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Introduction. The system of differential equations and boundary 
conditions 

dUi duj { v 
(a) = Haij(x) h 2bi3{x)uj, 2[aijU3{a) + fiijUj(b)\ — 0 

dx dt 
(i,j = l> 2, • • • , n, a^x^b) has application in the theory of the elec­
trical transmission line, the diffusion of heat along thin rods and 
around thin rings and, when some of the u's are employed to designate 
rates of change of other u's, to vibrating strings, bars, air columns and 
other dynamical systems. The system of total differential equations 

(b) Y'(x) = QnA + <B)Y, WaY(o) +WbY(b) = 0, 

where zA = (a»,), <B = (&*,), Wa = (a»/)f Wb = (18*7), and where F is a col­
umnar matrix of n elements each a function of xy may be obtained as 
the result of the Bernoulli-Taylor substitution ui(x, t) = e^yi(x) into 
(a). 

The system (b) has been the starting point for many researches 
centered around the problem of expressing an arbitrary function ƒ or, 
more generally, a set of functions {ƒ»}, in terms of its characteristic 
solutions. A solution of this problem in the simple case, having appli­
cation to the uniform dissipationless vibrating string, was first ob­
tained by Daniel Bernoulli about the year 1732 and a solution having 
application to the nonuniform string was first obtained by Liouville1 

one hundred years later. A purportedly more rigorous treatment of 
Liouville's problem was given by Kneser2 in 1904. Since that date 
a great many papers have appeared, having to do with the system 
(b) under one restriction or another, the most comprehensive of which 
are the papers by Bliss,3 who obtained uniform convergence in his 
expansion theorem by requiring (b) to be "definitely" self-adjoint and 
by imposing a restriction on the functions ƒ*, and Birkhoff and 
Langer4 who considered the general case. 

Received by the editors May 7, 1941. 
1 Liouville, Journal de Mathématiques Pures et Appliquées, vol. 1 (1836), pp. 253, 

269. 
2 Kneser, Mathematische Annalen, vol. 58 (1904), p. 108. 
3 Bliss, Transactions of this Society, vol. 28 (1926), p. 576. 
4 Birkhoff and Langer, Proceedings of the American Academy of Arts and Sci­

ences, vol. 58 (1923), p. 100. 
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In their paper, Birkhoff and Langer show how the biorthogonal 
properties of the characteristic solutions of the system (b) and of its 
adjoint can be used to obtain the coefficients ck in the representation 
F(x) =yEckYk(x), where the columnar matrices F& are the character­
istic solutions. This representation, with the scalar c&'s computed as 
stated, is one which well might be expected to be as satisfactory from 
the viewpoint of convergence as it appears to be from the viewpoint 
of computation, but it is admittedly formal in general. Whether there 
are any problems of practical importance that can be treated success­
fully by Birkhoff and Langeras theory and that, at the same time, do 
not come within the scope of the paper by Bliss is not known. It does 
not seem possible to find a proof that the coefficients computed with 
the use of the adjoint characteristic functions give an expansion that 
approximates the function in any satisfactory sense in the general 
case. Use of the characteristic solutions themselves, or of their real 
parts, gives an expansion which represents the function in the sense 
of least squares in certain cases but, since the characteristic solutions 
of the system (b) do not in general form an orthogonal set, the com­
putation of the coefficients requires here the solution of a presumably 
infinite system of linear equations in the coefficients. The Bernoulli-
Fourier problem, that is, the problem of system response to an arbi­
trary external stress impressed upon a continuous dissipative dy­
namical system, essentially an expansion problem, thus has had no 
solution in the general case up to the present. For a nearly arbitrary 
stress, that is, for a stress for which the Burkhardt transform can be 
represented by a linear combination of characteristic vector solutions 
of (b) assumed to have a Green's matrix, a solution is given in the 
following pages, not only to the Bernoulli-Fourier problem for a sys­
tem (a) having a Green's matrix but also to the Heaviside problem, 
that is, the problem of the behavior of a dynamical system subsequent 
to the sudden imposition of the external forces. The two problems are 
treated in §§1 and 2, respectively. 

