ALMOST PERIODICITY, EQUI-CONTINUITY AND TOTAL BOUNDEDNESS

W. H. GOTTSCHALK

Let X be a uniform space; that is to say, let X be a space provided with a system of indexed neighborhoods $U_{\alpha}(x)$ ($x \in X$, $\alpha = \text{index}$), subject to the conditions (A. Weil): (1) If $x \in X$ and if α is an index, then $x \in U_{\alpha}(x)$; (2) If α and β are indices, then there exists an index γ such that $x \in X$ implies $U_{\gamma}(x) \subset U_{\alpha}(x) \cap U_{\beta}(x)$; (3) If α is an index, then there exists an index β such that $x, y, z \in X$ with $x, y \in U_{\beta}(z)$ implies $x \in U_{\alpha}(y)$. Let T be a topological group with identity σ and let f be a transformation of $X \times T$ into X. We agree to write f'(x) or $f_x(t)$ in place of f(x, t) ($x \in X$, $t \in T$), whenever we wish. Furthermore, let f define a transformation group; that is to say, suppose $f^{\sigma}(x) = x$ and $f^{\circ}f'(x) = f^{t\circ}(x)$ ($x \in X$; $t, s \in T$). We impose continuity conditions on f as the needs arise.

A subset E of T is said to be relatively dense provided there exists a compact set A in T such that each left translate of A intersects E. A point x of X is called almost periodic provided that if U is a neighborhood of x, then there exists a relatively dense set E in T for which $f(x, E) \subset U$. We observe that the notion of almost periodic point depends on the topology in T, the strongest type of almost periodicity occurring when T is provided with the discrete topology. It is easily proved that a set E in T is relatively dense if and only if there exists a compact set E in E such that E is each the orbit of the point E.

THEOREM 1. If the family $[f^t|t\in T]$ is equi-continuous at x, if f_x is continuous on T, and if x is almost periodic, then the orbit of x is totally bounded. Conversely, if the family $[f^t|t\in T]$ is equi-uniformly continuous and if the orbit of x is totally bounded, then x is almost periodic.

PROOF. Suppose the hypotheses of the first statement hold. Let α be an index. There exists an index β such that the β -neighborhood of each compact set in X is contained in the union of finitely many α -neighborhoods. By hypothesis we can find an index γ such that $f^t(U_{\gamma}(x)) \subset U_{\beta}(f^t(x))$ $(t \in T)$. There are sets E and A in T such that T = EA, A is compact, and $f(x, E) \subset U_{\gamma}(x)$. Hence, $f(x, T) \subset f(U_{\gamma}(x), A) \subset U_{\beta}(f(x, A))$. Since f(x, A) is compact, $U_{\beta}(f(x, A))$ is contained in

Presented to the Society, April 27, 1946; received by the editors March 11, 1946.

the union of finitely many α -neighborhoods. Thus the orbit of x is totally bounded.

Suppose the hypotheses of the second statement hold. Let α be an index. By hypothesis there exists an index β such that $f^t(U_{\beta}(y)) \subset U_{\alpha}(f^t(y))$ $(y \in X, t \in T)$. Choose finitely many elements t_1, \dots, t_n of T so that $f(x, T) \subset \bigcup_{i=1}^n V_i$, where $V_i = U_{\beta}(f(x, t_i))$. If $t \in T$, then for some $i, f(x, t) \in V_i$ whence $f(x, tt_i^{-1}) \in U_{\alpha}(x)$. Hence, x is almost periodic.

COROLLARY 1. If the family $[f^t|t \in T]$ is equi-uniformly continuous, if f_x is continuous on T, and if x is almost periodic, then x is almost periodic with respect to the discrete topology in T.

COROLLARY 2 (BOCHNER'S THEOREM). If $x(\tau)$, $-\infty < \tau < +\infty$, is a complex-valued continuous function, then $x(\tau)$ is an almost periodic function in the sense of Bohr if and only if each sequence of translates of $x(\tau)$ contains a uniformly convergent subsequence.

