
AN EXTENSION OF A THEOREM OF WITT 

BURTON W. JONES 

1. Introduction. If Ui, • • • , un is a set of vectors such that u»Uy = UyU» 
are numbers of a field K for i, j = 1, 2, • • • , n, all linear combinations 
of these vectors with coefficients in K constitute a vector space 

© = <Ul, • • • , Un) 

over K and the symmetric matrix 21 = (uot/) = (a»-,-) is the multiplica­
tion table for the &a.m Ui, • • • , un. The inner product of two vectors 
^XiUi and ^y»u$- is the bilinear form 

and the worm of a vector is the inner product of a vector and itself ; 
it can be expressed as a quadratic form. 

If S is a nonsingular transformation with coefficients in K and 
(iti, • • • , uw)6 = (t>i, ••• ,*>„) , the t)'s will constitute a new basis of 
the same space © and the multiplication table for the new matrix is 
(£'?)[(£. This has the same effect on the matrix of the quadratic form 

the transformation (#i, • • • , #*)'=(£(:yi, • • • , yn)'> The 
quadratic forms fi and ƒ2 are equivalent (in X) if one may be taken 
into the other by a nonsingular transformation with coefficients in K. 
Then the corresponding vector spaces are said to be equivalent (in K). 
We w r i t e / i ^ / 2 and ©i^@ 2 . 

I t should be noted, in passing, that two vector spaces may be equiv­
alent without being identical. For example, if n — 3 and 
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it is true that (ui, 112)=(U2, Us). However, an isomorphism may be es­
tablished between two sets of vectors having the same multiplication 
table. 

Two vectors u and b are orthogonal if ut> = 0. Two vector spaces are 
orthogonal if every vector of one is orthogonal to every vector of the 
other. Two subspaces, ©1 and ©2, of © are complementary if every 
vector of © is the sum of a vector of ©1 and a vector of ©2. If ©1 
and ©2 are complementary orthogonal subspaces of © we write 
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© = ©i + ©2. This is a direct sum if © has no radical, that is, if its 
multiplication table is nonsingular. 

Ernst Witt1 proved a theorem which we shall state in two different 
ways. K is a field of characteristic not equal to 2 and the spaces have 
no radicals. 

THEOREM A. If ©i, ©2 and ©3 are vector spaces over K and @2 and @3 
are orthogonal to ©1, then @i + @2==©i + ©3 implies ©2=<2>s. 

THEOREM B. If f is a quadratic form and g and 
h are quadratic forms in xr+i, • • • , xn (with coefficients in K) then 
f+g=f+h implies g=h. 

If the field K is replaced by a ring R we may make definitions analo­
gous to those above. The vector space then becomes a vector lattice, 
8 (in the old-fashioned sense), and the transformations S of the bases 
must, together with their inverses, have elements in the ring. Witt 's 
restriction of convenience that the space shall have no radical is not 
necessary here except that any result stated in terms of quadratic forms 
assumes that the forms are not equivalent to forms of fewer variables. 

This paper proves that Witt 's result also holds for vector lattices 
over any ring of £-adic integers for which p is odd.' We shall call such 
a ring an odd p-adic integer ring and denote it by Rv. The case p = 2 
presents difficulties all its own which we hope to resolve in a later 
paper. The completion of such a result would establish the theorem 
that if ƒ is a quadratic form in xi, • • • , xr and g and h quadratic forms 
in Xr+i, • • • , xn, then ƒ+g and f+h are of the same genus if and only 
if g and h are. 

The machinery which Witt set up for fields breaks down completely 
in at least two essential points when applied to Rp. Hence our Lem­
mas 3 and 4 have no analogues in Witt 's theory. 

