AN EXTENSION OF A THEOREM OF WITT
BURTON W. JONES

1. Introduction. If u;, - - -, u,is a set of vectors such that wu;=1uu;
are numbers of a field K for <, j=1, 2, - - -, #, all linear combinations
of these vectors with coefficients in K constitute a vector space

S =y -, U

over K and the symmetric matrix A = (ua;) =(ai;) is the multiplica-
tion table for the basis wy, - - -, u,. The inner product of two vectors
> xat; and Dy is the bilinear form

> audwy; = 2 aixiy;

and the norm of a vector is the inner product of a vector and itself;
it can be expressed as a quadratic form.

If € is a nonsingular transformation with coefficients in K and
(uy, - -+, u)&=(vy, - - -, v,), the v's will constitute a new basis of
the same space & and the multiplication table for the new matrix is
G’9AC. This has the same effect on the matrix of the quadratic form
D aipxix; as the transformation (xi, - -+ -, %)’ =C(y1, * - -, ¥a)’. The
quadratic forms f; and f, are equivalent (in K) if one may be taken
into the other by a nonsingular transformation with coefficients in K.
Then the corresponding vector spaces are said to be equivalent (in K).
We write fi=2f: and &,=&,.

It should be noted, in passing, that two vector spaces may be equiv-
alent without being identical. For example, if #=3 and

1 00
A= [0 1 0
0 01

it is true that (i, u2)=2(1s, u13). However, an isomorphism may be es-
tablished between two sets of vectors having the same multiplication
table.

Two vectors u and v are orthogonal if ub=0. Two vector spaces are
orthogonal if every vector of one is orthogonal to every vector of the
other. Two subspaces, &; and S,, of & are complementary if every
vector of & is the sum of a vector of &; and a vector of &,. If &,
and &, are complementary orthogonal subspaces of & we write
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S =8,+&,. This is a direct sum if & has no radical, that is, if its
multiplication table is nonsingular.

Ernst Witt! proved a theorem which we shall state in two different
ways. K is a field of characteristic not equal to 2 and the spaces have
no radicals.

THEOREM A. If &, ©; and ©; are vector spaces over K and S, and S,
are orthogonal to &y, then S+ S,2S,+ S; implies S.22S;.

TaEOREM B. If f is a quadratic form in xi, -+ -, x, and g and
k are quadratic forms in x,i1, - - -, %, (with coefficients in K) then
fHe=f+h implies g=2h.

If the field K is replaced by a ring R we may make definitions analo-
gous to those above. The vector space then becomes a vector lattice,
€ (in the old-fashioned sense), and the transformations € of the bases
must, together with their inverses, have elements in the ring. Witt’s
restriction of convenience that the space shall have no radical is not
necessary here except that any result stated in terms of quadratic forms
assumes that the forms are not equivalent to forms of fewer variables.

This paper proves that Witt’s result also holds for vector lattices
over any ring of p-adic integers for which p is odd. We shall call such
a ring an odd p-adic integer ring and denote it by R,. The case p=2
presents difficulties all its own which we hope to resolve in a later
paper. The completion of such a result would establish the theorem
that if f is a quadratic form in x4, - - - , x, and g and % quadratic forms
in %p41, + - ¢, %, then f4g and f+% are of the same genus if and only
if g and % are.

The machinery which Witt set up for fields breaks down completely
in at least two essential points when applied to R,. Hence our Lem-
mas 3 and 4 have no analogues in Witt’s theory.

It will be recalled that if @, b and ¢ are integers in a p-adic field,
a=b (mod ¢) means that (e —b)/c is a p-adic integer; in other words,
the highest power of p dividing ¢ is a divisor of the highest power of $
dividing ¢ —b. Also it is true that if ¢ and b are p-adic integers and if
for ¢ an arbitrary power of p there is a p-adic integer x such that
ax=b (mod ¢) then there is a p-adic integer x such that ax=>5. When
we say that a set of vectors are linearly independent or dependent we
mean independence or dependence (mod p).

It was surmised by a referee and has been established by the author
that with only trivial and obvious modifications the lemmas and final

1 Theorie der quadratischen Formen in beliebigen Kiorpern, Journal fiir die reine und
angewandte Mathematik, vol. 176 (1937), pp. 31-48.
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result of this paper hold equally well for vector lattices over any ring of
B-adic integers when P is any ideal prime to 2 in a field of algebraic
numbers. The multiplication tables (that is, the matrices of the quad-
ratic forms) as well as the transformations of bases and their inverses
will have, of course, integers of the ring as elements.