PROOF. Define Y to be the collection of all complex-valued continuous functions $y(\tau)$, $-\infty < \tau < +\infty$, and define indexed neighborhoods in Y so that $y \in U_n(y_0)$ if and only if $|y(\tau)-y_0(\tau)| < 1/n$ $(-\infty < \tau < +\infty)$ where the index n is a positive integer. Construct a transformation group g in Y by translation of the functions in Y, taking T to be the additive group of reals with its natural topology. Now x is an almost periodic point if and only if $x(\tau)$ is an almost periodic function. Clearly, the family $[g^t|t\in T]$ is equi-uniformly continuous. Also if $x(\tau)$ is an almost periodic function, then $x(\tau)$ is uniformly continuous whence g_x is continuous on T. Hence, by Theorem 1, x is an almost periodic point if and only if the orbit of x is totally bounded. The conclusion follows.

We point out that A. Weil [2, pp. 130–133]¹ has essentially taken Theorem 1 as the definition of an almost periodic point with respect to a transformation group.

If X is an arbitrary set, if Y is a uniform space, and if Φ is a non-vacuous collection of functions on X to Y, then we consider Φ to be a uniform space in the following manner: If α is an index belonging to Y and if $\phi \in \Phi$, then the α -neighborhood $U_{\alpha}(\phi)$ of ϕ is taken to be the set of all elements ψ of Φ such that $\psi(x) \in U_{\alpha}(\phi(x))$ for every element x of X.

The following lemma will be recognized as a generalization of Ascoli's theorem and its converse.

LEMMA 1. Let X and Y be uniform spaces and let Φ be a nonvacuous

¹ Numbers in brackets refer to the Bibliography at the end of the paper.

collection of functions on X to Y. If X and Y are totally bounded and if the family Φ is equi-uniformly continuous, then the space Φ is totally bounded. Conversely, if the individual functions in Φ are uniformly continuous and if the space Φ is totally bounded, then the family Φ is equi-uniformly continuous.

1946]

PROOF. Suppose X and Y are totally bounded and Φ is equi-uniformly continuous. Let α be an index belonging to Φ and, hence, to Y. Choose an index β belonging to Y so that $a, b, c \in Y$ with $a, b \in U_{\beta}(c)$ implies $a \in U_{\alpha}(b)$. We can find an index γ belonging to Y and finitely many points y_1, \dots, y_n of Y so that $y \in Y$ implies $U_{\gamma}(y) \subset U_{\beta}(y_j)$ for some integer j, $1 \leq j \leq n$. There exists an index δ belonging to X such that $\phi(U_{\delta}(x)) \subset U_{\gamma}(\phi(x))$, $(\phi \in \Phi, x \in X)$. Choose finitely many points x_1, \dots, x_m of X so that $X = \bigcup_{i=1}^m U_{\delta}(x_i)$. Hence if $\phi \in \Phi$, then to each integer i, $1 \leq i \leq m$, there corresponds at least one integer j, $1 \leq j \leq n$, such that $\phi(U_{\delta}(x_i)) \subset U_{\beta}(y_j)$. Letting I, J denote the first m, n positive integers, each element ϕ of Φ defines in the obvious manner a class $C(\phi)$ of transformations of I into J. Choose finitely many elements ϕ_1, \dots, ϕ_r of Φ so that the class $\bigcup_{k=1}^r C(\phi_k)$ is maximal. It follows that $\Phi = \bigcup_{k=1}^r U_{\alpha}(\phi_k)$. Hence, Φ is totally bounded.

Suppose now that the functions in Φ are uniformly continuous and Φ is totally bounded. Let α be an index belonging to Y. There exists an index γ belonging to Y so that $a \in U_{\gamma}(c)$, $b \in U_{\gamma}(d)$ and $c \in U_{\gamma}(d)$ implies $a \in U_{\alpha}(b)$. Choose finitely many elements ϕ_1, \dots, ϕ_n of Φ so that $\Phi = \bigcup_{i=1}^n U_{\gamma}(\phi_i)$. Select indices $\beta(i)$ $(i=1,\dots,n)$ belonging to X which have the property that $\phi_i(U_{\beta(i)}(x)) \subset U_{\gamma}(\phi_i(x))$ $(x \in X; i=1,\dots,n)$. There exists an index β belonging to X for which $U_{\beta}(x) \subset \bigcap_{i=1}^n U_{\beta(i)}(x)$ $(x \in X)$. We conclude that $\phi(U_{\beta}(x)) \subset U_{\alpha}(\phi(x))$ $(\phi \in \Phi, x \in X)$. Hence, Φ is equi-uniformly continuous and the proof is completed.