I t will be recalled that if a, b and c are integers in a p-adic field, 
a^b (mod c) means that (a — b)/c is a £-adic integer; in other words, 
the highest power of p dividing c is a divisor of the highest power of p 
dividing a — b. Also it is true that if a and b are £-adic integers and if 
for q an arbitrary power of p there is a £-adic integer x such that 
ax = b (mod q) then there is a £-adic integer x such that ax = b. When 
we say that a set of vectors are linearly independent or dependent we 
mean independence or dependence (mod p). 

I t was surmised by a referee and has been established by the author 
that with only trivial and obvious modifications the lemmas and final 

1 Theorie der quadratischen Formen in beliebigen Körpern, Journal fiir die reine und 
angewandte Mathematik, vol. 176 (1937), pp. 31-48. 
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result of this paper hold equally well for vector lattices over any ring of 
ty-adic integers when $ is any ideal prime to 2 in a field of algebraic 
numbers. The multiplication tables (that is, the matrices of the quad­
ratic forms) as well as the transformations of bases and their inverses 
will have, of course, integers of the ring as elements. 

2. Lemmas. We now prove the following lemmas: 

LEMMA 1. Let an n-dimensional lattice 8 with coefficients in a p-adic 
integer ring be defined by the vectors ui, • • • , un, let bi, • • • , br be r 
linearly independent (mod p) vectors of this lattice. Then there exist vec­
tors br+i, • * • , bn defining a complementary orthogonal lattice to 
(t)i, • • • , br) in 8 if and only if the highest power of p dividing the 
determinant of the first r columns of matrix 21 {or SQ) below is a divisor 
of the g.c.d. of all determinants formed by replacing one of the first 
r columns by one of the last n. 
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br brtti 
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• brUn 
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where brVi» * 
space to (bi, 
odd. 

, bn° define a complementary (not necessarily orthogonal) 
- , 'Or) in 2. For this lemma it is not necessary that p be 

<*r°+l, 

PROOF. First note that there is indeed a complementary lattice 
)r°+i, • • • , b°). Tha t one may use 2Ï or 93 follows from the fact that 

the last n — r columns of the latter are linear combinations with coeffi­
cients in the ring of the last n columns of the former and the last n 
columns of the former are linear combinations of the n columns of 
the latter. 

Set 

b& = X ) bkiO* + bjb, k = r+l} 

Then 

b&bj = 22 bkiOibj + bjb&, y = i. , r. 
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For any k we can choose r integers bu so that b̂ öy = 0 for 7 = 1, • • • , r 
if and only if the conditions of the theorem hold, using matrix 33. 

LEMMA 2. Every n-dirnensional lattice 2 in a ring Rp of p-adic in­
tegers (p odd) has a basis Hi, • • • , u» such that 

2 = <Ul> + • • • + <Un>. 

This is a rather well known result.2 

In the lemmas that follow, Ui, • • • , itn is a canonical basis of a lattice 
8 over the p-adic integer ring, p odd, that is, 8 = (ui) + • • • +(un). 
The c's are integers of the ring. 

LEMMA 3. If b = c2U2+ • • * +cnun and ci+iUi2+i = 0 (mod c*u?) for 
i — 2, 3, • • , n — 1, there exists a t>o = £02112+ • • • -\-c0nun such that 
t>ot> = 0 and bo has an orthogonal complementary space in (U2, • • • , un) 
unless for each k such that li^k^n — l one of the following holds : 

1. Cfc+iUjb2+i = 0 (mod pCkul) and ck = 0 (mod pCk+i). This implies 
u,2

+1 = 0 (mod^2u?). 
2. UAP/UAP+I

 and Ck/cjc+i are units and 
2 2 

CkUk 

1 + - — = 0 (mod p). 
Ck+lUk+l 

Furthermore, such a t)o can be found if 2 holds for two successive values 
ofk. 

