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1. Introduction and summary. The present paper describes a new 
method of summation with a triangular matrix. The innovation con­
sists in the fact that the elements in the nth row of the matrix are 
constructed from the first n terms of the series to be summed. The 
dependence of the matrix on the series is such as to allow fairly rapid 
convergence of the summation process in the case of "well-behaved" 
series, yet to make the method applicable to some series whose partial 
sums oscillate violently. The method is included in the. Abel method. 

2. Summability (G). Corresponding to any formal series 2Zn-oan we 
form the sequence {Sn} determined by the relation 

n n-~r 

T, Sr Z I «* I 
(1) 5„ = ^ - ^ , 

n r 

where sr—]£X.o0* (r = 0, 1, 2, • • • ) (the right member of equation (1) 
has meaning except when au — O (& = 0, 1, 2, • • • , n), in which case 
we write Sn = 0). 

DEFINITION. If 

(A) Hm i;ui/Êi:u*i = o 
n-»oo ks=0 r = e 0 kmssQ 

and 
lim Sn = S, 
n-»oo 

the series ^an is summable (G) to S; if we wish to be more explicit, 
we say that the series is summable (G, ]£*«o| a*| ) to 5 (read: summa­
ble with the governor X]*-o| ak\ ). 

I t is evident that equation (1) can be written in the form 

n 

O w
 == / j Srpn—r/-*m 

where £*=]CLo|0* | and P n = 2 X o £ * . I n o t h e r words, equation (1) 
represents a Nörlund transformation [3]1 with positive increasing co-
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1 Numbers in brackets refer to the references cited at the end of the paper. 
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efficients, provided that condition (A) is satisfied. 
The notation of the last paragraph will be used throughout this 

paper. Where more than one series is under discussion, symbols such 
as Sn {a}, Pn {a} will be used to indicate quantities associated with 
the series Xl̂ n» 

THEOREM 1. Summability (G) is consistent with every Nörlund 
method with positive coefficients. 

COROLLARY. Summability (G) is consistent with the Cesàro methods 
of all orders. 

THEOREM 2. Summability (G) is included in the Abel method. 

THEOREM 3. If the series ^any ^bn, ^(an+bn) are summable (G) 
to A, B, and C, respectively, then A +B = C. 

Theorem 1 follows from the fact that all Nörlund methods with 
positive coefficients are consistent with respect to each other [2], and 
its corollary from the fact that all Cesàro methods of integral order 
are Nörlund methods [l] . Theorems 2 and 3 are consequences of 
Silverman and Tamarkin's theorem [4] to the effect that every Nör­
lund method with positive coefficients is contained in the Abel 
method. 

LEMMA. A necessary condition for condition A to be satisfied is that 
lim infWH>oo|aw|//>n = 0; a sufficient condition is that limn+ooan/pn~0. 

To prove our lemma, we write, 

Pn/Pn = Pt/Pn + (pn ~ Pt)/Pn « pt/Pn + ~~—^ (\ ~ Pt/Pn) f 
Pn — P t 

and we recall that if &»-, d are non-negative numbers such that 
HSbi/d^K (i = l, 2 , . . . , s)% then i 7 ^ 2 X i V Z * - i < ^ # . If 
lim infn^l an\ /pn>h>0, the value of the fraction (p —pt)/(Pn — Pt) 
exceeds h if t is sufficiently large and n is greater than t. Since pr is 
a non-decreasing function of r, the values of pt/Pn and Pt/Pn tend 
to zero as n becomes large, and condition (A) is not satisfied. 

If on the other hand limn-œ^n/^n^O, a similar argument shows 
that condition (A) is satisfied, and the proof of the lemma is complete. 

THEOREM 4. The method of summability (G) includes the method of 
convergence. 

This theorem follows from the preceding lemma and the fact that 
every Nörlund method includes the method of convergence (a trivial 
exception to the theorem exists: if an = 0 (w = 0, 1, 2, • • • ), limn-ooS» 
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= 0, but condition (A) fails to be satisfied, and a slight modification of 
our definition is necessary for the series ^an to be summable (G)). 

I t should here be remarked that the condition limw ^an/pn = 0 is 
not necessary for condition (A) to be satisfied, as can be seen from the 
following example: Let 

a0 = 0, 

U n | = 1 ( n ^ O , 1, 2, 4, • • • ), 

| a» | = pn-i (n = 1, 2, 4, • • • ). 

