u$ are injections admitting retractions $\pi_t \colon \Sigma A_u \to A_t$ and, dually, the epimorphisms $\pi_t \colon \Pi A_u \to A_t$ are surjections admitting cross-sections $\sigma_t \colon A_t \to \Pi A_u$.

According to the standard definition an object P is *projective* if for every surjection $\alpha: A \rightarrow B$ and every $\beta: P \rightarrow B$ there exists $\gamma: P \rightarrow A$ such that $\alpha \gamma = \beta$, and I is *injective* if for every injection $\alpha: B \rightarrow A$ and every $\beta: B \rightarrow I$ there exists $\gamma: A \rightarrow I$ with $\gamma \alpha = \beta$.

PROPOSITION 2. The retracts and free joins of projective objects are projective; the retracts and direct joins of injective objects are injective.

An object M with be called a *coseparator* if for any two objects A and B and for any morphisms $\alpha: A \rightarrow B$ and $\beta: A \rightarrow B$, the condition $\alpha \gamma = \beta \gamma$ for all $\gamma \in \text{Map}(M, A)$ implies $\alpha = \beta$. Let us notice that any

¹ Research supported partially by the National Science Foundation.

² We assume Isbell's system of axioms, cf. [9], also [5; 7; 12; 13].

coseparator is a generator in the sense of [7].

An object F will be called a *basic free object* (abbreviation: b.f.o.) if the following conditions are satisfied: (1) F is a coseparator. (2) If a coseparator A is a retract of F, then A is equivalent to F. (3) If B is any coseparator, then there exists a retraction $\alpha: B \to F$. A b.f.o. F will be called *strict* if the following condition holds: If $\alpha: B \to A$ is an injection and the conjugate map α' : Map $(F, B) \to \text{Map}(F, A)$ is onto, then α is an equivalence.

F is unique up to equivalence (if it exists). An object P will be called free if it is a free join of a set of copies of F. Dually we define: a separator, a basic direct object D (abbreviation: b.d.o.), a direct object, a strict b.d.o.

THEOREM. Suppose that B admits a singleton or a cosingleton and free [direct] objects and that b.f.o. is strict and projective [b.d.o. is strict and injective]. Then

- (i) Every free [direct] object is projective [injective].
- (ii) Every object is an image of a free object [a subobject of a direct object] (i.e., for each A there exists a surjection $\alpha: \Sigma(F)_t \to A$ [an injection $\alpha: A \to \Pi(D)_t$]).
- (iii) An object is projective [injective] if and only if it is a retract of a free [direct] object.
- (iv) An object A is projective [injective] if and only if for every object B every surjection α : $B \rightarrow A$ has a cross-section [every injection α : $A \rightarrow B$ has a retraction]. In other words, A is projective [injective] if and only if it is an absolute quotient retract [absolute subretract].
- 2. Examples. 1. If $\mathfrak B$ is the bicategory of abelian groups and homomorphisms, then the infinite cyclic group Z is a b.f.o. and Q/Z is a b.d.o. where Q denotes the group of rationals. Free objects are just free abelian groups, every projective is free and injective objects are just the divisible groups (cf. [11, §12; 13]).
- 2. If @ is the bicategory of all groups and homomorphisms then Z is a b.f.o. Free objects are the same as free groups and projective objects are the same as free (Nielsen-Schreier theorem, cf. [11,§35]). The only injective object is the null object [3, Theorem 2].
- 3. If @ is the bicategory of Boolean algebras and Boolean homomorphisms, then the two-element algebra (0,1) is a cosingleton and a b.d.o. while a four-element algebra (0,1,A,A') is a b.f.o. Free objects are those which have a free system of generators and an algebra is a direct object if and only if it is the field of all subsets of a set. Injective objects are just the complete algebras (cf. [21;8]).
 - 4. If \mathfrak{B} is the bicategory of left Λ -modules (cf. [4]), then Λ is a

projective coseparator and $\operatorname{Hom}_{\mathbf{Z}}(\Lambda, \mathbb{Q}/\mathbb{Z})$ is an injective separator.

