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1. Introduction. By a nonassociative algebra is meant a vector 
space which is equipped with a bilinear multiplication. If the mul­
tiplication is associative, we have the familiar notion of an associative 
algebra. Also Lie algebras are an essential tool for the study of Lie 
groups, as is well known. However, we shall not be particularly con­
cerned with associative or Lie algebras today, except as models of 
what well-behaved nonassociative algebras should be. 

The study of algebras which are not associative is not a recent de­
velopment. The 8-dimensional algebra of Cayley numbers was known 
as early as 1845 [26].2 However, it is within the last fifteen years that 
the study has received its greatest impetus. With a few notable ex­
ceptions—and always excepting Lie algebras of course—there were 
only isolated results before that time. By now a pattern is emerging, 
for certain finite-dimensional algebras at least, and this paper is an 
exposition of some of the principal results achieved recently in the 
structure and representation of finite-dimensional nonassociative 
algebras. 

A. A. Albert has been the prime mover in this study. The depth and 
scope of the results, a t least for one class of nonassociative algebras, 
may be judged by the fact that N. Jacobson will give the Colloquium 
lectures at the Summer Meeting of the Society on the topic of Jordan 
algebras. Except for this reference to these two men, I shall not at­
tempt to identify the authors of any theorems in this talk. The 
bibliography of the published paper will speak for itself. 

2. The associative and Lie theories as models. Let F be an arbi­
trary field and A be a finite-dimensional associative algebra over F. 
It is well known that there is an ideal N> called the radical of A, which 
is the unique maximal nilideal of A (that is, the maximal ideal con­
sisting entirely of nilpotent elements). Furthermore, N is nilpotent 
in the sense that there is an integer / with the property that any 
product Z1Z2 • • • zt of t elements from N is zero; hence N is also the 

An address delivered before the Brooklyn meeting of the Society on April 15, 
1955, by invitation of the Committee to Select Hour Speakers for Eastern Sectional 
Meetings; received by the editors May 31, 1955. 

1 This paper was supported in part by a grant from the National Science Founda­
tion. 

2 Numbers in brackers refer to the bibliography at the end of the paper. 

469 



470 R. D. SCHAFER [November 

unique maximal nilpotent ideal of A. Modulo this radical the algebra 
is semisimple; that is, the difference algebra A/N has radical equal 
to zero. Moreover, any semisimple associative algebra is uniquely 
expressible as a direct sum 5i© • • • ©S r of simple two-sided ideals 
(where an algebra is simple provided it has no proper ideals and is not 
a 1-dimensional algebra in which all products are zero). Any simple 
associative algebra 5 is the Kronecker product FSXD (over F) of 
the total matric algebra Fs of dimension s2 and a division algebra D 
over F, where 5 is unique and D is uniquely determined up to iso­
morphism. Hence (up to a determination of all division algebras D 
over F) the structure of any semisimple associative algebra over F is 
known. 

Let A/N be separable (that is, the center of each simple component 
is a separable field over F\ this would always be the case if F were of 
characteristic 0). Then A has a Wedderburn decomposition A =S-\-N 
where 5 is a subalgebra of A isomorphic to A/N and S+N is a vector 
space direct sum. This decomposition is unique up to an inner 
automorphism of A in the following strong sense. Let z be any nil-
potent element in A. Then, even though there is no identity element 
1 in Ay the meaning of (1— z)a(l — z)"~l is clear, and the mapping Gz\ 
a—>(1— z)a{\ — z)"1 is an inner automorphism of A. Suppose that A 
has Wedderburn decompositions A =S+N=Si + N. Then there is an 
element z of the radical N such that the corresponding inner auto­
morphism Gz maps 5i onto S (and of course leaves N invariant) 
[73]. 

This of course has been but the briefest of sketches of the associa­
tive structure theory, and omits many important features. It is 
astonishing, however, how closely the structure of Lie algebras of 
characteristic 0 parallels the associative theory up to this point. 

