## SOME STRUCTURAL PROPERTIES OF HAUSDORFF MATRICES

## BY B. E. RHOADES

Communicated by Einar Hille, October 10, 1958

- 1. **Definitions.** Let  $A = (a_{nk})$  denote an infinite matrix. A is called *conservative* if A has finite norm,  $a_k = \lim_{n \to \infty} a_{nk}$  exists for each k, and  $\lim_{n \to \infty} \sum_k a_{nk}$  exists. A is called *multiplicative* if A is conservative and  $a_k = 0$  for each k.
- s denotes the space of sequences, m the subspace of bounded sequences, and c the subspace of convergent sequences.  $E_1$  is the field of complex numbers and  $E_{\infty}$  the set of sequences, each of which possesses only a finite number of nonzero terms.

Let x be a fixed sequence. Then  $c \oplus x = \{y+x | y \in c\}$ .

Let  $H = (h_{nk})$  denote a Hausdorff matrix generated by a sequence  $\mu$ . I shall use  $(H, \mu)$  to denote the convergence domain of  $H, H_{\mu}$  to denote the matrix, and  $H \sim \mu$  to denote the method.

A matrix  $A = (a_{nk})$  is said to be of property P, displacement m (written  $c^m A$  is of property P) if, for all  $k \ge m$ ,  $a_{nk}$  possesses property P.

A corridor matrix is a matrix with the property that there exists a positive integer r such that  $a_{nk}=0$  for all n and k with |n-k|>r. The smallest such r denotes the width of A.

2. Introduction. Let H denote the set of Hausdorff matrices with finite norm. H coincides with the set of conservative Hausdorff matrices as a result of [1, page 256, lines 8-12].

Hille [2] denotes the set of all multiplicative Hausdorff matrices by M, and observes that it forms a commutative Banach algebra which is also an integral domain. Hence the concepts of unit, prime, divisibility, associate, multiple, and factor can be defined in M. Hille and Tamarkin [3, p. 576; 4, p. 907] observed that every moment function  $\mu(z)$  of the form  $\mu(z) = (z-a)/(z+b)$ ,  $\Re(a) > 0$ ,  $\Re(b) > 0$ , is prime in M; i.e.,  $H \sim \mu$  is not equivalent to convergence, but includes only methods that are equivalent to convergence. Hille mentioned this fact in [2, p. 422], and again raised the open question as to whether all primes in M are of this form.

From Hille's definition of a prime moment function, a regular Hausdorff matrix H with the property that  $(H, \mu) = c \oplus x$  for some unbounded sequence x would have a moment function  $\mu(z)$  which would be a prime element of M. The results stated in this paper show that it is impossible to construct a Hausdorff matrix  $H \in H$ 

with  $(H, \mu) = c \oplus x$ , for some unbounded x, by the technique of Zeller [5].

3. **Results.** The proofs of the following theorems stem from the definition of a Hausdorff matrix, and use the fact that knowledge of the values of any two of the terms  $h_{n,k}$ ,  $h_{n+1,k}$ ,  $h_{n+1,k+1}$  gives information about the third. For example, if for some n and k  $h_{n,k} = h_{n+1,k} = 0$ , then  $h_{n+1,k+1} = 0$ . See [1, p. 255, line 14].

THEOREM 1. Suppose that for some integer k,  $\{h_{nk}\} \in E_{\infty}$ . Then  $c^kH$  is a corridor matrix of width N-k.

THEOREM 2. Let  $h_{nk} = \alpha_n$  for k = 0, = 0 for k > 0,  $\alpha_n \in E_1$ . Then H is a Hausdorff matrix  $\leftrightarrow \alpha_n = c$ , c a constant.

THEOREM 3. Let H be triangular with  $h_{n,0} = c$ ,  $c \in E_1$ , for all n. Then H is Hausdorff  $\leftrightarrow h_{n,k} = 0$  for all k > 0.

THEOREM 4. There does not exist a Hausdorff corridor matrix of width k>1 with the elements on the kth diagonal all the same number c.

THEOREM 5. Let H be a Hausdorff matrix with its (k+1)th column an element of  $E_{\infty}$ . Then, for  $k \neq 0$ , either the kth column is an element of  $E_{\infty}$  or it has no two succeeding elements the same number.

THEOREM 6. Suppose that H is a Hausdorff corridor matrix of width r>1. Then  $H \in H$ . For r=1,  $\mu_0 \neq 0$ , H is a diagonal matrix and hence is equivalent to convergence.

THEOREM 7. Let  $c^mH$  be a corridor matrix of width r>1. Then  $H \oplus H$ .

THEOREM 8. If  $c^mH$  is a diagonal matrix, m>0, then  $\mu_k=\mu_{k+1}$  for  $k \ge m$ .

THEOREM 9. Let  $c^mH$  be a diagonal matrix, m>0. Then  $c^mH$  cannot have  $\{h_{nk}\} \in E_{\infty}$  for  $0 \le k \le m-1$ .

THEOREM 10. Let  $c^mH$  be a diagonal matrix, m>0. Then  $h_{n,m-1}\neq 0$  for n>m-1.

THEOREM 11. Let  $c^mH$  be a null matrix, m>0; i.e.,  $h_{nk}=0$  for all  $n \ge k \ge m$ . Then  $\mu_{m-1} \ne 0$ .

THEOREM 12. If  $c^mH$  is a diagonal matrix, m>1, then  $H \in H$ .

4. Conclusion. Combining the results of the above set of theorems we see that H is composed of two types of matrices. For  $H \in H$ , either  $c^mH$  is a diagonal matrix for m=0, 1, or H has no column an element of  $E_{\infty}$ .

Let  $D = \{H_{\mu} | \mu = \{\mu_0 c, c, \cdots \}, \mu_0, c \in E_1 \}$ . Then D is a Banach algebra.

In constructing a regular matrix A with  $c_A = c \oplus x$  for some unbounded x, Zeller [5] uses a nondiagonal matrix with columns which are elements of  $E_{\infty}$ . However, such a construction is not possible for any  $H \in H$ , hence, a fortiori, not possible for any regular H.

It is still, as far as I know, an open question whether there exists a Hausdorff matrix  $H \in H$  with  $(H, \mu) = c \oplus x$  for some unbounded x.

## REFERENCES

- 1. G. H. Hardy, Divergent series, Oxford, 1949.
- 2. E. Hille, Functional analysis and semi-groups, Amer. Math. Soc. Colloquium Publication, vol. 31, 1948.
- 3. E. Hille and J. D. Tamarkin, Questions of relative inclusion in the domain of Hausdorff means, Proc. Nat. Acad. Sci. U.S.A. vol. 19 (1933) pp. 573-577.
- 4. ——, On moment functions, Proc. Nat. Acad. Sci. U.S.A. vol. 19 (1933) pp. 902-908.
- 5. K. Zeller, Merkwürdigkeiten bei Matrixverfahren; Einfolgenverfahren, Arch. Math. vol. 4 (1953) pp. 1-5.

LAFAYETTE COLLEGE