
NONLINEAR NETWORKS. I 

R. J. DUFFIN 

The object of this note is to show that a certain system of non­
linear differential equations has a unique asymptotic solution, that is, 
all solutions approach each other as the independent variable becomes 
infinite. The interest of these equations is that they describe the vibra­
tions of electrical networks so we shall first discuss the physical origin 
of the equations. 

A linear network is a collection of linear inductors, linear resistors 
and linear capacitors arbitrarily interconnected. Suppose that such a 
network has no undamped free vibration. Then a given impressed 
force may give rise to more than one response but as time goes on the 
transient vibrations die out and there is a unique relation between 
impressed force and response. This, of course, is well known. Our 
main theorem states that if in such a network the linear resistors are 
replaced by quasi-linear resistors then again, after sufficient time has 
elapsed, there is a unique relation between impressed force and re­
sponse. 

A quasi-linear resistor is a conductor whose differential resistance 
lies between positive limits. No other nonlinearity besides this type 
of nonlinear damping is considered. Quasi-linear resistors have ex­
tensive practical application. 

For example, consider a linear network with one degree of freedom. 
An inductor of inductance i , a resistor of resistance R and a capaci­
tor of capacitance 5~x are connected in series. The current y{t) flowing 
in this circuit must satisfy the following differential equation 

L— + Ry + S f ydt = e. 

Here e(t) is the electromotive force impressed in the circuit and may 
be an arbitrary function of time. 

The corresponding nonlinear equation to be studied is obtained by 
replacing the linear relation Ry by a function V(y) which for all val­
ues of y is such that 5 ^ V'(y) ^A, where 3 and A are positive con­
stants. 

In the general network with n degrees of freedom a set of n inde­
pendent circuits (meshes) is chosen. Then any distribution of cur-
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rent in the network may be uniquely specified in terms of the cyclic 
currents yi, yi, • • • , yn flowing in these circuits. Let ei, £2, • • • , en 

be the electromotive forces acting in these circuits. It is convenient 
to introduce the electric charge variables #i, #2, • • * , qn such that 
yj=dqj/dt and to let p stand for d/dt. The linear network equations 
may then be written as 

(1) Lfq + Rpq + Sq = e. 

Here L, R, and S are w-way matrices and q and e are vectors with 
components q,- and e^ 

A condition which must be satisfied in order that there be no un­
damped solutions is specified by the following well known lemma. 

LEMMA 1. A necessary condition that all solutions y~pqof the homo­
geneous equation Lp2q+Rpq+Sq = 0 approach zero as t—>+ 00 is that 
the matrix (z2L+zR+S) be nonsingular for 9fo^0 and \z\ >0. 

PROOF. Otherwise there is a constant vector q0 and a value of z such 
that (z2L-\-zR+S)qo = 0, so q = q0e

zt is a solution. But pq = zqoeet does 
not approach zero if Ste^O and \z\ >0. 

Well known arguments concerning electric and magnetic energy 
show that the matrices L, R, and S are symmetric semi-definite. For 
instance if {a, b} indicates the bilinear form ]Cïa A and ||a||2 = {a, a}, 
then [y, Ry] is by definition the rate at which energy is dissipated 
in the resistors. On the other hand let the resistance of the resistors 
be rij ^2> * * * > r m and the corresponding currents through them be 
iu iz> ' * ' » im> (Each iv is, of course, the algebraic sum of those cur­
rents yi which are common to rv.) The potential drop across the re­
sistor v is rviv and the Jth component of Ry is defined as the algebraic 
sum of those drops which are common to the/th circuit. The following 
identity must hold for physical reasons 

m 

(2) {yyRy} = Jlrviv. 
1 

This shows that R is non-negative definite. 
In the nonlinear network the linear expression rviv is replaced by 

the function vv(iv) where h^vl ^A for positive constants b and A. 
Let V(y) be the vector function which replaces Ry in equation (1). 
If y+ and y* are two arbitrary vectors we can write V(y+) — V(y*) 
= V'• (y+—y*)f where V' is a matrix defined as follows. By the mean 
value theorem 

vv(iy) — v,(ip) = vp(B)(iy — iv), 
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where 0 lies between it and it. Thus the matrix V' is defined by the 
vi the same way that R is defined by the rv. 

Without loss of generality we may suppose Ô ^rv^A also. Then by 
identity (2) 

(ô/A){y,Ry} S {y, V'y) ^ (A/d){y,Ry}. 