Let F be a field of characteristic 0 and A be a finite-dimensional 
Lie algebra over F. Then the radical N of A is not the maximal 
nilideal (since A itself is a nilalgebra, the square of every element 
being zero), nor is it in general the maximal nilpotent ideal of A. It is 
an ideal between these two. Define B™=B, ]3<i+1> = (£<*>)2. Then B 
is solvable in case there is an integer k such that J3(fc)=0, and the 
radical N of A is the unique maximal solvable ideal of A. With this 
definition of radical, the difference algebra A/N is semisimple and is 
uniquely expressible as a direct sum of simple two-sided ideals. If 
F is algebraically closed, the classification of simple Lie algebras into 
four great classes and five exceptional algebras is well known. This 
leads to a determination of the simple Lie algebras over arbitrary F 
of characteristic 0 which by now is almost complete, and in this sense 
we can say that all semisimple Lie algebras over F are known. 
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Since F is of characteristic 0, there is no question of separability 
involved. Any finite-dimensional Lie algebra A over F has a Levi 
decomposition A = S+N where 5 is a subalgebra isomorphic to A/N 
and S+N is a vector space direct sum. Moreover, we have a similar 
strict conjugacy of semisimple components in such decompositions. 
Let z be any element of the maximal nilpotent ideal N0 of A(NoQN)t 

and let jD* = ad z (the right multiplication of A determined by z) be 
the nilpotent inner derivation of A corresponding to z. Then Gz = exp Dz 

is an inner automorphism of A, If A =S+N = Si+N, then there is 
an element z in iV0 such that Gz maps Si onto S [37].3 

Lest we be too taken up with the similarities between these two 
theories, we should perhaps recall one of the important tools for the 
study of associative algebras; namely, the Peirce decomposition rela­
tive to an idempotent. Let e be an idempotent (e2~e9é0) in an as­
sociative algebra A over an arbitrary field F. Then A may be written 
as the vector space direct sum A =^4.n+^4io+-4oi+-4oo of spaces A a 
which consist of those elements a^ in A satisfying ectij — idij, di3e~jdij 
( ^ i = 0> !)• The properties of this decomposition are essential to the 
proofs of the associative theorems I have mentioned. On the other 
hand there are clearly no idempotents in Lie algebras, and the proofs 
of the parallel theorems rely on other methods, notably on a trace 
argument which breaks down for fields of characteristic p>0. 

3. Arbitrary nonassociative algebras. Turning now to arbitrary 
nonassociative algebras, I should mention first that the concepts of 
subalgebra, ideal, homomorphism, isomorphism, simple algebra, 
difference algebra, and direct sum do not involve associativity in any 
way. If a nonassociative algebra can be written as the direct sum 
S i 0 • • • ®Sr of simple two-sided ideals Si, it is easy to see that the 
simple summands in such a decomposition are uniquely determined. 
If we hope to use the associative and Lie theories as models at all, 
then we are forced to define a finite-dimensional nonassociative 
algebra to be semisimple in case it is a direct sum of simple two-sided 
ideals. (For some purposes it may be desirable to restrict the notion 
of simplicity, but that is a refinement which I can take up later.) 
The characteristic property of the radical then is not that it is the 
maximal nil-, solvable, or nilpotent ideal, but that it is the minimal 
ideal N such that A/N is zero or a direct sum of simple two-sided 
ideals [4]. Thus any nonassociative algebra A has a radical N, and it 
is easy to see that the difference algebra A/N is semisimple in the 
original sense that its radical is zero. Also A/N is uniquely expressible 

8 It follows from the Campbell-Hausdorff formula that, if G = GZl GH* • • G»h for 
ZiÇzNo, then there exists zGiVo such that G=G„ 
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as a direct sum of simple two-sided ideals. 
Guided by the associative and Lie theories, one is then led to ask: 

what is the nature of the radical N, what are the simple algebras, what 
is the nature of A as an extension of N? For an arbitrary algebra A, 
the answer is that anything can happen. 

It is possible to construct a nonassociative algebra with almost any 
undesirable property. Most of these constructions are based on the 
use of a multiplication table. Let Ui, • • • , un be a basis for A as an 
^-dimensional vector space over F. Then UiUj— X}fc y%jkUk for uniquely 
determined elements 7 ^ in F. Conversely, any n2 equations of this 
type (that is, with nz multiplication constants 7 ^ arbitrary in F) 
determine a nonassociative algebra of dimension n over F, since the 
definition of multiplication is extended to products of arbitrary pairs 
in A by bilinearity. 