Notation. A column matrix, or vector, of elements uu, u<u, • • • , un% 
is designated Ui\. A line matrix of elements vn, v^, • • • , vtn is desig­
nated • -Vi. ByWj [w], or (w^) will be understood a square matrix 
with element w^ in the ith row and 7th column. In vector equations, 
a column of zeros forming the columnar matrix 0: is written simply 0. 

The complex number /jL = a+ico is called a modal number. The /i's 
usually are called characteristic numbers but Hubert prefers this 
name for their reciprocals. Since the ju's enumerate the modes of mo­
tion of a dynamical system, the name modal number seems prefer­
able to "proper number," "Eigenwert" or "characteristic number." 
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1. Sustained external forces. A matrix of elements Gij(x, £) which 
are continuous in x except possibly at x = £ and which have continu­
ous first derivatives in x except at a finite number of points in the 
square a^x^b, a^^b is called a Green's matrix if it satisfies the 
steady-state equations for the system (a) and if the elements have the 
property: G3k(t; + 0, ?)—<?ƒ*(? —0, £) = S,-*. The existence and unique­
ness of the Green's matrix for the system (b) in which zA(x) and ©(#) 
are matrices of piecewise continuous elements can be established by 
a slight and obvious generalization of the proof given by Birkhoff and 
Langer5 where the elements of nAand <B are assumed to be continuous. 
A necessary and sufficient condition for the existence of a Green's 
matrix is that the system (b) with fx = 0 have no solution other than 
7 s 0 . 

The derivative of the Burkhardt transform of an integrable vector 
requires a more detailed discussion. After both sides of the equation 

ƒ & /• x—0 /» x+0 

Ç(x,f)U(&:di= J Ç(x, f)U(Q:<%-) Ç(x, QU(i):# 
in which U: is any columnar matrix of integrable elements continuous 
at x have been differentiated, there results 

•7- f* Ç(x,QU(l;):dS= fhdj&U(Q:dl:+ C(x,x-0)U(x-0): 
ax J a J a ax 

- Ç(x, x + 0)U(x + 0):9 

an equation in which the last two terms, as a consequence of the conti­
nuity of the G's, may be replaced by 

Ç(x + 0, x)U(x): - Ç(x - 0, x)U(x): = ZU(x): 

to give the identity 

(1.1) -ƒ- fh Ç(x, i)U(i):dt = f ~ Ç(x, QU(Q:dZ + U(x): 
ax J a J a ax 

which will be referred to as Lemma I. I t may be remarked parentheti­
cally that the more general result 

dxp+1 Ç(x, QU(Q:dt = - — ; Ç(x, QU(&:di + U(x): 
a ** a aX 

6 Ibid., pp. 66-70. Every system (b) has an adjoint in the sense of Bliss but not in 
the sense of Birkhoff and Langer. In particular, the electrical transmission line 
grounded at both ends has no adjoint in the latter sense. 
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holds when 

Gij(x, Ö, dGij(x, Ç)/dx, • • • , dP-lGij(x, i)/dx*~l 

(i,j = l,2,---,n) all are continuous in x and when 

<fop = àij 
€-0 

and this generalization has application in those cases (for example, 
the vibrating string) where fewer equations of individually higher 
order are taken instead of (a) and for which U: satisfies the equation 

U(x, t) : = ƒ Ç(x, Ö {e^itt) Z7(f, 0 : + *A(Ö Ü(i, / ) : + • • • } dl. 

For the existence of modal functions in such cases it is necessary, as 
can be shown, to assume certain relationships between the oA's with 
the result that the analysis is not more but less general than that of 
the equation (1.2) below. In any case, one arrives at the equation 
(1.8) after the usual Bernoulli-Taylor substitution. 

When (a) has a Green's matrix, any solution of the equation 

ƒ & / dU(è t)9 } 

Ç(x, Q |«/f(ö ™ '' + E(x, t) : j-

dt 

is a solution of the nonhomogeneous extension of (a) 

(c) 

dui duj 
= Hdij(x) j h ^bij{x)uj + ei(x, /), 

dx dt 
2[aijUj(a) + PijU3(b)} = 0, 

as may be verified from the properties6 of the Green's functions and 
by virtue of Lemma I. Hence when the arbitrary external force and 
corresponding response are assumed to have the forms 

(1.3) E(x,t): = 

( e\{x) cos wot ) 

e%(x) cos coo/ 

en{%) cos œot 

U(x,t): = 

Ui(x) cos (co0/ — jfti) 

