
NOTE ON THE COEFFICIENTS OF OVERCONVERGENT 
POWER SERIES 

J. L. WALSH 

M. B. Porter gave the first known example of an overconvergent 
power series, that is to say, of a power series in the complex variable 
with finite radius of convergence such that a suitable Sequence of 
partial sums converges uniformly in a region containing in its interior 
both points inside and points outside the circle of convergence. 
Bourion has recently published1 a general exposition of the theory of 
overconvergence to which the reader is referred for further historical 
and technical details. 

Ostrowski established the surprising result that a power series 
^2n=oan^n of which the partial sums sm/fc=][^£0aw3w exhibit overconver­
gence, can be expressed as the sum of a power series ^2oanfzn with a 
larger radius of convergence and a power series of the form 

oo 

(1) X) an'zn, a" = 0, whenever mk < n ^ nk 

o 

where nk and X are suitably chosen, with mk<\nky 0 < X < 1 . Here we 
have an = an' +dn", an' -a" = 0; the partial sumssZk(z) ==X)2oö^//2w °f 
(1) also exhibit overconvergence. 

I t is the object of the present note to employ methods already 
known in the literature to make Ostrowski's result slightly more pre­
cise, especially to indicate that in series (1) the gaps cannot be 
uniquely defined with abrupt initial and terminal elements impossi­
ble of alteration by Ostrowski's process of writing the series as the 
sum of a series with a larger radius of convergence and a series with 
larger gaps which exhibits overconvergence. The moduli of the coeffi­
cients a" must taper off gradually before the gap {mk, tik), and must 
increase gradually after the end of the gap ; this remark is to be under­
stood first in the sense that there is an upper limit to the moduli of 
the coefficients near the ends of a gap, a limit which increases as one 
moves away from the gap. 

Presented to the Society April 27, 1940, under the title Note on overconvergent power 
series; received by the editors January 30, 1941, and, in revised form July 26, 1941. 

1 V Ultraconvergence dans les Séries de Taylor, Actualités Scientifiques et Indus­
trielles, no. 472, Paris, 1937. 
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THEOREM 1. Let the series 

oo 

(2) Z cnz" 
n=»0 

whose radius of convergence is unity : 

(3) limsup | cn\
lln = 1, 

n—»oo 

have the gaps (mi, n\), (m2, «2), • • • i» tóe sense / te / cn = 0 whenever 
nik<n^nk, and let the sequence of partial sums smk(z) ^T%i0cnz

n ex­
hibit overconvergence. If R0>1 is arbitrary, there exists a depending on 
Ro with 0 <a < 1 such that 

/AS , . r t I l 1 ^ ^ _<r(limsup mk/nk)-l 
(4) lim sup 11 c^ I, »k ^ mh\ ^ JR0 ; 

if r0<l is arbitrary, there exists r depending on ro with r > l such that 

/ r x , . r l I ^ I1/"* ^- r ( l im inf nk/»k)—l 
(5) lim sup [ I cn I, ^ > ^ J ^ ro 

pk->co 

The only novelty in Theorem 1 is its emphasis on (4) and (5) for 
the series (2) which o vercon verges and which possesses gaps, rather 
than for a series which overconverges and into which gaps may be 
introduced by Ostrowski's process; compare Bourion loc. cit., chap. 1, 
§2. 

With the general notation 

00 m 

ƒ(*) s X ) Cn*n> Sm(z) = X ) Cn*n, rm(z) S3 f(z) — Sm(z), 
0 0 

Cauchy's inequality yields 

(6) [max I sn(z) | , for | z | = R0 > l ] ^ | c0|, | £11 -Ro, • • • . | c» | JRÔ; 

(7) [max I rn(z) | , for | z | = r0 < l ] è | Cn+i | rô , | Cn+21 rô , • • - . 