Let A be a 2-dimensional algebra4 with basis u,v and with multipli­
cation table u2 = u, uv — v2 — v, vu — 0. The 1-dimensional ideal N with 
basis v is the only proper ideal of A. Since A cannot be the direct sum 
of two proper ideals, A is not semisimple. Then, since A/N—Fü=F 
is semisimple, Nis the radical of A. But v is idempotent, so N= Fv=F 
is a field. This is the extreme of being unlike a radical (in the nil-, 
solvable, or nilpotent sense). 

Again let i b e a 2-dimensional algebra with basis u,v and this time 
with multiplication table u2 = u+v, uv = v, vu — v2 — 0. Again N with 
basis v is the only proper ideal of A and, since ü2 = ü,A/N~Fü~:FtN 
is the radical of A. Since iV is a zero algebra, this radical is well-
behaved. However, there cannot be any Wedderburn decomposition 
for A. For there is no idempotent e in A, as there would have to be 
for A to contain a subalgebra S=A/NÇ^F. 

The literature contains other unpleasant examples, some not nearly 
as easily constructed as these. They serve to put limits on our ex­
pectations for a general theory, and focus our attention on classes of 
algebras for which associative algebras and Lie algebras of charac­
teristic 0 serve as reasonable models. They also increase our apprecia­
tion of those techniques which are applicable to arbitrary nonassocia­
tive algebras. 

Let a be an element in a nonassociative algebra A over F, and Ra be 
the right multiplication of A determined by a; that is, Ra is the map­
ping x—>xa = xRa for every x in A. Similarly for the left multiplication 

— xLa. The right and left multiplications are elements of Fn, 
the total matric algebra of all linear transformations on the vector 
space A of dimension n. We denote by E the associative subalgebra 

4 This example is a modification of the 3-dimensional example in [4]. 
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of Fn generated by the right and left multiplications of A. The struc­
tural properties of A are reflected in those of its associative multipli­
cation algebra E [41; 3] . If A is semisimple, then so is E. If A is 
simple, then so is E, and E is indeed a total matrix algebra over its 
center. The radical of A may be characterized in terms of the radical 
of E [4; 57]. 

The center of a nonassociative algebra is the set of elements c which 
not only commute with every element of A but associate with every 
pair of elements a,b in A. If A is simple, the center of A is either 0 
or a field. In the latter case A may be regarded as an algebra over its 
center, and as such is central simple (that is, remains simple under 
scalar extension of the ground field). In any event the center of E 
is a field, the multiplication center of A, and A is a central simple 
algebra over its multiplication center [41; 3; 44]. A nonassociative 
algebra is separable (that is, is semisimple over any scalar extension 
of the ground field) if and only if the multiplication centers of its 
simple summands are separable fields. 

Solvability of an algebra (Bw = 0) is a nonassociative notion. It 
turns out that the radical of an algebra always contains the maximal 
solvable ideal [5] (although we have seen an example showing that 
it can contain much more). Nilpotence of an algebra can be turned 
into a nonassociative notion by demanding that there is an integer / 
such that any product ZxZi • • • zt of t elements, no matter how as­
sociated, is zero. Clearly any nilpotent algebra is solvable. Moreover, 
any ideal No of A is nilpotent if and only if the subalgebra of E 
generated by the right and left multiplications corresponding to ele­
ments of No is a nilpotent associative algebra [5; 33]. 

There are also relationships between arbitrary nonassociative 
algebras and Lie algebras. A derivation D of a nonassociative algebra 
A is a linear transformation on A having the property of differentia­
tion: (xy)D = x(yD)-\-(xD)y. The set of all derivations of A is a Lie 
algebra (with product the ordinary commutator [D, D' ] = DDf — D'D), 
and this is called the derivation algebra of A [42]. The Lie enveloping 
algebra of the right and left multiplications of A (that is, the algebra 
generated by addition and commutation, rather than addition and 
multiplication) is called the Lie multiplication algebra L of A 
[88; 47]. If A is semisimple of characteristic 0, and if A has an 
identity element 1, then every derivation D of A is inner in the sense 
that D is in L [47]. For associative and Lie algebras inner derivations 
have the familiar forms D — Rx — Lx and D — Rx ( = ad x) respectively. 

4, Alternative and Jordan algebras. Let us turn now to considera­
tion of two classes of algebras whose behavior, according to the norms 
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we have set, is excellent. These are the well-known alternative and 
Jordan algebras. I t turns out that they are intimately interrelated. 