PROOF. Throughout this proof it is understood that 2 ̂  k ^ n — 1 * 
Choose t)o = cUfc+u&+i. Using Lemma 1, we seek to determine c so that 
(1) \)Q\) = cCkVLl+ck+iUi?+i = 0 and (2) bolto+i = UAP+I and b0u* = cu* are = 0 
(mod t>o) where \)l = uk

2+i+c2ul. 
1. Suppose Cfc+iU^+î O (mod pckul) and ^+i = 0 (mod ck). Choose c 

so that (1) holds and have 

2 
2 2 £&+i £/H-iUfc+i 2 2 

cufc = — Ufc+i = 0 (mod £u*+i) 
ck ck\x\ 

which implies t)o^0 (mod puk
2+i). Also cu&= — ck+i\xk

2
+i/ck = 0 (mod 

ujt+i) and hence condition (2) holds. 
2. Suppose ck+i\x2

k+i/(ckul) is a unit. Choose c so that (1) holds and 
2 See, for example, Lemma 8 of C. L. Siegel's Vber die analytische Theorie der 

guadratischen Formen, Annals of Mathematics, (2), vol. 36 (1935), pp. 527-606. In 
the statement of this lemma there is a misprint. RP should be replaced by Gp. The 
corresponding theorem for ^-adic integers is in the third paper of the same series, 
Annals of Mathematics, (2), vol. 38 (1937), p. 240. 
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see that c is a unit. If uf = 0 (mod pv?h+i) or uij-i = 0 (mod pul)y (2) is 
seen to hold. We then have difficulty only if the first two parts of 
Condition 2 of the theorem hold and if in addition ul+i + c2ul^0 (mod 
pul). Then (1) implies 

cuk = 

2 4 
Cjc+lUk+1 

21t2 
eft k»k 

and thus 

cpx 

For the final remark notice that 

2 2 
Ck+lUk+l 

1 + ——— = 0 (mod p). 
ÎH 

1 + J^^l + ^km0{modp) 
implies 

r2 i t2 r 2 it^ 
°h+luk{-l Lk+2uk+2 

2 2 

1 - — = 0 (mod p)9 
Cfc+2U&+2 

and replace u*+i by U&+2 to have the existence of bo. 

Remark. Condition l of the above lemma may be weakened but 
only by making the statement more complex and less manageable. 
That there is not always a bo orthogonal to b and having a comple­
mentary orthogonal space is shown by the following example : 

Let Ii2=l, ul = p2 and b = ^u2+u3 . We show that no bo = &2U2+M3 
exists for which bob = 0 and which has an orthogonal complementary 
lattice in (u2, U3). Now b0b = 0 implies b2 = — pbz and since bo can have 
a complementary orthogonal lattice only if 63 is prime to p, we take 
bz= 1 and have b0= —PU2+U3. Now (giU2+g2U3)b0 = — gip+g2p2 = 0 im­
plies gi = 0 (mod p). Hence 

s 0 (mod p) 
-p 1 

gl #2 

and bo has no complementary orthogonal lattice. 

LEMMA 4. If (bi, • • • , bn)=(ui , • • • , u») are two canonical lattices 
with b? = v?i and 

bl = CiUi + C2U2 + • • • + CnUn 
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while öi — CiU, has the property that1 for each kfor which 2^k^n — l, 
either 1 or 2 of Lemma 3 holds and if 2 does not hold for two successive 
values of k, then 

<t>2, • • • , b»> = <u2, • • • , un). 

PROOF. The lemma is obvious if n = 2. Henceforth assume n ^ 3. By 
renumbering it2, • • • , uw, if necessary, we can have c*+iU;2+i == 0 (mod 
CiU?) for i = 2, • • • , n—1 as in Lemma 3. 

We may write b»=0QLi£*;Uy where cij=Cj and the determinant of 
the coefficients is prime to £. Write 

Ai = 

Cil ' * * Cu 

£ i l * * * Cii 

We know ^4W^0 (mod p). Assume (what we shall soon prove) that 
£i = Cn^0 (mod p). We now show that we may renumber t>2, • • • , &n, 
if necessary, to make Aif^O (mod p) for 2-^i^n. Assume A^\f^Q 
(mod p) ; the Laplace expansion of An shows that the matrix 9ft* com­
posed of the first i columns of A n is of rank i. The first i — 1 rows of S0Î*-
are linearly independent and not all the remaining n — i-\-\ rows of 
3ft»- are linearly dependent on them. 