2. Lemmas. We now prove the following lemmas:

LeEMMA 1. Let an n-dimensional lattice & with coefficients in a p-adic
integer ring be defined by the vectors Uy, - - -, U, let by, - -+, V. be 7
linearly independent (mod p) vectors of this lattice. Then there exist vec-
tors V41, - - -, Y, defining o complemeniary orthogonal lattice to
0y, -+ -, 0.) 3n & if and only if the highest power of p dividing the
determinant of the first v columns of matrix A (or B) below is a divisor
of the g.c.d. of all determinants formed by replacing one of the first
v columns by one of the last n.

2
Py - Db DU - - - Dol
2[ = ’
2
% JREREEERS % | % RCERENS (41 4
2 0 0
[ RRRCECREES 51 PN 1 VRIS 1 )%
B =
2 0 0
U8 DRCHCHEN brbr+1 SIREENS (%
where b1, - - -, V0 define a complementary (not necessarily orthogonal)
space to {v1, - - -, v,) in Q. For this lemma it is not necessary that p be

odd.

Proor. First note that there is indeed a complementary lattice
(%1, - - -, b3). That one may use ¥ or B follows from the fact that
the last # —r columns of the latter are linear combinations with coeffi-
cients in the ring of the last # columns of the former and the last »
columns of the former are linear combinations of the # columns of
the latter.

Set

be = 2 buivi + vy, E=r+1,--,n

t=1

Then

r
o .
b, = E brivd; + V0, j=1,---,r

i=1
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For any k we can choose 7 integers by; so that v;p;=0 for j=1, , 7
if and only if the conditions of the theorem hold, using matrix %.

LeMMA 2. Every n-dimensional lattice & in a ring R, of p-adic in-
tegers (p odd) has a basis i, - - -, U, such that

= (u) + -+ + W)

This is a rather well known result.?

In the lemmas that follow, uy, - - - , U, is a canonical basis of a lattice
L over the p-adic integer ring, p odd, that is, =)+ - -+ +(u.).
The ¢’s are integers of the ring.

LeEMMA 3. If v=caa+ - - + +Call, and cipit2a=0 (mod ca) for
1=2, 3, -, n—1, there exists a Vo=coplla+ - - - +cConll, Such that
o0 =0 and Yo has an orthogonal complementary space in (Ug, - - * , Uy)

unless for each k such that 2=k =n—1 one of the following holds:
1. it =0 (mod pcid) and cx=0 (mod pcry1). This implies
12,1 =0 (mod p2s2).
e /w1 and c/cry1 are units and

2 2
Ciplly

14+ ——— =0 (mod p).

2 112
Cr1 W1

Furthermore, such a Yo can be found if 2 holds for two successive values
of k.

Proor. Throughout this proof it is understood that 2=<k=Zn—1-
Choose 9= cux+uxy1. Using Lemma 1, we seek to determine ¢ so that
(1) vob = cextz+cretd1 =0 and (2) Yoltry1 =12, and Yeutx=cuj are =0
(mod v2) where v =121+ cul.

1. Suppose cru21=0 (mod pcul) and ¢ =0 (mod ¢;). Cheose ¢
so that (1) holds and have

2

2 2 Ch+1 Cryillpy1 2 2

cUp = —— —“'—2—11/64,1 =0 (mod puk+1)
Cr Ckuk

which implies 12#£0 (mod pul.i). Also citf= —crattd1/cx=0 (mod
12,,) and hence condition (2) holds.
2. Suppose ciltpe1/(cx}) is a unit. Choose ¢ so that (1) holds and

2 See, for example, Lemma 8 of C. L. Siegel's Uber die analytische Theorie der
quadratischen Formen, Annals of Mathematics, (2), vol. 36 (1935), pp. 527-606. In
the statement of this lemma there is a misprint. R, should be replaced by G,. The
corresponding theorem for -adic integers is in the third paper of the same series,
Annals of Mathematics, (2), vol. 38 (1937), p. 240.