An algebra A is called alternative in case the identities ax2 — (ax)x, 
x2a — x(xa) are satisfied in A, Clearly all associative algebras are 
alternative. I t turns out that the only simple alternative algebras 
which are not associative are 8-dimensional algebras over their cen­
ters which are generalizations of the original algebra of Cayley 
numbers [109; 110; 83]. Hence all semisimple alternative algebras 
are known. 

Any alternative algebra is power-associative (that is, if x1 = x1 and 
xi+1 = xix, we have x3'xk = xj+k so that all products of m factors, each 
equal to x, are equal and we can write this common element as xm). 
Hence nilpotence of an element is unambiguously defined. The radical 
N of A is the maximal nilideal, and N is nilpotent [112; 87]. If A/N 
is separable, then A has a Wedderburn decomposition A=S+N 
where S^A/N [87]. All of this is for an arbitrary field F, and the 
proofs rely heavily on the fact that there is a Peirce decomposition of 
A whose properties are identical with those of the special case of 
associative algebras [109; 112]. 

If F is of characteristic 0, we can prove the strict conjugacy of 
semisimple summands in Wedderburn decompositions. If F is of 
characteristic p, the question is still open, and the solution depends 
on arriving at a suitable form for the inner automorphisms of A. 
The derivations are more tractable [88]. If A=S+N=Si+N is of 
characteristic 0, then there is a nilpotent derivation D of A in the 
radical of E such that the automorphism G = exp D of A maps Si onto 
S [90]. Moreover, any alternative algebra of characteristic 0 is semi-
simple if and only if its derivation algebra is semisimple or 0 [90].5 

Jordan algebras are also defined by identities: xa — ax, (x2a)x 
= x2(ax). Since the second of these identities is a weak form of as­
sociativity, any commutative associative algebra is a Jordan algebra. 
Let us assume henceforth that the characteristic of F is not two. The 
most easily realizable Jordan algebras are those obtained from as­
sociative algebras as follows. Let B be any associative algebra with 
multiplication denoted by x-y. Consider a new algebra B+ which is 
the same vector space as B, but in which multiplication is defined by 
xy — (x-y-\-y-x)/2. B+ is clearly commutative, and it is easy to verify 
that the Jordan identity is also satisfied. Any nonassociative algebra 
A over F which is isomorphic to a subalgebra of some B+ is called a 
special Jordan algebra. The special Jordan algebras are not defined 

6 This generalizes the associative theorem in [38]. The analogue for Jordan 
algebras is proved in [89], 
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by identities, since a homomorphic image of a special Jordan algebra 
need not be special [28]. 

Any Jordan algebra (of characteristic 7*2) is power-associative. The 
radical Nis the maximal nilideal, and iVis nilpotent [ó]. Every simple 
Jordan algebra has an identity element 1, and is therefore central 
simple over its center. With a possible exception which can occur 
only if the characteristic is p>0, all central simple Jordan algebras 
are known. The degree of a central simple algebra is the unique 
number q of the pairwise orthogonal primitive idempotents e% in 
l = e i + • • • +eq over any algebraically closed extension Œ of F. I t 
is an open question whether any central simple Jordan algebras of 
degree one and dimension greater than one exist. If they do, they are 
of characteristic p>0, and they are exceptional in the sense that they 
are not special Jordan algebras [13]. With this possible exception, 
there are four great classes of central simple Jordan algebras (all of 
which are special)—algebras of degree two defined by quadratic forms 
and three classes of algebras of self-ad joint elements in certain in-
volutorial associative algebras [61; 5; 6; 62; 45; 40; 13]—and one 
class of exceptional algebras which are 27-dimensional generaliza­
tions of the algebra of 3-rowed hermitian matrices with elements 
which are Cayley numbers [ l ; 85; 12; 13]. 

If A/N is a known separable Jordan algebra,6 then A has a Wedder-
burn decomposition A =S+N where S^A/N [80; 20]. If A =S+N 
= Si + N is of characteristic 0, then there is a nilpotent derivation D of 
A in the radical of E such that the automorphism G = exp D of A 
maps Si onto 5 [49]. 