Notice that l0il0j=ciicjiul+ • • • +cinCjnuland b*t)y=0 if i^j. 
We next proceed to prove some preliminary results. 
I. c2U2 = 0 (mod Citt?). Suppose the contrary were the case, that is, 

CiU? = 0 (mod pcivfc). We have, by Lemma 3, two cases to consider. 
Case 1. If C4i< = 0 (mod />c2u!) and c 2 ^0 (mod pci) for alH > 2 , then 

Dit)t = 0 implies c ^ u ^ O (mod ^ u ^ ) and hence c»2 = 0 (mod £) for 
i > 1. Since if w ^ 3, c2 = 0 (mod £) ; and hence A n = 0 (mod £), which is 
false. 

Case 2. If c»u?ssO (mod />C2uf) and c2 = 0 (mod ƒ><;*•) for i > 3 while 
Condition 2 of Lemma 3 holds for k = 2, then bib»- = 0 implies 
Ci2C2ul+CizCzul = 0 (mod ^ u ^ ) (for i = l , Condition 2 of Lemma 3 im­
plies the congruence). Hence An^0 (mod £), contrary to fact. 

II . ci = c n ^ 0 (mod p). (This shows Ai^O (mod p), i=\, • • • , n.) 
We know i)?-c?u? = 0 (mod C2U2). Hence t>?- c?u? = u?-c?u? = 0 
(mod ciu?) and u?s=0 (mod Ciit?). 

I I I . For jfe>r ^ 1 it is true that 

2 2 2 
C*lUi = * • • = CkrUr = 0 ( m o d U r + i ) . 

If r^2 we know that in all cases of the previous lemma ur
2+i = 0 

(mod u?). Hence for r ^ 1 we have for each k >r, 
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'Ok'Oj = CklCjiUi + • • • + CkrCjrUr SB 0 (mod Ur+l) ÎOT j = 1, • • • , f, 

and since Ar^0 (mod p) we have the desired result. 
IV. If UrV^O (mod pu*) then ur

2+i = 0 (mod pu2) for 2^i^r and 
I I I implies 

^ 2 == • . . == ckr s 0 (mod />) for each k > r. 

V. c w s O (mod p) for all &>2 or > 3 according as ufj^O (mod pul) 
or not. A glance at Lemma 3 shows 

2 2 2 2 

\)k\)i E= CkiCiUi + ck2c2u2 + CkzCsUz ^ 0 (mod ^c2u2). 

If U3 = 0 (mod pul) then ^ U ^ O (mod pc2ul) and IV shows ^2 , and 
hence by I, ck\ are congruent to 0 (mod p) for k>2. Otherwise uf^O 
(mod puf) while ul/ul and Cz/c2 are units; then IV implies ck2 and c** 
and hence ck\ are congruent to 0 (mod p) for & > 3 . This also holds for 
all k^2, if perchance c2U2 = 0 (mod px$). 

We now have two cases to consider corresponding to the two cases 
of Lemma 3. In what follows i is some fixed one of 2, 3, • • • , n. In the 
first place we assume that either i = 2 and Case 1 holds forfc = 2,or 
i>2 and Case 1 holds for k = i and k = i — 1; we then show that 
(t)»)=(Ut). In the second place we assume that Case 2 holds for k = i; 
then, with one exception which is dealt with separately, we show that 

Case 1. Suppose Ci+ju?+j^0 (mod pew2), Ci = 0 (mod pCi+j) and 
Ui2+;=0 (mod pu2) for all j for which l^j^n—i, while CiU^O 
(mod pCi-jV?i-.j), Ci-j^O (mod ^<) and u*=0 (mod £u*-y) for all j for 
which i — 2 ^ j ^ l . If i > 2 take r = i—l andfc = i, in IV above and have 
Ci2= • • • =Cii_i = 0 (mod ƒ>) and V shows that cn^O (mod £). Hence 
Ai^O (mod £) implies cuf^O (mod £). If i = 2, n^3 implies c2 = 0 
(mod £) and A2^0 (mod £) implies c2 2^0 (mod p). Hence in both 
cases cujâO (mod p). 