Before proceeding with the uniqueness proof it is desirable to give 
an abstract definition of this nonlinear transformation so that a theo­
rem can be stated which is independent of physical concepts. Let R 
be a symmetric semi-definite matrix. Then a continuous vector func­
tion V(y) is a quasi-linear replacement of R provided V(y+) — V(y*) 
= V' '{y+-~y*), where V' is a symmetric matrix which satisfies 
k~~l{y, Ry} ^ {y, V'y} Sk {y, Ry} for a positive constant k independ­
ent of the vectors y+ , y*, and y. 

THEOREM. Let Lf R, and S be symmetric semi-definite matrices and 
suppose that all solutions of the equation Ld2x/dt2+Rdx/dt+Sx = 0 are 
such that dx/dt-*0 as /—>+ 00. Let Vbe a quasi-linear replacement of R 
and suppose for t^O the vectors q(i) and e(t) satisfy the equation 
Ld2q/dt2+V(dq/dt)+Sq = e. Then if q* is any other solution of this 
equation, fQ\\dq/dt—dq*/dt\\2dt< 00. (The first derivatives of x, q, and 
q* are assumed to be continuous.) 

PROOF. Let w = q—q*; then by subtraction 

(3) Lp2w + V'pw + Sw = 0. 

This gives the bilinear form 

{pw, Lp2w} + {pw, V'pw} + {pw, Sw} = 0, 

so 

— p[{pw, Lpw} + {w, Sw}] = l{pw, V'pw}. 

By definition of V' the function on the right is continuous so by a 
standard theorem of the integral calculus 

- [{pw, Lpw} + {w, Sw}] + i = 2 J {pw, Vfpw}dt. 
J 0 

But L and S are non-negative definite so f£ {pw, V'pw}dt<A/2. The 
integral is absolutely convergent because the integrand is non-nega­
tive. (We shall use the letter A to designate various other constants 
also.) 

The following simple properties of a symmetric semi-definite matrix 
H are needed. 



836 R. J. DUFFIN [October 

LEMMA 2. If, for all x, {x, Hx} ^ | H | 2 then \\Hx\\2^A {X, HX}. 

LEMMA 3. The equation a=Hx is solvable for x if and only if the rela­
tion Hu — 0 implies {a, u} ~0 . 

LEMMA 4. There is a matrix P such that, for any x, Hx=HPx and 
\\Px\\ ̂ A^Hx\\, where A is independent of x. 

PROOF. These lemmas are obvious if H is a diagonal matrix. How­
ever, the relations are invariant under a rotation of axes (orthogonal 
transformation) and it is well known that there is a rotation which 
reduces H to diagonal form. 

For each value of t the matrix V' is non-negative definite and 
{xt V'x) ^-4||#||2, where A is independent of t. Thus by Lemma 2, 
fZ\\V'pw\\2SAfZ{pw, V'pw}dt<oo. Also {x, Rx}^k{x1 V'x}; so 
again by Lemma 2, /^j|i?/)w||2d/< oo. 

From {x, V'x} ^k\xy Rx} it follows by Lemma 2 that | |F'*| |2 

^Ak{xf Rx}. This implies V'x = 0 if Rx = 0. Now by Lemma 3 it fol­
lows that if a= V'b there is an x such that a — Rx. Otherwise there 
would be a u such that Ru = 0 and {a, u} 5*0. But then F ;« —0;so 
{a, u} = 0, a contradiction. 

Let b-x = ƒ o ; then Rb - V'b = Rfo = RPf 0. Let ƒ=Pf 0 ; then by 
Lemma 4 

||/||MI*/IIMMI + 4I™I|. 
Interpreting b as £ze>, it follows that /o°||/||2^/< °°, that is, f(t) 
CI<2(0, oo ). Moreover 

||/(fc) — /(fa)|| ^ 4|**w* - ity^H + A\\V{pwx - Vtpw2\\. 

Since pw and F ' are continuous it follows that ƒ(/) is continuous. With 
ƒ so defined we may write 

(4) Lp*w + Rpw + Sw = Rf. 

LEMMA 5. Let G = (zL+R+srlS)-lR; then G, zLG and z^SG are 
uniformly bounded matrices f or tytz^O. 

PROOF. First suppose z is real and 1 Sz < oo. Let h be an arbitrary 
vector and let x = Gh. Then 

(zL + R + g-tyx = Rk 

and 

z{x} Lx} + {x, Rx} + z-x{x, Sx} = {x, Rh}. 