The proofs of these theorems depend on the decomposition of a 
Jordan algebra relative to an idempotent [61 ; 6] . This decomposition 
is quite evident in case A = B+, for e is idempotent in B+ if and only 
if e is idempotent in B. Then B — Bn+B10+Boi+Boo and 6»y in Bij 
give bije=(bij'e+e'bij)/2 = (i+j)bij/2 and A—A^Ai/2+Ao where 
Ai = Bn, Ai/2 = B10-{-Boi, Ao = Boo. The same decomposition A=Ai 
+^4i/2+^4o, with aie = iai for ai in Au holds for any idempotent e in a 
general Jordan algebra A, and the properties of this decomposition 
are fundamental in the structure theory. 

5. Power-associative algebras. All of the algebras which we have 
considered have been power-associative (that is, each single element 
generates an associative subalgebra). I t is natural to try to see how 
far the results can be extended to power-associative algebras [7; 8] . 
We are always assuming now that the characteristic of F is not two. 

6 The proof in [80 ] is valid for F of characteristic 5̂ 2 in case each simple sum-
mand of (the separable algebra) A/N is a known simple Jordan algebra. 
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Let us begin with commutative power-associative algebras. Rela­
tive to any idempotent e there is a decomposition A = A i + A i / 2 +A 0 

which enjoys most of the properties of this decomposition for Jordan 
algebras [8; 13]. We modify the definition of a simple algebra, de­
manding that the algebra not be a nilalgebra as well as not having 
any proper ideals. The radical of A is then the minimal ideal N such 
that A/N is a direct sum of such simple algebras. We can either 
further restrict the characteristic of F to be 9*3, 5, or assume that 
A is strictly power-associative in the sense that AR is power-associa­
tive for every scalar extension K of F. Then N is the maximal nilideal 
of A. Every simple algebra has an identity element 1. Moreover, the 
only simple algebras of degree greater than 2 are the known simple 
Jordan algebras [13; 15; 69]. An interesting feature of the technique 
used in obtaining these results is that the result on simple algebras 
is used to prove that the maximal nilideal is the radical. 

If F is of characteristic p > 5 , there do exist examples of simple 
commutative power-associative algebras of degree 2 which are not 
Jordan algebras [68], However, it is an open question7 whether such 
examples exist for F of characteristic 0. The strongest theorem for 
algebras of degree 2 is that A is a Jordan algebra if and only if 
AiAi/2QAi/2 (i = 0, 1) for every idempotent e in A [18]. If F is of 
characteristic 0, then any simple commutative power-associative 
algebra of degree 1 is 1-dimensional over its center [13]. 

Whether or not the new definition of simplicity is an actual restric­
tion is not known. That is, whether or not commutative power-
associative nilalgebras without proper ideals exist (except of course 
for the zero algebra of dimension 1) is still an open problem. Whether 
or not the radical is nilpotent (or solvable) is a related question. To 
my knowledge nothing is known about Wedderburn decompositions 
for commutative power-associative algebras. 

The situation with respect to noncommutative algebras is rather 
chaotic. However, pleasing results are known for some classes of 
algebras. The most effective tool is the passage from A to the attached 
commutative algebra A+ in which multiplication is defined by 
%Oy = (xy+yx)/2 where xy is the product in A [s]. Whether or not 
the method is successful depends on how much is lost in transition 
from A to A+. For example, if A is anticommutative (ax= — xa), then 
everything is lost because xOy = 0. 

Noncommutative Jordan algebras [94] are defined by the Jordan 
7 L. A. Kokoris has subsequently announced (April 22, 1955) that every simple 

commutative power-associative algebra of degree 2 and characteristic 0 is a Jordan 
algebra. 
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identity (x2a)x = x2(ax) and an identity which is a consequence of this 
if A has an identity element: (xa)x = x(ax). The latter is called the 
flexible law [8], and is satisfied in any commutative (or anticom-
mutative) algebra. Noncommutative Jordan algebras are power-
associative, and they include Jordan, alternative, and—trivially— 
Lie algebras. They also include the quasiassociative algebras A (over 
some scalar extension K of F there is an associative algebra B and a 
scalar X T^ 1/2 in K such thatAK=B(X), the algebra which is the same 
vector space as B but in which multiplication is defined by xy =\x • y 
+ (1 —X)y-x where x-y is the product in B) [s]. The attached algebra 
A+ of any noncommutative Jordan algebra A is a (commutative) 
Jordan algebra. If the characteristic of F is 0, then A is trace-
admissible according to the following definition. There is a linear 
function r(x) on A (namely, the trace of the right multiplication of 
A+ corresponding to x) with the following properties: r(xy)=r(yx)1 