In III above put r = i — 1, & = i and have 
2 2 2 

diUi s . . . s c<i_iu<_i s 0 (mod Ui). 

But i)| = CafeiU?)+ • • • +Cii(cuU2
i) (mod pu%) and hence we have 

shown bJsO (mod u?). If i>2 we have shown above that c f l s • . . 
= ^ _ i = 0 (mod £) and hence ^ = 4 ^ (mod pu2

t). If * = 2, bib2 = CiC2iU? 
+^2^22U2 = 0 (mod pc2ul) and Ci^O (mod p) implies c2i== — £2c22U2/(£iUÎ) 
(mod pc2ul/ul). Hence 

2 
2 2 £21£2 2 2 2 

^2iUi s c2 c22u2 (mod pc2u2) 
c[ul 
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and £2 = 0 (mod p) shows C^U^EEO (mod pul). In both cases, then, we 
have t)2 = 4jit2 (mod pu2

t) which implies ^sc^u* (mod q) is solvable 
for q, an arbitrary power of p. Hence there exists a unit b in Rp such 
that b2 = &2u2. 

Case 2. Suppose 3^i-\-l^n, u*/u?+i and Ci/ci+\ are units, 
l + cJuV(ctVu»2+i)—0 (mod p), Ci+jU?+j=0 (mod pew2), ^==0 (mod 
pci+J), tti2+y=0 (mod pu2

t) for all j for which n—i^j^2. Also c,-Ui=0 
(mod />ct-_yit|_y) ; u2 = 0 (mod £u?-/) for all j such that 1 ^ j < i — 1 . Re­
call I and II above. 

Taking r — i — 1 in IV and using V we have 

ckl == • • • = c^^! == 0 (mod ^) for k = it i + 1 and i > 2. 

This with Ai+i^Q (mod £) implies 

5 , = ^ 0 (mod p). 

The last holds even if i = 2 unless w = 3 and £2^0 (mod p) since w > 3 
implies c2 = £3~0 (mod £). We postpone this exceptional case. 

Take r = i — l in I II above and have 

Now 

2 2 2 

CfciUi = • • • = CK-IU»_I = 0 (mod Ui) for k = i, i + 1. 

2 2 2 2 

to* s cki(cklUi) + • • • + cki+i(cki+iUi+i) (mod ^it»), 

and 

cki s • • • == c ^ x == 0 (mod ƒ>) for é = i, i + 1 and i > 2 

implies 

2 2 2 2 

t>* = cu(cuUi) + Cii+ifai+iUi+i) (mod ^u»+i), 
2 2 2 2 

b;+i = M ^ w H i ) + ^i+i i+i(^+i i+iUt+i) (mod j^Ut+i), 
2 2 2 

fyfc>t+i = Ci+ii(cuUi) + Ci+x i+i{d i+itti+i) ss 0 (mod ^u»-+i). 

The argument in Case 1 for i = 2 may be used here to show that the 
three congruences above hold even when i = 2 except in the case post­
poned above. In fact, if u | = 0 (mod pv?x), I II implies c2i = 3̂i = 0 
(mod p), B2^0 (mod p) and the argument used in Case 1 carries 
through to show that the three congruences hold. We thus postpone 
the case in which n = 3, c2Csf^0 (mod p) and u2/u? is a unit. 