U2(x) COS (œot ~ fa) 

Un(x) COS (œot — fa) J 
appropriate to a sustained periodic disturbance in a dissipative sys­
tem governed by (c), substitution into the equivalent equation (1.2) 
yields the system of integral equations 

6 Bliss, loc. cit., p. 571. 
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W(x): = coo ƒ Ç(x,QçA(QX(Q:dZ+F(x):, 

X(x): = - coo ƒ Ç(x, &*d(&W(Q:di, 

obtained on letting / take on the values 0 and 7r/2co0, respectively, and 
where, as matters of notation 

(1.5) W(x): = 

ui(x) cos/3i 

U%{x) COS 02 

[ Un(x) COS]3n J 

X(x): = 

ui(x) sin /3i 

U2(x) s in 02 

1 Ww(#) Sin fin 

(1.6) F(*): = ƒ £(*,{)£& 0):<% 

that is, .F(^): is the Burkhardt transform of E(x, 0) : . 
The substitution Ui(x> t)=eat cos {ut—fii)yi(x)y appropriate to a 

free oscillation, into (1.2) with £ : = 0 gives the homogeneous system 

(1.7) 
• 'a J a 

X(x): = - w f ^(x,|)TF(|):^ + a f £(*,Ö*(Ö:<«, 
•J a J a 

where £ ( * , © = Ç{x, 8 ^ ( 0 . 
The system (1.4) may be written as a single vector equation 

(1.8) U(x) : = M f £ ( * , * ) ff (Ö : « + F{x) :, 

where U(x): ~W(x): —LX(X): and jiz=icoo and the system (1.7) may 
be written in the same way if /x=a:+uo, F(x) : = 0 . 

If 0 r(#): is a solution of the homogeneous specialization of (1.8), 
that is, if <t>r{x) : satisfies the equation 

(1.9) *,(*): =MrJ K(x, {)*,(€): « 

with p r=o; r+tWr for one or more distinct modal numbers jur 

(r = l, 2, • • • ) and if F(x): can be expressed in the form 

(1.10) F(x): = ]CMv(x) : , 
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where cr is a scalar multiplier, then a particular solution of equation 
(1.8) is given by the expression 

Crftr 
(1.11) U(x): = X *,(*): , 

where I may be any natural number no matter how great. 
When n — 1 and the kernel is symmetric, the infinite sums corre­

sponding to (1.10) and (1.11) are known to be convergent in view 
of results obtained by Schmidt,7 and equation (1.11) becomes equiva­
lent to the particular solution of the integral equation of the second 
kind with symmetric kernel given by him. When the kernel is not 
symmetric the convergence of the infinite sums in question to the 
function F(x) : has not been established in any example and, as has 
been shown by Kowalewski,8 the equation (1.9) may have no non­
zero solution at all. It can be shown that when the solution - \{/8 oî 
the equation following has the property expressed by the equation 
$s. =0s*, the infinite series ^cr<j>r(x) : converges uniformly and abso­
lutely and represents the Burkhardt9 transform F(x) : in the sense 
of least squares, but this relationship between the ^ 's and <£'s, al­
though holding in trivial cases, does not hold in general. 

If solutions • •i/'i, • -fa, - - - , • -ypi of the equation 

(1.12) • •*.(*) = Ma f ' -* . (Ö£t t , *)di 
J a 

exist corresponding to the modal numbers MI, jU2, • • • , Mz of equation 
(1.9), then we have the following theorem: 

THEOREM I. If the series y~*l=icr<t>r(x): is designated by F(x):, then 

cr = I * '\pr(x)F(x):dx / I • '\l/r(x)<t)r(x):dx. 

This follows immediately from the easily proved biorthogonality of 
the sets { • -\f/r}, {0 r: }. Thus if equation (1.9) with subscript r is pre-
multiplied on both sides by • -^8(x) and equation (1.12) with sub­
script 5 is postmultiplied on both sides by cf>r(x) : there result, after 
integration, 

7 Erhard Schmidt, Mathematische Annalen, vol. 63 (1907), p. 454. 
8 Cf. Love, Integral Equations, p. 117. 
9 H. Burkhardt, Sur les fonctions de Green relatives à un domaine d'une dimension. 