r((xy)z) =r(x(yz)), r(e) T^O for any idempotent e of Ay T(X) = 0 if x is 
nilpotent. But for any trace-admissible algebra, if the definition of 
simplicity includes not being a nilalgebra, it is known [lO] that the 
radical is the maximal nilideal and is the set of all z in A satisfying 
T(XZ)=0 for every x. The radical is not nilpotent, or even solvable, 
since every Lie algebra is its own radical by this definition (in which 
the simple algebras are taken to be not nilalgebras). The simple 
algebras are the simple (commutative) Jordan algebras, the simple 
flexible algebras of degree two, and the simple quasiassociative al­
gebras. One can construct an example8 to show that noncommutative 
Jordan algebras do not in general have Wedderburn decompositions 
(even in case iV2 = 0). 

Right alternative algebras are defined by the identity ax2 — (ax)x. 
If A is right alternative, then A+ is a special Jordan algebra. By a 
modification of the trace-admissibility technique, it can be shown 
that for F of arbitrary characteristic 3^2 the radical of A is its maxi-

8 Let A be the 5-dimensional noncommutative Jordan algebra with basis en, eu, 
021, 022, z and multiplication table en =£12021 = 011, 011012 — 012022 — 012, 021012 — 022

s=: ̂ 22, 
0H021 == 021022 =022S=S 20ii =z, 0210H = 022021 = 02i—z, all other products zero. The radi­
cal N is spanned by z, iV2 = 0, and A/N &F2 with basis ên, ëi2, 021, 022. Suppose there 
were a subalgebra S ^A/N. Then 6* would have a usual matrix basis gu, gu, g2i, £22» 
and there would be an automorphism H of A/N such that ga^eijH. But any auto­
morphism of A/N is inner, as there is a nonsingular element J^aën+Pëu +7021+S022 
(A=aÔ —075^0) in A/N such that !»•/= ̂ / jT 1 . It follows that gn — A'^aôen —a(3eu 
+7Ô021 - )37022) + ez, ga = A"1 ( - ayen+<*20i2 - 7202i +«7022) +*s, g2i = A"1 (/35en - P2eu 
+5202i—/3ôe22)+Xj&, g22=3A~1(—j87eii+aj8ei2—7^021+«5022)+MZ. Equating coefficients of 
z in gngi2=gi2, g22gussgng2is=s0, g22g2i=g2i, g2igi2=g22 yields equations in a, 0, • • • , /1 
which force A=0, a contradiction. 
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mal nilideal, and that every semisimple right alternative algebra is 
actually alternative [9; 19]. 

Every finite strictly power-associative division ring of character­
istic T^2 is a finite field [17]. This generalizes Wedderburn's cele­
brated theorem on finite associative division rings. The proof appeals 
directly to the structure theory for the attached commutative power-
associative algebra A+ over the prime field F. 

If A is a simple power-associative algebra, then there is no reason 
why the commutative power-associative algebra A+ need be simple. 
If, however, A+ is simple, then it is clear that A must be simple. If 
A+ is central simple of degree greater than 2, then A+ is a known 
Jordan algebra and (at least over a scalar extension K of F) the 
multiplication in A can be given by an explicit construction [14; 15], 
the details of which I do not have time to relate. 

6. Modules and representations. A very valuable technique which 
has been introduced in the last few years is the use of modules for 
nonassociative algebras (or bimodules, since the concept is a gen­
eralization of the familiar two-sided module for associative algebras). 
An equivalent notion is that of a representation (or birepresentation). 

Let C be a class of nonassociative algebras over F. HA is in C, and 
if I f is a vector space over F, let ma and am in M be two bilinear 
compositions for a in A, m in M. Then the direct sum A+M of the 
vector spaces A and M is turned into a nonassociative algebra over F 
(the semidirect sum, or split null extension) by defining multiplica­
tion in A + M by (ai+mi)(a2+m%)=aia2 + (mia2+aim2). If A + M is 
in C, then M is called a module for A in C. For example, if C is the 
class of all nonassociative algebras over F, then no conditions other 
than the originally assumed bilinearity are imposed on the composi­
tions am and ma. If C is the class of all associative algebras, then the 
compositions in M must satisfy (ma)b = m(ab)f {am)b — a{mb)1 

{ab)m = a(bm) for a, b in A, m in M ; that is, M is a two-sided ^4-module 
for the associative algebra A [38]. If C is any class of nonassociative 
algebras defined by multilinear identities J»(ai, #2, • * * > #w<)

 =0> then 
M is a module for A in C in case all of the identities, obtained by re­
placing any single a, in A in the identities J»(ai, a2) • • • , ani) = 0 by 
m in M, are satisfied [31 ] . 