We demonstrate, by induction, that 

pnS n log2 n (n = 1, 2, 3, • • • ), 

where the subscript 2 indicates the base of the logarithm. Suppose 
that 

prS r log2 r 

where r = 2h (h a certain positive integer). Then 

pr+t ^ r log2 r + t<(r + t) log2 (r + t) (t < r), 

p2r-i â r log2 r + r — 1, 

p2r < 2r log2 r + 2r = 2r log2 (2r) ; 

that is, the inequality holds when r = 2h+l, 2^+2, • • • , 2h+l. Since 
the inequality holds when r = l, and since 

P» ^ Ê (r - 2) « (n - 2)(» - l ) /2 , 
r=3 

it follows that 
2w log2 w 

Pn/Pn S (n - 2)(n - 1) 

that is, condition (A) is satisfied while lim sup„ ^» | an | /^n = 1/2. 

3. Special properties. In this section we consider some of the prop­
erties of the sequence Sn that are of interest even when the sequence 
fails to converge. 

THEOREM 5. Ifbn = han (# = 0, 1, 2, • • • ) where h is a constant, then 
Sn{b}=hSn{a}. 

This theorem follows immediately from the fact that pn{b} 
~\h\pn[a}, Pn{b] = \h\Pn{a}, and sn{b] =hsn{a}. 

The next theorem concerns the effect of altering the values of a 
finite number of terms of the series X/&n. Since summability (G) is a 
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regular method, it suffices to consider the case of nonconvergent se­
ries. 

If bn = an (n^i) and bi — di+h, 

itsr{b}pn-r{b} = j£ *r { O } Pn-r { b ) + h £ Pn-r{b} 
r=0 r=0 r«=t 

n 

= Y^Sr{a}pn-r{a} 
r=0 _ . 

+ (| ot+ h\ - I Oi\ ) 2 > , { a } + *Pn~t[b} ; 

it follows that 

Sn{b] =Sn{a}Pn{a}/Pn{b}+(\ai+h\- \a4\)jisr{a}/Pn[b} 

(
r"° 

1 - T, Pr{b}/Pn{b}\ 
n-i+1 / 

If condition (A) is satisfied by the series^2ani 

Pn{b} =Pn{a} +(n-i+l)(\ai+h\ - | * l ) 
= (l + en)Pn{a}, 

where limn^0Oew = 0 (nonconvergence of the series X)aw implies that 
limw^pn{a} = 00 and therefore that limw^Pn{a}/n— 00). From this 
it follows that the series ^bn also satisfies condition (A), and that 

Sn{b} = (l + e:)Sn{a} +(l + en")h+(\ai+ h\ - | a> \ )0n 

where limŵ 00«n = 0 = lim» .^ e»' and |0n | ^maxr£n_»|sr{a} | /pr+i{b}. 
Imposing the further requirement that limn-.ooow = 0, we now obtain 
the following result: 

THEOREM 6. If the series ^2an satisfies condition (A) ; if 

(B) lim J2sr{a}/Pn{a} = 0; 
n—»<# r = s o 

6n = an 

bni = 0n< + &* 

(n y* ni, n2, • • 

(i = 1, 2, • -

• , »*), 

• • , * ) ; 

then 
k 

Sn{b} = (1 + en)Sn{a} + £ *< + *» 

w&ere l i m n ->«>€„ = 0 = l i m w H.oo*7n. 
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COROLLARY 1. If the set of partial sums sn{a} is bounded, lim (Sn {b} 
-S.{a})-2?-i*<. 

COROLLARY 2. If the series^an satisfies conditions (A) and (B) and 
is (is not) summable (G), every series differing from it in a finite number 
of terms only is (is not) summable (G). 

THEOREM 7. If 

*» = an (n = 0, 1, • • • , i - 1), 

bn = 0»-x (w = i + 1, i + 2, • • • ) 

and the seriesJ£an satisfies condition (A), then 

Sn{b} - Sn-2{a} « €nSn_2{ö} + €»' 

This theorem asserts that the insertion of a finite number of terms 
whose value is zero into a series satisfying condition (A) cannot de­
stroy or bring into existence summability (G) for the series or change 
the value of the sum (G) of the series. A stronger theorem is of course 
desirable; we may ask, for example, whether there exists an infinite 
sequence of integers {w»} such that the insertion of a term of value 
zero after each of the terms ani in any series 2^a« satisfying condition 
A cannot destroy or bring into existence summability (G) for the se­
ries or change the value of the sum (G) of the series. 

To prove Theorem 7, we observe that (for n>2i) 

Pn{b) - Pn-2{a} + pn-i{a} + pi-i{a} 

and 
n 

- Z*{*}#*-r{&} + Si{b}pn-i{b} + £ Sr{b}pn-r{b} 

i— 1 n—1 

- T, Sr{b}pn-r{b} + S<{b}pn-<{b} + £ Sr{ü}P„-r-l{b} 

= YïéSÀApn-ï-Àa) +VnPn{b} (lim rjn = Oj. 