1942] A THEOREM OF WITT 137

see that ¢ is a unit. If u}=0 (mod pui,;) or uj,1=0 (mod pu}), (2) is
seen to hold. We then have difficulty only if the first two parts of
Condition 2 of the theorem hold and if in addition u},,+c*u2=0 (mod
pul). Then (1) implies

2 4
2 2 Crt1U g1
c Uy = ————‘2 >
05
and thus
2 2
Cr1Ug41
Cpll
For the final remark notice that
2112 2 uz
Crllp Cr+1Up4+1
1+ —— =1+ - = 0 (mod p)
OV CrroWiga
implies
2 2
Crlly
1—-———=0 (mod p),
2 a2
rrollete

and replace 11 by U4 to have the existence of b,.

Remark. Condition 1 of the above lemma may be weakened but
only by making the statement more complex and less manageable.
That there is not always a b, orthogonal to ¥ and having a comple-
mentary orthogonal space is shown by the following example:

Let u§= 1, u§=p2 and b= pus+1us. We show that no bo=bolts+ bsliz
exists for which veb =0 and which has an orthogonal complementary
lattice in (us, u3). Now beb =0 implies b= — pbs and since v, can have
a complementary orthogonal lattice only if b3 is prime to p, we take
b3=1and have vy= — Pz +1s. Now (g1112+g2113)bo =—gip +g2P2 =0im-
plies g1=0 (mod p). Hence

—?
g1 &

and b, has no complementary orthogonal lattice.

= 0 (mod p)

LEMMA 4. If (by, -+« , 9,022, + « -, U,) are two canonical latlices
with vi=1u? and

by = city + calls 4+ - - -+ cally
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while v1—ct, has the property that, for each k for which 2=k=<n—1,
either 1 or 2 of Lemma 3 holds and if 2 does not hold for two successive
values of k, then

<b2’ tet sbn>g<u2r t sun>-
Proor. The lemma is obvious if #=2. Henceforth assume » = 3. By
renumbering g, -+ -, U, if necessary, we can have c;u1?,=0 (mod
ciu?) fori=2, -+ -, n—1as in Lemma 3.

We may write b;=) . ,cil; where c1;=c; and the determinant of
the coefficients is prime to p. Write

C11° ** C1
A¢=
Ci1®*c Cis

We know A4,#0 (mod p). Assume (what we shall soon prove) that
a=cu#0 (mod p). We now show that we may renumber g, + - * , Dy,
if necessary, to make 4;#0 (mod p) for 2=57=<n. Assume A; 1#0
(mod p); the Laplace expansion of 4, shows that the matrix I%; com-
posed of the first ¢ columns of 4, is of rank 4. The first 4— 1 rows of IM;
are linearly independent and not all the remaining #—4+1 rows of
M are linearly dependent on them.

Notice that v;b;= 6@’16,'11[%-1- L -|-Cin(3‘,'nll,23 and v,0,;=0 if 757,

We next proceed to prove some preliminary results.

I. ;=0 (mod ciu}). Suppose the contrary were the case, that is,
citi=0 (mod pcau). We have, by Lemma 3, two cases to consider.

Case 1. If cad=0 (mod pcaul) and c;=0 (mod pc;) for all 1>2, then
p0;=0 implies cicui=0 (mod pcui) and hence cip=0 (mod p) for
1>1. Since if #= 3, c2=0 (mod p); and hence 4,=0 (mod p), which is
false.

Case 2. If ca3=0 (mod pcou?) and ¢;=0 (mod pc;) for ¢>3 while
Condition 2 of Lemma 3 holds for k=2, then p9;=0 implies
CiaCallz+ciscatz=0 (mod pcauz) (for 4=1, Condition 2 of Lemma 3 im-
plies the congruence). Hence 4,=0 (mod p), contrary to fact.

II. ¢;=cu5%0 (mod p). (This shows 4;#0 (mod p), =1, -, n.)
We know v —cu?=0 (mod cm?). Hence vi—cdul=1l-ci=0
(mod c;u?) and u2 =0 (mod cju?).

III. For k>r=1 itis true that

2 2 2
Crilly = -+ + = Cpolly = 0 (mod Upyy).