If M is a module for A, then the mappings 5 a : m—>ma and TV. m-*am 
are linear transformations on M, and a—>Sa, a—>Ta are linear map­
pings of A into the space of all linear transformations on M. A pair 
(5, T) of linear mappings a—>Saf a-+Ta of A into the space of all 
linear transformations on a vector space M is called a representation 
of A in C in case ilf, equipped with the compositions ma — mSa, 
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am = Tma, is a module for A in C. Any algebra A in a class C defined 
by identities has the regular representation (R, L) where M is A 
itself, and Ra and La are right and left multiplications in A. An im­
portant simplification is possible if C contains only commutative (or 
anticommutative) algebras. For then ma = am (or ma——am) im­
plies Sa=Ta (or 5 a = —To), so that effectively only one mapping S: 
a—>Sa is involved instead of the pair (5, T). This simplification can 
be made for Jordan and Lie algebras (for Lie algebras the notion of 
representation is the usual one). 

The defining identities for alternative and Jordan algebras may be 
linearized.9 Modules and representations for alternative and Jordan 
algebras10 are then easily defined, and these have already proved to be 
very effective in the study of subalgebras of these algebras [49; 90; 
53]. 

The analogues for alternative and Jordan algebras of the first 
Whitehead lemma [38; 49; 90 ] depend on representation theory, as 
do the proofs of the theorems concerning the strict conjugacy of 
semisimple components in Wedderburn decompositions which I have 
already mentioned. Representations have also been used to prove 
that, if B is an alternative algebra with an identity 1 and if A is a 
Cay ley subalgebra containing 1, then B is the Kronecker product 
B=AXZ (over F) where Z is the center of B. Similarly, if B is a 
Jordan algebra with identity 1 and if A is a known (27-dimensional) 
exceptional simple subalgebra containing 1, then B is also the 
Kronecker product B = A XZ [54]. 

Just as the multiplication algebras E and L (which I have already 
mentioned) are generated by the elements Ra and La of the regular 
representation, there are associative (and Lie) enveloping algebras 
for any representation (5, T). For alternative and Jordan algebras A 
one can define a universal associative algebra U for the representa­
tions, universal in the sense that any representation of A is obtained 
from a representation (in the usual sense of homomorphism) of the 
associative algebra U [53]. Furthermore, U is finite-dimensional for 
finite-dimensional alternative and Jordan algebras A [49; 90]. 

If A is a separable alternative algebra or a known separable Jordan 
algebra, then every module for A is completely reducible. The ir­
reducible modules for these algebras have been determined [53]. 

9 The multilinear identities obtained are equivalent to the original ones if F is of 
characteristic 9^2 for alternative algebras and of characteristic 5^2, 3 for Jordan 
algebras. 

10 Included among the representations of Jordan algebras are the special represen­
tations denned by Sab = SaSb+SbSa [22; 40] . 
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There are intimations of cohomology in some of these results on 
alternative and Jordan algebras [49; 90; 91; 53]. One can hope for 
the development of a cohomology theory, not only for these algebras, 
but one for general nonassociative algebras which will provide a 
measure of the deviation of nonassociative algebras from the norms 
of good behavior which are gradually appearing. 

7. Conclusion. In this short space of an hour I have had to omit 
many topics. I have made no mention of rings or infinite-dimensional 
algebras [102; 99; 16; 63; 24; 67; 55; 56; 100; 101; 78; 70; 11; 64]. 
Moreover, I have not touched on the interesting relationships be­
tween nonassociative algebras and the exceptional simple Lie algebras 
[43; 27; 35; 105]. Nor has there been time to explain how some of 
these algebras arise in other branches of mathematics [29; 75; 36; 
95; 98; 104; 103; 39] and in the formalism of quantum mechanics 
[58; 59; 60] and genetics [32; 33; 34; 86]. I hope, however, that I 
have been able to give the nonspecialist some insight into the results 
and problems of a rich and active field of research. 
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