We say that the transformation group f is almost periodic provided that if α is an index, then there exists a relatively dense set E in T for which $x \in X$ implies $f(x, E) \subset U_{\alpha}(x)$. It may be verified that in order for f to be almost periodic it is both necessary and sufficient that if α is an index, then there exists a compact set A in T such that to each element f in f there corresponds an element f in f for which $f^{\ell}(x) \in U_{\alpha}(f^{s}(x))$ (f in f in f that the discrete topology, this characterization reduces essentially to Montgomery's definition [1, p. 323] of an almost periodic transformation group.

In the following theorem we denote $[f^t|t \in T]$ by G and, somewhat improperly, call G the transformation group.

THEOREM 2. If X is compact and if f is continuous on $X \times T$, then

the following statements are pairwise equivalent: (1) The transformation group G is almost periodic; (2) The family G is equi-uniformly continuous; (3) The space G is totally bounded.

PROOF. By Lemma 1, (2) is equivalent to (3).

Suppose (1) is satisfied. Let α be an index. There exists an index γ such that $a \in U_{\gamma}(c)$, $b \in U_{\gamma}(d)$ and $c \in U_{\gamma}(d)$ implies $a \in U_{\alpha}(b)$. It is possible to find a compact set A in T such that if $t \in T$, then $f^{t}(x) \in U_{\gamma}(f^{s}(x))$ $(x \in X)$, for some element s in A. Since f is uniformly continuous on $X \times A$, we can choose an index β for which $f^{s}(U_{\beta}(x)) \subset U_{\gamma}(f^{s}(x))$ $(x \in X, s \in A)$. It follows that $f^{t}(U_{\beta}(x)) \subset U_{\alpha}(f^{t}(x))$ $(x \in X, t \in T)$. Hence, (2) is satisfied.

Suppose (2) is satisfied. Let α be an index. There exists an index β such that $f^i(U_{\beta}(x)) \subset U_{\alpha}(f^i(x))$ $(x \in X, t \in T)$. Since G is totally bounded, we can select finitely many elements t_1, \dots, t_n in T so that $G = \bigcup_{i=1}^n U_{\beta}(f^{i_i})$. Let t be an element of T. Then for some i, $f(x, t) \in U_{\beta}(f(x, t_i))$ $(x \in X)$, whence $f(x, tt_i^{-1}) \in U_{\alpha}(x)$ $(x \in X)$. Thus (1) is satisfied and the proof is completed.

COROLLARY 3. If X is compact, if f is continuous on $X \times T$, and if f is almost periodic, then f is almost periodic with respect to the discrete topology in T.

COROLLARY 4 (SHARPENED DIRICHLET-KRONECKER THEOREM). If t, a_1, \dots, a_k are nonzero real numbers and if ϵ is a positive number, then there exists a relatively dense set N of integers such that $n \in N$ implies the existence of integers m_1, \dots, m_k for which $|nt-m_ia_i| < \epsilon$ $(i=1,\dots,k)$.

PROOF. Let X_1, \dots, X_k denote pairwise disjoint circle boundaries in the plane with circumferences $|a_1|, \dots, |a_k|$. Take $X = \bigcup_{i=1}^k X_i$ with the natural uniformity. Define the uniformity-preserving homeomorphism ϕ of X onto X by rotating each circle X_i through arc length t. The transformation group generated by the integral powers of ϕ satisfies (2) of Theorem 2 and, hence, is almost periodic. The conclusion follows from the definition of almost periodicity.

BIBLIOGRAPHY

- 1. Deane Montgomery, Almost periodic transformation groups, Trans. Amer. Math. Soc. vol. 42 (1937) pp. 322-332.
- 2. A. Weil, L'intégration dans les groupes topologiques et ses applications, Actualités Scientifiques et Industrielles, Paris, Hermann, 1938.

University of Pennsylvania