- 5. If $\mathfrak B$ is the bicategory of compact Hausdorff spaces and continuous maps, then a one-point space is a singleton and a b.f.o. simultaneously and a closed interval is a b.d.o. Free joins are $\beta(\mathsf{U}S_\alpha)$ (where $\mathsf{U}S_\alpha$ is the disjoint union) and direct joins are Cartesian products, whence free objects are just $\beta(N_\alpha)$ with N_α discrete and direct objects are the Tichonov cubes. Projective objects are just the extremally disconnected ones (cf. [6; 16]) and injective objects are absolute retracts.
- 6. If $\mathfrak B$ is the bicategory of normed linear spaces and linear operators with $||T|| \le 1$ (injections being isometries into), then the real line is both b.f.o. and b.d.o. Free joins are l_1 -direct sums i.e., spaces of functions $t \to x_t$ with $x_t \in X_t$ and $||\{x_t\}|| = \sum ||x_t|| < \infty$, and direct joins are m-direct sums i.e., spaces of bounded functions $t \to x_t$ with $x_t \in X_t$ and $||\{x_t\}|| = \sup ||x_t||$. Thus, free objects are the spaces $l_1(N_\alpha)$ and direct objects are the spaces $m(N_\alpha)$. Projective objects are the same as free and injective ones are those with the binary intersection property i.e., those equivalent to spaces C(S) with S extremally disconnected.

The bicategory of normed linear spaces and all linear (continuous) operators (injections being bicontinuous) does not admit infinite free or direct joins. The spaces $l_1(N_\alpha)$ and $m(N_\alpha)$ are projective and injective, respectively. No characterization of projective and injective objects is known. For references see [2; 10; 14; 15; 19].

7. The bicategory of normal two-norm spaces and γ - γ -linear operators (cf. [1]) with $||T|| = \sup\{||Tx|| : ||x|| \le 1\} \le 1$ admits free and direct joins of countable sets of objects (defined as l_1 -products and m-products). No nonzero object is injective (cf. [17]). The real line is injective in the category of γ -reflexive spaces and all γ - γ -linear maps (cf. [18]) but it is not injective for γ - γ -linear maps with $||T|| \le 1$ because the number ϵ in Theorem 6 of [18] is indispensable.

The proofs and details will be published in [20].

REFERENCES

- 1. A. Alexiewicz and Z. Semadeni, The two-norm spaces and their conjugate spaces, Studia Math. 18 (1959), 275-293.
- 2. D. Amir, Continuous functions spaces with the bounded extension property, Bull. Res. Council Israel 10F (1962), 133-138.
- 3. R. Baer, Absolute retracts in group theory, Bull. Amer. Math. Soc. 52 (1946), 501-506.
- 4. H. Cartan and S. Eilenberg, *Homological algebra*, Princeton Univ. Press, Princeton, N. J., 1956.
- 5. S. Eilenberg and S. MacLane, General theory of natural equivalences, Trans. Amer. Math. Soc. 58 (1945), 231-294.

- 6. A. M. Gleason, Projective topological spaces, Illinois J. Math. 2 (1958), 482-489.
- 7. A. Grothendieck, Sur quelques points d'algèbre homologique, Tôhoku Math. J. 9 (1957), 119-121.
- 8. P. R. Halmos, Injective and projective Boolean algebras, Proc. Sympos. Pure Math. Vol. 2, pp. 114-122, Amer. Math. Soc., Providence, R. I., 1961.
- 9. J. R. Isbell, Some remarks concerning categories and subspaces, Canad. J. Math. 9 (1957), 563-577.
- 10. J. R. Isbell and Z. Semadeni, Projection constants and spaces of continuous functions, Trans. Amer. Math. Soc. (to appear).
- 11. A. G. Kurosh, The theory of groups, Vols. 1 and 2, Chelsea, New York, 1955 and 1956.
- 12. A. G. Kurosh, A. H. Livshits and E. G. Shulgeifer, Foundations of the theory of categories, Russian Math. Surveys—translation from Uspehi Mat. Nauk (6), 15 (1960), 1-46.
 - 13. S. MacLane, Duality for groups, Bull. Amer. Math. Soc. 56 (1950), 485-516.
- 14. L. Nachbin, Some problems in extending and lifting continuous linear transformations, Proc. Intern. Symp. on Linear Spaces, 1960, Jerusalem, 1961, 340-351.
- 15. A. Pelczyński, Projections in certain Banach spaces, Studia Math. 19 (1960), 205-228.
- 16. J. Rainwater, A note on projective resolutions, Proc. Amer. Math. Soc. 10 (1959), 734-735.
- 17. Z. Semadeni, Embedding of two-norm spaces into the space of bounded continuous functions on a half-straight line, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astr. Phys. 8 (1960), 421-426.
 - 18. ——, Extension of linear functionals in two-norm spaces, ibid., 427-432.
- 19. ——, Isomorphic properties of Banach spaces of continuous functions, Proceedings of a Conference on Functional Analysis (Warsaw, 1960), (to appear).
 - 20. —, Projectivity, injectivity and duality, Rozprawy Mat. (to appear).
 - 21. R. Sikorski, Boolean algebras, Ergebnisse Math. Heft 21, Berlin, 1960.

THE INSTITUTE OF MATHEMATICS OF THE POLISH ACADEMY OF SCIENCES AND THE UNIVERSITY OF WASHINGTON