Divide the three congruences by u2; let d = u»2+i/u?- The resulting 



i942] A THEOREM OF WITT 141 

situation is covered by the next lemma which shows that there are 
p-adic integers a, 6, c> e such that ae — bc is prime to p and 

2 2 2 2 

b< = (aui + bui+1) , bi+i = (cu< + eui+i) , 

(<m< + ftUi+xJCcu,- + eUi+i) = 0. 
Hence <to<, b<+i)^(u<, u<+i>. 

I t remains to consider the postponed case w = 3, c2Cz^0 (mod £) 
and U2/U? is a unit. Then ^ 2 + ^ 1 = 0 (mod puf) implies that 
t>i = c?u? = 0 (mod puf) and hence ci = 0 (mod p), contrary to fact. 

LEMMA 5. If the congruences 

x2 + dy2 = gi (mod p)y z2 + dt2 s g2 (mod ^) , x* + dyt = gz (mod ƒ>)> 

with df^O (mod £), Aaiœ solutions x0l yo, So, ô wi/A x0/o —^o^o^O 
(mod £), /Aew there are p-adic integers x, y, z, t such that x2+dy2 = gi, 
z2+dt2 = g2, xz+dyt = gs and xt — zy^0 (mod p). 

PROOF. T O prove the lemma, assume that x0, y0, z0, to is a solution 
of the congruences with p replaced by q. We seek an x, y, z, t so that 

(xo + qx)2 + d(y0 + qy)2 ss gx (mod pq), 

(zo + qz)2 + d(t0 + qt)2 = g2 (mod £g), 

(XQ + qx)(z0 + qz) + d(y0 + qy)(tQ + qt) = gz (mod pq). 

That is, 

Xox + J^oj s Ai (mod >̂), 

3o2 + dtot ss hi (mod p), 

Xoz + Zox + d(y0t + toy) = h (mod p), 

for some integers hi, hi and A3. The matrix of the coefficients on the 
left is 

[ #o dyo 0 0 ] 

0 0 Zo dto \ 

[ Zo dto Xo dyo J 

which is of rank 3 (mod p). 

3. Final results. We have the following theorems. 

THEOREM 1. If (t)i, • • • , \)n) and (ui, • • • , u») are two equivalent lat­
tices in a ring Rp of p-adic integers (p odd) and if t)J = u?7^0 and 
M)i = UiUi = 0, «VI , then 
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(Ö2, ' • • , *>») = <U2, • ' • , Un). 

PROOF. Assume the theorem true for all lesser values of n. Also, 
(&2, • • " > on) and (ii2, • • • , Uw) may be considered to be in canonical 
form. Lemma 4 establishes the theorem unless Lemma 3 applies. We 
then have the existence of a vector bo such that bobi = boUi = 0 and bo 
has an orthogonal complementary space in (tt2, • • • , un) and hence 
such a space, (bo)*, in 8=(Ui, • • • , un), that is, 8 = (bo) + (b0)*. Then 
(bo)*==(bi)+23=(ui) + U where3 33 and U are the complementary or­
thogonal spaces of (bi) and (ui), respectively, in (bo)*. By the hypothe­
sis of the induction SS^U and 8 ^ ( b 0 ) + ( b i ) + 3 S ^ ( b 0 ) + ( u i ) + U im­
plies 

(b2, • • • , bn) = (bo) + 93 ££ (bo) + U = (u2, • • • , un). 

THEOREM 2. If lattices 81 and 82 over a ring Rp of p-adic integers 
(p odd) have no radical, then 

83 + 84 = 81 SÉ 82 = 83 + 86 

implies 

84 S 8B. 

This theorem is easily established by induction using Lemma 2 and 
Theorem 1. I t may also be stated in terms of quadratic forms in a 
manner analogous to Theorem B. 

CORNELL UNIVERSITY 

3 The existence of 33 (and similarly of U) follows from Lemma 1 since bj is a divisor 
of the product of bi by any vector of 8 and hence of (bo)*. 


