NOTE ON THE COEFFICIENTS OF OVERCONVERGENT
POWER SERIES

J. L. WALSH

M. B. Porter gave the first known example of an overconvergent
power series, that is to say, of a power series in the complex variable
with finite radius of convergence such that a suitable sequence of
partial sums converges uniformly in a region containing in its interior
both points inside and points outside the circle of convergence.
Bourion has recently published! a general exposition of the theory of
overconvergence to which the reader is referred for further historical
and technical details.

Ostrowski established the surprising result that a power series
> o@az™ of which the partial sums s,, =2 ™ a,2" exhibit overconver-
gence, can be expressed as the sum of a power series ) _ca, 3* with a
larger radius of convergence and a power series of the form

0
(1) Z a.' 3", a,’ =0, whenever m; < n < ny
0

where 7, and N are suitably chosen, with m, <An;, 0 <A <1. Here we
have a,=a, +a.!’, al -a,.!’ =0; the partial sums s, (z) =>_™ .a,/’ 2" of
(1) also exhibit overconvergence.

It is the object of the present note to employ methods already
known in the literature to make Ostrowski’s result slightly more pre-
cise, especially to indicate that in series (1) the gaps cannot be
uniquely defined with abrupt initial and terminal elements impossi-
ble of alteration by Ostrowski’s process of writing the series as the
sum of a series with a larger radius of convergence and a series with
larger gaps which exhibits overconvergence. The moduli of the coeffi-
cients a,’ must taper off gradually before the gap (my, ni), and must
increase gradually after the end of the gap; this remark is to be under-
stood first in the sense that there is an upper limit to the moduli of
the coefficients near the ends of a gap, a limit which increases as one
moves away from the gap.
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THEOREM 1. Let the series

@ > ot

n=0
whose radius of convergence is unity:

3) lim sup | |t =1,

n—r0
have the gaps (mi, n1), (ma, ns), + - + in the sense that c,=0 whenever
my<n<mnx, and let the sequence of partial sums s, (z) =) " c.3" ex-
hibit overconvergence. If Ry>1 is arbitrary, there exists o depending on
Ry with 0<o <1 such that

i 1/ (1 -1
© lim sup [l Cuy |’ Mr S mk] " = .R:) i sup mi/ik) ;

B0

if ro<1 is arbitrary, there exists T depending on ro with v >1 such that

1/vg 7(lim inf nk/vk)—1
] 7o .

IIA

(5) lim sup [| ¢ |, v > s
yk—)ﬂ

The only novelty in Theorem 1 is its emphasis on (4) and (5) for

the series (2) which overconverges and which possesses gaps, rather

than for a series which overconverges and into which gaps may be

introduced by Ostrowski’s process; compare Bourion loc. cit., chap. 1,

§2.
With the general notation

fla) = ; eaz®  sm(2) = Zj:an", rm(z) = f(z) — sm(2),

Cauchy’s inequality yields
(6) [max | su(2) |, for || = Ro> 1] = |co|, | 1| Ro,- -+, | en| Ro;

n+1 n+2
(1) [max | ra(a) |, for | 3] = ro < 1] 2 | caga| 7o, | Caga|7o s - -.
Under the hypothesis of Theorem 1 we have for suitable ¢ and 7
(these inequalities follow from the fact of overconvergence by the use
of a suitable harmonic majorant)

(8) lim sup [max | s,4(2) |, for || = Ro]llm = R,,
mk_'”

) lim sup [max | 7,.(2) |, for |z| = ro]llnk = 1.
”k—)”

By virtue of (6) and (8) we have
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]llmk

(10) limsup [| o | -Ro', wx < mx]  + < Ry,

Mp—> 0

which implies (4); by virtue of (7) and (9) we have

1/np T
=
= 70y

(11) lim sup [| ¢y | 7oy v > M
ny— 0
which implies (5). Theorem 1 is established. The first member of (4)
is less than unity so long as we have lim sup m;/ur <1/, and the first
member of (5) is less than unity so long as we have lim inf n/v: >1/7.
A further description of the tapering-off of the moduli of the coeffi-
cients can be elaborated as follows. Under the conditions of Theorem
1, there exists a sequence ¢,, with lim,, ., ]cpkl Um=1; if necessary
we change the notation of my, 7, pr so that we have also my <n;<p:
<me<ne<py< - - -.Itis now more convenient to employ (10) rather
than (4); by setting ux= pr—1 we find

lim inf my/pr—1 = 1/0;

consequently the numbers m; — pr—1 cannot be small relative to pi—i1.
In a similar manner we find from (11) with v, =

lim sup #ns/pr < 1/7;

consequently the numbers p;—n; cannot be small relative to pi. It
will be noticed that with our present notation the moduli of the coeffi-
cients do taper off from the |c,,|, at least immediately before and
after the gaps, because the second members of (4) and (5) are less
than unity for uz=m; and for v, =mn;+1. But we have not shown, nor
is it true, that the moduli of the coefficients necessarily taper off
monotonically.

As an application of Theorem 1 we prove (compare Bourion, chap.
2, §4) the following theorem:

THEOREM 2. Let the series (2) have the radius of convergence unity,
so that (3) is satisfied. Let unity be an isolated limit point of the set
{|ca| Y}, Let one of the following conditions be satisfied.:

() the series has gaps of relative lengths bounded from zero, in the
sense that c, =0 whenever my<n < ny, with my<Ang, AN<1;

(b) for some Ry>1 and o, 0 <o <1, and for some sequence my, equa-
tion (8) is valid;

(c) for some ro<1 and v>1 and for some sequence ny, equation (9)
s valid.

Then the unit circle is a natural boundary for the series (2).
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If the unit circle is not a natural boundary for the series (2), the
function f(2) represented is analytic along some arc A of the unit
circle, and Ostrowski has shown that the conditions (a), (b), (c) imply
overconvergence of the respective sequences $m,(2), Smi(2), $n(2)
across the arc 4.

Let us suppose that no limit point of the sequence { Ic,,l Un} other
than unity lies in some interval (1, 1 —19), >0; we set

/ .

Cn = Cn, if |c,.|””> 1— 1y,
¢ =0, if |cu|m 21— 3,
' =Cn'—6n',

A =Ddlm A =S J6) =A@ + file).
0 0

The series defining f:(2) has a radius of convergence greater than
unity; any overconvergent sequence for f(z) is an overconvergent se-
quence for fi(2); it follows from Theorem 1 that f;(z) has no overcon-
vergent sequence. Theorem 2 is established.

A necessary condition that a series (2) with (3) satisfied exhibit
overconvergence is therefore that unity be a non-isolated limit point
of the set { ,cn, ”"}.

It is instructive in considering Theorem 1 to compare such an ex-
ample as ) [z(z41)]*", suggested by Bourion as a special case of
Porter’s original formulas; the function represented has the lemnis-
cate Iz(z+1)| =1 as a natural boundary; the Taylor development
about the origin is convergent in the circle |z| <35Y2—1=0.6; the
coefficients exhibit the characteristics described in Theorem 1.
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