Apply Lemma 2 to each of the terms on the left side. On the right side 
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note {x, Rh} = {h, Rx} g\\h\\ \\Rx\\. Thus *||L»||*+||i&c||*+ar l | |5*|| f 

gu4||A|| \\RX\\. This makes it obvious that \\RX\\ is bounded, hence 
||Z*|| is bounded and \\Sx\\ = Oz1'*. Thus \\(L+R+S)x\\=Ozlf2. But 
(L+R+S) is a nonsingular constant matrix, so actually ||#|| = 0s1/2. 
Since h is an arbitrary vector the matrix elements of G, say gij, must 
satisfy \gij\ = 0zlf2. But gij is a rational function of z and if it were 
unbounded it would increase at least as rapidly as z. Thus ga is 
bounded at infinity. To show ga is bounded in the neighborhood of 
the origin, let z' = l/z and repeat the above argument. Since ga has 
no singularities for 9îz = 0 and \z\ > 0 , it follows that g^ is uniformly 
bounded for 9te = 0. This proves the statement for G. 

By what has just been proved, zLG is bounded in the neighbor­
hood of the origin. Write 

zLG = - RG- z-xSG + (zL + R + trlS)G 

= - RG- g-tSG + R. 

The three matrices on the right are uniformly bounded at infinity and 
this proves the statement for zLG. The remaining part follows by 
symmetry. 

LEMMA 6. Equation (4) has a continuous solution pWiCL2(0, <*>). 

PROOF. Let <j>(z) =f£e~-ztf(t)dt, dtz > 0. The existence of <t>(z) is guaran­
teed since we have shown /CI<2(0, 00). For brevity write <j>(z) = 8/(£). 
Let f (z) =G(j)(z)1 and since G is a uniformly bounded rational trans­
formation for 9fe = 0 it follows from the well known theory of the 
Laplace transformation that f (z) = 8w(/), where u(t) Ci2(0 , 00) and is 
continuous. Moreover z~l^(z)=2foudt and x~lSt(z) —iSfoudt. Like­
wise by Lemma S, zLÇ(z) =8/(0* where l(t)CZL2(0i <*>) and is con­
tinuous. Thus %foldt = %Lu. By the uniqueness property of the La­
place transform, flldt — Lu> so l = Ldu/dL Note that 

8 ( idu /d t + Ru + S f udt\ = (zL + R + z^S)^ = 82?/. 

Thus Ldu/dt+Ru+Sfoudt~Rf. Identifying Wi with Jludt completes 
the proof. 

Clearly x — w—W\ satisfies the linear homogeneous equation and px 
is continuous so px—>0 as /--»+ 00 by hypothesis. Moreover, it is easy 
to show by the Laplace transformation that pxCZ<2(0, 00). Thus 
^CI<2(0, 00) and the proof is completed that pq and pq* approach 
each other in mean. We have been unable to show that the solutions 
also approach in the pointwise sense. 
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Under the weaker hypothesis that px merely approaches a constant 
the same proof shows that pw also approaches a constant. 

A later note considers the existence and character of solutions of 
quasi-linear networks for periodic impressed force. 

DEPARTMENT OF TERRESTRIAL MAGNETISM, 

CARNEGIE INSTITUTION OF WASHINGTON 

THE ELECTROSTATIC FIELD OF TWO COPLANAR PLATES 

EDMUND PINNEY 

1. Introduction. In a recent paper in the Philosophical Magazine 
[l, p. 168],x N. Davy published what he called an "attempt" to ob­
tain the electrostatic field about two thin, infinitely long, parallel, co-
planar metallic plates of unequal width and at potentials ± Vo. I t 
was this remark, no doubt, that led M. C. Gray [2] to call this solu­
tion "tentative." 

Actually, the solution given by Davy was but one of infinitely 
many that might fit his given conditions. The reason is that this is a 
two-dimensional potential problem, and in two-dimensional potential 
theory infinity is not a suitable zero point for the potential function 
as it is in three-dimensional potential theory. Consequently, to make 
the potential function definite, it is necessary either to specify its zero 
point or to specify some other condition which effectively does this. 
Davy made no such specification but chose the particular potential 
function which corresponds to the case in which the charges on the 
conductors are equal and opposite in sign. 

I t is the purpose of this paper to solve the problem fulfilling Davy's 
conditions, but in which the charge per unit length on one plate bears 
to the charge per unit length on the other plate a given ratio r. 

For any r 9e 1, the charges on the plates may be increased until the 
potential difference between the two plates is 2 Fo. If the zero point 
for the potential function is then taken as the point between the two 
plates at which the potential is the arithmetic mean of the potentials 
on the plates, one plate will be at potential + Vo and the other will 
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