Division of ^L?„osr{b}pn-r{b} by Pn{b} gives the desired result. 
The following theorem regarding the summability (G) of certain 
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alternating series provides a first indication of the strength of the 
method (G) : 

THEOREM 8. If f(z) is a polynomial in z with real coefficients, then 
the series ]C£-o("~l)w/M is summable (G). 

We assume, first, that f(z)^0 when 2 = 0, 1, 2, • • • . If f(z) is of 
degree q, the quantities pn and P» are then polynomials in n of de­
gree q+1 and S+2, respectively. We shall show that for each n the 
sum XXoSr£n-r can be expressed as one of two polynomials of degree 
g+2 or less in w, and that the leading terms of the two polynomials 
have identical coefficients. 

Writing 
n n r n n n 

] T Srpn-r = X ) ] C akpn-r = X ) a* X ) Pn->r = X ) akPn-k> 

and Pn^hin), we have the relation 

Ê SrPn-r = £ ( ~ l ) 1 / ( r ) / 2 ( « - f ) . 

Now, if g(z) is holomorphic in the region — l/2Sx^n + l/2 (z — x+iy) 
and if, for some pair of constants (C, a) with a < l , the inequality 
|g(s)| <Cea,î/1 holds in this region, then [2, p. 53] 

23 ( - l)r^W = — I dz - — I -
r=0 ^ W n4-l/2-ioo Sil l TTZ It J _i/2_ioo SI r=0 2 t • / n + l / 2 - i o o S1H TTZ 2fc J — l/2-ioo S i n TTZ 

In our case, this identity takes the form 

n ! f *+!/*+** f(Z)f%(n - z) J f~W+i<»f(Z)f2(n-z) 
2 , Sr£n-r = — I : dz — — I 
r=»0 2 w w + l / 2 - t o o Sill 7T2 2 W - 1 / 2 -

^3 
+1/2-Î00 Sill 7T2 l l J -1/2-too S i n -ÎT0 

2 J^ 

00 ( - l J ^ n + l ^ + O ^ C - l ^ - ^ + Z C - l ^ + i O / a C w + l ^ - ^ ^ 
a/, cosh 7r/ 

and the theorem is proved for the case where ƒ (z) âO when 2 = 0, 1, 
2, • • • . 

If the polynomial/(s) is negative for some of the values 2 = 0, 1, 
2, • • • , k — 1, and positive for z = k, k + 1, • • • , we consider first the 
series 

00 00 

This series is summable (G), and by Theorem 7 it is still summable (G) 
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after k terms of value zero are prefixed to it. I t follows from Theorem 
6 that the series ^2( — l)nf(n) is summable, and the proof of Theo­
rem 8 is complete. 

We note, incidentally, that in the special case under consideration 
in Theorem 8, 

,imS.,if*-'/2+i'>a, 
n-»» 2 J _oo cosh irt 

lîf(z) is non-negative (s = 0, 1, 2, • • • ), this is obvious from the fact 
that in the quantity ^?„osrpn-r the term of highest degree in n is the 
same as in the quantity 

1 f 
2 J_« 

ƒ( - 1/2 + it)Mn) 
a/. 

cosh irt 
In the more general case, we choose an arbitrary polynomial g(z) so 
that f(z)+g(z)^0, g(z)^0 (w==0, 1, 2, • • • ). Since the two series 
^( — l)n[f(n)+g(n)] and ^ ( —l)ng(z) are summable to 

2 J-.* 
ƒ ( - 1/2 + it) + g ( - 1/2 + it) 

cosh irt 
and 

g(- 1/2 + it) 
- at, 2 •/_« cosh irt 

respectively, the result follows at once from Theorem 3. 
The following proposition is now a consequence of Theorem 2: 

TIHEOREM 9. Iff(z) is a polynomial with real coefficients, 

v ^ n„ ^ 1 f" f(-1/2 +if) Js 

hm 2^ xnf(n) = — I dU 
s->-i+o n=o 2 J-„o cosh irt 

4. An unsolved problem. The method of the present paper can be 
extended to matrices with governors other than ]Q?-o| a*\ • Any rela­
tion of the form 

(2) pn = p(a0t ah • • • , an) 

or, more generally, 

(3) pn = p{n\ ao, ah • • • ) 

determines a Nörlund method, corresponding to each series ^an sat­
isfying the appropriate analogue of condition (A). I t would obviously 
be of value to know a simple relation of the form (2) or (3) generating 
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a "universal Nörlund method (G*)," that is, a method which sums the 
series ^an whenever the series is summable by any Nörlund method. 
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