A CHARACTERIZATION OF DEDEKIND STRUCTURES*
MORGAN WARD

If 2 is a Dedekind structure,i then for any two elements A4
and B of Z, the quotient structures [4, B]/A and B/(4, B) are iso-
morphic. (Dedekind [2], Ore [3].) I prove here a converse result.

THEOREM. Let 2 be a structure in which for every pair of elements A
and B, the quotient structures [A, B|/A and B/(A, B) are isomorphic.
Then if either the ascending or descending chain condition holds in Z,
the structure is Dedekindian.

This result is comparatively trivial if botk the ascending and de-
scending chain conditions hold. That some sort of chain condition is
necessary may be seen by a simple example. Consider a structure 2
with an all element Oy and a unit element E, built up out of three
ordered structures 2, Z,, 23 meeting only at Oy and E,, so that if
S. & Z,, then

(Su, Sv) =E,, [Su, Su] =0,

for u,v=1, 2, 3, us%v. Then if each Z;is a series of the type of the real
numbers in the closed interval 0, 1, the quotient structures of any pair
[Su, Su1/Su, Su/(Su, S,) are obviously isomorphic. But 2 is clearly
non-Dedekindian.

The theorem is of some interest in view of the generalizations Ore
has given of his decomposition theorems in Ore [4].

It suffices to prove the result under the hypothesis that the de-
scending chain axiom holds in £ (Ore [3, p. 410]). We formulate this
axiom as follows:

(B) If for any two elements A and B of Z,
A>X;5Xy>2X3D> --- OB
Sor an infinity of X; in Z, all the X; are equal from a certain point on.
Our proof rests upon several lemmas which we collect here.

LemMA 1. (Dedekind [2].) = is a Dedekind structure if and only if
2 contains no substructure Z, of order five which is non-Dedekindian.

* Presented to the Society, April 15, 1939.

1 We use the notation and terminology of Ore’s fundamental paper, Ore [3], with
the following two exceptions. (i) We write A2 B, B€ A for Ore’'s A=B, B=4.
(ii) If A is prime over B (Ore [3, p. 411]), we shall say “A covers B” or “B is covered
by A” (Birkhoff [1]) and write 4 >B or B<A.
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The type of substructure in question is well known; its diagram
is given in the figure. Since we utilize such substructures frequently
in our proof, we shall introduce the notation {D, A, B, C, M} for Zy,
writing the all element D and unit element M in the first and last

A/ D\c

L/

M
b3

0

places in the symbol while the elements 4 and B where 4 o B occupy
the second and third places.

LemMA 2. (Ore [3).) If (B) holds in the structure =, then every set of
elements of Z which divide a fixed element A contains at least one mini-
mal element dividing no other element of the set.

LemMma 3. If (B) holds in the structure Z, then for any two distinct
elements A and C of Z such that C divides A, there exists an element
B such that C divides B and B covers A.

For we need only pick a minimal element in the subset of all ele-
ments X such that CoX o4, X#A4.
The following lemma is obvious:

LeEMMA 4. Let 2 be a structure in which
(e [4, B]/4 =~ B/(4, B)
for every A, B of =. Then [A, B] covers A if and only if B covers (4, B).

LeMMA 5. Let 2 be a structure in which (€) holds. Then if A covers
B and M is any other element of =, either [M, A) equals [M, B] or
[21, A] covers [ M, B].

For clearly [M, A]> [M, B].Since 4 5 (4, [M, B]) 5B and 4 > B,
either (4, [M, B])=A4 or (4, [M, B])=B.If (4, [M, B])=A, then
[M,B]o24>[M, A], so that [M, B]l=[M, A]. 1f (4, [M, B])=B,
then 4> (4, [M, B]). Hence by Lemma 4, [4, [M, B]|]>[M, B].
But since 4 o B,

[4, [M, B]]=[M, A].

Our final lemma is the dual of Lemma 5.
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LEMMA 6. Let 2 be a structure in which (€) holds. Then if A covers
B and M is any other element of Z, either (M, A) equals (M, B) or
(M, A) covers (M, B).

We shall prove our theorem indirectly. Assume that conditions
(8) and (e) hold in the structure Z, but that Z is non-Dedekindian.
Then by Lemma 1, Z contains a non-Dedekindian substructure

=y=1{D,4,B,C, M}
of order five.*

We may assume that A covers B. For by Lemma 3, there exists an
element N of 2 such that 4 > N, N>B. Thus

[4,C]> [N, C]o[B,C], (4,02, 0)>(B,0);

that is, [N, C]=D, (N, C)=M. Hence {D, N, B, C, M} is a non-
Dedekindian substructure where N > B.

We assume henceforth that 4 covers B. Since [4, C]=D,
(4,C)=M,and [B,C]=D, (B,C)=M,D/C~A/M,and D/C>~B/M
by (¢). Hence A/M=~B/M. But B lies in A/M and A >B. Since 4
corresponds to B under the isomorphism, there exists an element in
B/ M covered by B. Denote it by B;. Then

1 B>B.> M.

Since Bo B> M, (B, C)>(B1, C)> (M, C) or (By, C)=M. Con-
sider next the union D= [B1, C]. Since B> B;, by Lemma 5 either
[B, Cl=[By, Clor [B, C]>[B, C]; that is, either D=D, or D> D;.

If D =D, then on writing A4, for B, we abtain a non-Dedekindian
substructure {Dl, Ai, By, C, M} in which 4,> B;.

Now assume that D>D,;. Clearly [4, D;]=[B, D;]=D. Con-
sider the crosscut (B, D;). Since B>B;, by Lemma 6, either
(B, D1) =(By, D) or (B, Dy) > (B, D). That is, since B > (B, D;) and
D, > By, either (B, D1) =B; or (B, Dy) =B. We must have (B, D;) = B;.
For if (B, D:)=B, then D;>B. Since D:>C, we would have
Dy [B, C], Dy=D, contrary to the assumption D > D;.

Consider next the crosscut 4:=(4, D;). Since A > B, by Lemma 5
either (4, D1) = (B, Dy) or (4, Dy) > (B, D,); that is, either A,=B; or
A1> By We must have A1> Bi. For if A= By, then {D, 4, B, D1, B1} is
a non-Dedekindian substructure. But since [4, D:]=D and (4, D,)
=B, by (¢) A/Bi=D/D;. This isomorphism is impossible, for
A > B> B; while D> D,.

Finally, since A24,5C and BoB;>C, (41, O)=(By, O)=M

* The reader will find a structure diagram helpful in following the argument.
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while [4,, C]=[Bi, C]=Di. Thus {Di, A1, By, C, M} is a non-
Dedekindian substructure of 2 in which 4;> B;.

We now replace 2, in either case by Z;= {Dl, 4., By, C, M} and
obtain a non-Dedekindian substructure Z;={D;, Az, B, C, M}
where A2> B, and

(2) .B1>.B2D M.

On repeating this reasoning, and combining (1), (2), - - - we ob-
tain a chain

B>B,>By;>B;> - - - oM
of indefinite length in which all B; are distinct, contradicting (B8).
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