Bulletin de la Société Mathématique de France, vol. 22 (1894), p. 71. The name 
"Burkhardt transform" for an expression of the form Jh

aG{x, £)e(£)d% is due to 
H. Bateman. 
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ƒ* b /» b /* b 

• 'yp8{x)<t>r{x):dx = Mr I I • - \p 8{x) K^(x, Ö0r(Ö :d£dx, 
a J a J a 

• '\//s(x)<t)r(x):dx = M« I I *^a(Ö^(S, x)<t>r(x):d%dx, 

two equations in which the double integrals obviously must be zero 
when ix87£\xr since they are of equal value. 

As a corollary to Theorem I we have this statement : /ƒ F(x) : is an 
arbitrary vector and a set of constants C\, c^ • • • , Ci are computed with 
the formula of Theorem I, then the series sums to the function or else the 
function is equal to no linear combination whatever of the /<£'s. 

This corollary says nothing about the possibility of expressing an 
arbitrary function, or even the Burkhardt transform of an arbitrary 
function, as a uniformly convergent series in terms of the modal func­
tions, but it is nevertheless of practical importance and is quite ade­
quate to our theoretical needs in those more usual cases where only 
a limited number of modal functions are known. Suppose F(x): has 
been computed from (1.6) for a given force function E(x, 0) : and 
that a set of constants ci, c%, • • • , c% has been computed by the for­
mula of Theorem I. Then the function D{x)\ given by the equation 

(1.14) D(x): =2crii#A(x)<l>r(x): 

is to be compared with E(x, 0) : and if sufficiently close to E(x, 0) : 
from a physical standpoint to permit such a restatement of the prob­
lem then the function D(x) : is taken as the initially given force func­
tion and a particular solution of the equations of motion is given by 
(1.11) with the c's as in (1.14). If D(x): is deemed an inadequate 
representation of E(x, 0) : and the situation is not improved by en­
largement of the sets 0i, </>2, • • • , <t>u &h fa, • • • , tyi then there is no 
solution possible of the kind considered. 

2. The Heaviside problem. I t was pointed out by Bateman10 in 
1910 that the Laplace transform of the function u satisfying a partial 
differential equation of the form 

du / d d d\ 
— = ƒ( —; —; — )U 
dt \dx dy dz / 

and linear boundary conditions independent of the time will satisfy 
the same boundary conditions and in general a simpler differential 

10 H. Bateman, Proceedings of the Cambridge Philosophical Society, vol. 15 
(1910), p. 423. 
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equation provided the value of u at time / = 0 be known, and applica­
tion of the theory was made in a heat conduction problem and in a 
physical problem involving a system of linear differential equations. 
Since then the Laplace transformation has been resorted to in treat­
ments by many authors11 of similar differential equations governing 
vibration and diffusion problems in which external forces are sud­
denly imposed at time / = 0 at one or more regions thereof. In the 
present section a solution of the problem of the behavior of a dy­
namical system having a Green's matrix following the sudden applica­
tion of an external force is obtained as an inversion of a series solution 
of an integral equation satisfied by the Laplace transform. 

When the substitution Ui(x, t) =eat cos (o)t—^i)yi(x) is appropriate 
to the system (a), Ui(x, i) has the Laplace transform u*(x, IJL) and (c) 
may be written 

du*(x, IJL) { . 
; = 2 { M Û ^ O ) + bij(x)\uf(x, M) 

ax 
(2.1) 

+ ^ai3{x)uj{xy 0) + e?(x, /i), 

^{aijufia, M) + &ijuf{b, /*)} = 0 , 

where, as matters of notation, 
/» «50 / • 00 

(2.2) %*(*, ju)= I e-^Uiix, t)dt, e?(xy /x) = I *-*%(%, t)dt. 
J Q J 0 

Assuming, as in Heaviside, 

(2.3) Ui(x, 0 = 0, - oo < t < 0, 

deAx, t) 
(2.4) _ * - L ! = o, / > 0 , 

dt 
equations (2.1) may be written as the vector differential system 

dUf: 
—— = \»*A{%) + ©(*)} U? + ^Eo(x):, 

(2.5) ax 
[a]Uo*(o,v): + \p]Uo*(fi,ti: = 0, 

where E0(x): stands for E(x, 0 + ) : with matric elements e^x, 0 + ) 
(1 = 1 , 2 , - • - , * ) . 