If =2 we know that in all cases of the previous lemma u?;=0
(mod 1?). Hence for 7 =1 we have for each & >7,
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2 2 2 .
Vib; = cracits + - - - 4 Crecplty = 0 (mod 1) forj=1,.---,7r,

and since 4,30 (mod p) we have the desired result.
IV. If u2,,=0 (mod pu?) then u2,;=0 (mod pu}) for 2<4=r and
III implies

Cre =+ = ¢ = 0 (mod p) for each £ > r.

V. ¢11=0 (mod p) for all £>2 or >3 according as u3=0 (mod pu3)
or not. A glance at Lemma 3 shows

2 2 2 2
001 = cracilly + Cracallz + Cracslis = 0 (mod peslts).

If ©3=0 (mod puZ) then csu?=0 (mod pcouZ) and IV shows cxs, and
hence by I, cx1 are congruent to 0 (mod p) for k>2. Otherwise u3=0
(mod puj) while uZ/u2 and cs/c; are units; then IV implies cxs and cxs
and hence ¢y are congruent to 0 (mod p) for &> 3. . This also holds for
all k22, if perchance c;u2=0 (mod pu}).

We now have two cases to consider corresponding to the two cases
of Lemma 3. In what follows 7 is some fixed one of 2, 3, + - -, #. In the
first place we assume that either 4=2 and Case 1 holds for k=2, or
2>2 and Case 1 holds for £=¢ and k=¢—1; we then show that
(v:)=2(u;). In the second place we assume that Case 2 holds for k=1;
then, with one exception which is dealt with separately, we show that
Vi, Vip1) 22U, Uspr ).

Case 1. Suppose c;ju2 ;=0 (mod pca?), ¢i=0 (mod pciy;) and
u2;=0 (mod pu?) for all j for which 1<j<n—i, while caf=0
(mod pci_j3_;), ci_j=0 (mod pc;) and uZ=0 (mod pu_;) for all j for
whichi—22j21.1f{>2taker=4¢—1and k=4, in [V above and have
Cip= +++ =¢;;_1=0 (mod p) and V shows that ¢;;=0 (mod p). Hence
A;:#0 (mod p) implies ¢;;#0 (mod p). If ¢=2, n=3 implies ¢c;=0
(mod p) and 4,50 (mod p) implies c225#0 (mod p). Hence in both
cases ¢;;#0 (mod p).

In IIT above put r=%—1, k=4 and have

61‘111? = = Cu—1u§-1 = 0 (mod uf)
But vi=ca(caud)+ - - - +ciilciu?) (mod pu?) and hence we have
shown ¥;=0 (mod u?). If i>2 we have shown above that cy= - - -

=¢ii-1=0 (mod p) and hence v3=c%u? (mod pul). If i=2, vve=crcn1}
~+ i =0 (mod pecyu?) and ¢;5#0 (mod p) implies ca = — cacastiy/ (c113)
(mod peauz/u?). Hence
2
2 2 Collz 2 2 2
Ca1lly = 3 —— Caolla (mod pealla)
cjut
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and ¢;=0 (mod p) shows &u?=0 (mod pu?). In both cases, then, we
have vi=ciu? (mod puZ) which implies vi=c3u? (mod ¢) is solvable
for g, an arbitrary power of p. Hence there exists a unit b in R, such
that v2 =07

Case 2. Suppose 3=<i+1=n, ui/ul, and c¢i/ci;1 are units,
143/ (c2auda) =0 (mod p), ciptd ;=0 (mod pcaf), ¢;=0 (mod
PCirj), u;=0 (mod pu?) for all j for which n—42j=2. Also cqu3=0
(mod pc;_ju?_;); 12 =0 (mod pu?_;) for all j such that 1 <j<i—1. Re-
call I and II above.

Taking r=¢—1 in IV and using V we have

Cr1 = ¢+ ¢ = Cpimy = 0 (mod p) fork=14 41+ 1and > 2.
This with 4,1:5#0 (mod p) implies
Cii Cig
B; = + # 0 (mod p).

Cit1i  Cigligl
The last holds even if =2 unless =3 and ¢,5%0 (mod p) since >3

implies co=c¢;=0 (mod p). We postpone this exceptional case.
Take r=4—1 in III above and have

ckluzl =...= cki_lui_l = 0 (mod ui) fork=14,i4+ 1.
Now
vk = cra(catis) 4 - - - + crepa(crsniiier) (mod puy),
and
Cri =+ = Cpi-1 = 0 (mod p) fork=4,7+ 1and ¢ > 2
implies

2 2 2 2
0; = cii(ciilts) + Ciipa(CispiMlizr) (mod puiyy),
2 2 2 2
Vit1 = Cip16(Citrs Wi) + Civ1ir1(Cip1ipallivr) (mod pusiy),
2 2 2
ViVir1 = Cip1:(Ciills) + Ciyrip1(Giipallips) = 0 (mod putiys).