Under the hypothesis of Theorem 1 we have for suitable a and r 
(these inequalities follow from the fact of overconvergence by the use 
of a suitable harmonic majorant) 

(8) lim sup [max | smk(z) | , for | z \ = R0] = Ro, 

(9) lim sup [max | rnk(z) |, for | 2 | = r0] W = r0. 
nA-*oo 

By virtue of (6) and (8) we have 



194̂ 1 OVERCONVERGENT POWER SERIES 165 

(10) lim sup [ | c^ | -Ro\ ixk S mk]
 m ^ Ri, 

mk-+<*> 

which implies (4); by virtue of (7) and (9) we have 

(11) Hm sup [\cn\ -rj*, vk > nk] ** ^ fo, 
nk-*oo 

which implies (5). Theorem 1 is established. The first member of (4) 
is less than unity so long as we have lim sup mk/fxk < I/o-, and the first 
member of (5) is less than unity so long as we have lim inf nk/vk > 1/f. 

A further description of the tapering-off of the moduli of the coeffi­
cients can be elaborated as follows. Under the conditions of Theorem 
1, there exists a sequence cPk with l i m ^ ^ \cPk\ ^ ^ = 1; if necessary 
we change the notation of mk, nk, pk so that we have also m\<n\<p\ 
<nt2<n2<p2< • • • . I t is now more convenient to employ (10) rather 
than (4) ; by setting fxk = pk-i we find 

lim inf mk/pk^i ^ l/<r; 

consequently the numbers mk—pk„i cannot be small relative to pk-i. 
In a similar manner we find from (11) with vk = pk 

lim sup nk/pk ^ 1/r; 

consequently the numbers pk — nk cannot be small relative to pk. It 
will be noticed that with our present notation the moduli of the coeffi­
cients do taper off from the \cPk\, a t least immediately before and 
after the gaps, because the second members of (4) and (5) are less 
than unity for fxk = mk and for pk = nk + l. But we have not shown, nor 
is it true, that the moduli of the coefficients necessarily taper off 
monotonically. 

As an application of Theorem 1 we prove (compare Bourion, chap. 
2, §4) the following theorem: 

THEOREM 2. Let the series (2) have the radius of convergence unityy 

so that (3) is satisfied. Let unity be an isolated limit point of the set 
{| cn\

1/n}. Let one of the following conditions be satisfied: 
(a) the series has gaps of relative lengths bounded from zero, in the 

sense that cn = 0 whenever mk<n^nkl with mk<\nk, X< 1 ; 
(b) for some R0 > 1 and a, 0 <<r < 1, and for some sequence mkf equa­

tion (8) is valid; 
(c) for some r0<l and r > l and f or some sequence nk, equation (9) 

is valid. 
Then the unit circle is a natural boundary f or the series (2). 
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If the unit circle is not a natural boundary for the series (2), the 
function f(z) represented is analytic along some arc A of the unit 
circle, and Ostrowski has shown that the conditions (a), (b), (c) imply 
overconvergence of the respective sequences smk{z), smk(z), snk(z) 
across the arc A. 

Let us suppose that no limit point of the sequence {| cn\
1/n} other 

than unity lies in some interval (1, 1— rj), rj>0; we set 

ci = Cn, if | £n|1/n > 1 - hi 

ci = 0, if \cn\u*£ 1 - h , 

c" = r — c1 

fl(z) = £ Ci Z', ƒ , (*) a f } ci' 2", f(z) = Mz) + ƒ , (« ) . 
0 0 

The series defining f2(z) has a radius of convergence greater than 
unity; any overconvergent sequence for ƒ (z) is an overconvergent se­
quence for fi(z); it follows from Theorem 1 that/iOs) has no overcon­
vergent sequence. Theorem 2 is established. 

A necessary condition that a series (2) with (3) satisfied exhibit 
overconvergence is therefore that unity be a non-isolated limit point 
of the set { | ^ | 1 / w } . 

I t is instructive in considering Theorem 1 to compare such an ex­
ample as ^[zOs+l)]3"» suggested by Bourion as a special case of 
Porter's original formulas; the function represented has the lemnis-
cate 12(0+1) | = 1 as a natural boundary; the Taylor development 
about the origin is convergent in the circle \z\ < | 5 1 / 2 —J =0.6; the 
coefficients exhibit the characteristics described in Theorem 1. 
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