11 The bibliography in Doetsch's book, Theorie una Anwendung der Laplace- Trans­
formation, omits reference to papers and books by van der Pol, Philosophical Maga­
zine, vol. 8 (1929), p. 861 ; Dalzell, Proceedings of the Physical Society, vol. 42 (1930) ; 
Humbert , Le Calcul Symbolique, Paris, 1929; Dahr, Operational Calculus, Stockholm, 
1935, and the paper by Bateman. 



i942] FORCED OSCILLATIONS 161 

Now Ç(xy £) satisfies, identically in £, the system 

(2.6) d ^ k ) » <B(X) Ç(X, Q, [«] Ç(a, & + \ji] Ç(b, {) = 0 
ax 

as before and JlÇ(x, © {/^(ê)E/*(£): + M " 1 £ O ( S ) : }<*? satisfies (2.5) 
because of the property (1.1); hence equivalent to (2.5) there is the 
equation 

(2.7) U?(x): = trVo(x): + n f Ç{x, Q*A(QU?(Q:di, 

where 

(2.8) Fo(x): = f Ç(x,&E(i,0+):di. 

Any solution of (2.7) satisfies (2.5) as may be directly verified. 
When FT(x): can be represented by the sum Zr-i£r(r)0r(#): , w e 

have 

(2.9) U?(x, /*): = Z , ' *r(*): 

a particular solution of equation (2.7), by the result (1.11), and 

(2.10) Uo(x, t): = — I €«<£/0*(*, M):^M 
2x1 t/ c_ loo 

by the Riemann-Mellin inversion formula, it being assumed that the 
/i's have negative real part. Dependence of the initial state of the sys­
tem on the zero of time is indicated by the subscript r. 

When the constant vector E: initially applied at time / = 0 is 
abruptly increased at time t=r by the increment AET(x):, the total 
response at any time t>r is given, in accordance with (2.10), by the 
equation 

(2.11) U(x, t): = — I {#'U?(xf fi): + #<*-*>AU?(x, n):}d>i 
2in J c_too 

in which 

__ UràCrir) 
(2.12) AU*(x, M) = Z - T ^ f - * ^ ) : . 

{fir — M)M 

It follows, as in the usual applications of Duhamel's theorem, that 
the response to a variable vector force E(x, / ) : , applied abruptly at 
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time / = O but varying in a continuous manner thereafter, is given by 
the equation 

U(x,t): = j Vt/0*O, M): 

/•« dU*(x,ix): ) 

J 0 3T ) 

(2.13) 

in which 

(2.14) ^ ^ ^ ^ i L ^ ) : 
(Mr - p)p 

as before; r is the time of application of the external force. This 
result is rigorous when E(x, t)\ can be expressed in the form 
^cr(t)fx^A(x)(/>r(x) : and when l< °o. From physical considerations it 
seems probable that it is more generally correct. 

Of particular interest is the case where E(x, t) : is given by 

(2.15) E(x, t) : = e0 sin (0/ - $)ri(x) :, f Ç(x, {MÖ : <*£=2>r0r(*) :. 
•J a 

Equation (2.13) here takes the form 

(2.16) !/*(*, M) : = 2 > o sin ( a - 0) MrCr *r(*) : 
(/ir - p)n 

so that we have 
e0sin/3 /•«+»00 €"< ^ eo sin 0 /•c_ 

U(x,f)\ = 2^^rCr(t>r(x): I 
2xt J c_, 

d/x 

( 2 . 1 7 ) - • - " " ( M _ M r ) M 

+ Z/MV«r(*):— - I -7 — I €-*rcos (Or - |8)<*T<*/i 
27Tt J c _ l 0 0 (jUr — M)M J 0 

a solution which reduces, after computation of the integrals, to 

^ Ciir sin /3 — 12 cos j8 
U(xf t): = e^ixrCr<t>r(x): < eM 

I u2 + 122 

(2.18) M r ^ 
H sin (Û* - 0)H cos (0/ - 0) } 

a result in which the steady-state and damped oscillations are easily 
identifiable and in which the characteristic phenomena of resonance 
are exhibited. 
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