The argument in Case 1 for =2 may be used here to show that the
three congruences above hold even when 4 =2 except in the case post-
poned above. In fact, if u¥2=0 (mod pu?), III implies ca=cu=0
(mod p), B:#0 (mod p) and the argument used in Case 1 carries
through to show that the three congruences hold. We thus postpone
the case in which #=3, cac35£0 (mod p) and uZ/u} is a unit.

Divide the three congruences by u}; let d=uZ.i/uj. The resulting



1942] A THEOREM OF WITT 141

situation is covered by the next lemma which shows that there are
p-adic integers a, b, ¢, e such that ae—bc is prime to p and

2 2 .
b = (ou; + bui+1)27 bip1 = (ot + ewtiya)
(au; + buiya) (cu; + eniyr) = 0.

Hence (b, 9ip1)22{1, 1),

It remains to consider the postponed case #=3, cc3#0 (mod p)
and 13/13 is a unit. Then Zui+cui=0 (mod pu?) implies that
vi=c1 =0 (mod pu?) and hence ;=0 (mod p), contrary to fact.

LemMA 5. If the congruences
x? 4+ dy? = g1 (mod p), 22+ di? = gs (mod p), xz + dyt = gz (mod p),

with d#£0 (mod p), have solutions xo, Yo, 20, to With xoto— 2000
(mod p), then there are p-adic integers x, ¥, 2, t such that x2+dy*=g,
224-di*=g,, x3+dyt=g; and xt—2y#0 (mod p).

Proor. To prove the lemma, assume that x, 9, 20, fo is a solution
of the congruences with p replaced by ¢. We seek an x, v, 2, ¢ so that

(20 + g2)* + d(30 + ¢¥)* = g1 (mod pg),
(20 + g2)* + d(to + ¢1)* = g2 (mod pg),
(%0 + ¢2) (20 + ¢2) + d(30 + g¥)(bo + gf) = g5 (mod pg).
That is,
xox + dyoy = ky (mod p),
202 + diot = he (mod ),
%oz + 20x + d(yot + toy) = ks (mod p),

for some integers k1, ks and k. The matrix of the coefficients on the
left is

% dy, O 0
0 0 z0  db
%0 dte %0  dyo
which is of rank 3 (mod p).
3. Final results. We have the following theorems.

THEOREM 1. If (b1, - + -, ba) and (Ui, - - - , U,) are two equivalent lat-
tices in a ring R, of p-adic integers (p odd) and if vi=ul%0 and
vii=wu;=0, 451, then
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<b21 ctt ’bn>g<u29 t )un>-
ProoF. Assume the theorem true for all lesser values of #. Also,
(vg, - -+ -, v,y and (ug, « - -, u,) may be considered to be in canonical

form. Lemma 4 establishes the theorem unless Lemma 3 applies. We
then have the existence of a vector o such that bob; =vou; =0 and Y,
has an orthogonal complementary space in (i, - - -, Ul,) and hence
such a space, (Do)*, in =1y, - + -, U,), that is, = (o) (vo)*. Then
(o)*=2(0;)+B=(u;)+U where® 8 and Ul are the complementary or-
thogonal spaces of (v;1) and (11,), respectively, in (99)*. By the hypothe-
sis of the induction 811 and 22(vo)+ (1) +B=2(vo)+ (u1)+U im-
plies

(g« , 0,) = (0o) + B2 (o) + U = (g, - -+, Un).

THEOREM 2. If lattices &, and L over a ring R, of p-adic integers
(p 0dd) have no radical, then

83+84=81E82=83+85
implies
84 E 25.

This theorem is easily established by induction using Lemma 2 and
Theorem 1. It may also be stated in terms of quadratic forms in a
manner analogous to Theorem B.

CoRNELL UNIVERSITY

3 The existence of B (and similarly of 11) follows from Lemma 1 since b} is a divisor
of the product of b, by any vector of ® and hence of <bo> *,



