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^-ALGEBRAS OVER A FIELD GENERATED 
BY ONE INDETERMINATE* 

BY A. A. ALBERT 

1. Introduction. The structure of all division algebras over the 
simplest type of non-modular field, the field of all rational num­
bers, has been determined, f The correspondingly simplest type 
of infinite modular field X is the simple transcendental extension 
K = F(x) of a finite field F. Every division algebra D over such 
a K is a normal division algebra of degree n over a centrum G 
which is algebraic of finite degree over K. It is well known that 
the problem of determining the structure of D is reducible to 
the case where n is a power of a prime p. When p is the charac­
teristic of F the algebra D is called a ^-algebra and we shall 
solve the problem in this case. Our results will be valid if we 
replace the finite field F by any perfect field of characteristic p. 

The theorem we shall obtain is remarkable not merely be­
cause of the character of the result thus derived but also be­
cause of the extremely elementary nature of the proof. By using 
a simple property of the field G described above we shall show 
that every ^-algebra with centrum G is cyclic and of exponent 
equal to its degree. Moreover this result is due to the unusual 
fact that all cyclic algebras over G of the same degree pe have 
a common pure inseparable splitting field. 

2. Simple Transcendental Extensions of F. Consider any per­
fect field F of characteristic p. Then every a oî F has the form 
a = bpk for b in F. It is easily seen that in fact the correspond­
ences 

a< >a*k, (k = 0, 1, • • • ) , 

are automorphisms of F. 
We let x be an indeterminate over F, J=F[x] be the set of 

* Presented to the Society, September 7, 1937. 
f Cf. the paper of H. Hasse and the author, Transactions of this Society, 

vol. 34 (1932), pp. 722-726. 
X There is no structure problem for division algebras over finite fields as 

they are always finite fields. 
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all polynomials in x with coefficients in F. Then the rational 
function field K = F(x) of all rational functions of x with coeffi­
cients in F is the quotient field of J . If a is in / such that 

a = ao + ai% + • • • + anx
n, (ai in F), 

then ai = biq with q — ph and bi in F, and 

a = 0«, 0 = J0 + J i y H + bny
n 

is in F[y], yq = x. Evidently every quantity of the field K = F(x) 
is the ^ - t h power of a quantity of K0 = F(y). This result will 
be shown to imply the following theorem: 

THEOREM 1. Let x be an indeterminate over a perfect field F of 
characteristic p so that every algebraic extension G of degree n over 
K = F(x) is inseparable of degree t = pe over its maximal separable 
sub-field H = K(u) of degree m = np~e over K. Then 

(1) G = H(y) = Ko(u)=F(y,u), K0=F(y), y* = x, 

so that G is uniquely determined in the sense of equivalence by H 
and t — p*. Conversely the field G of (1) has degree pe over H. 

If q=pk and K(u9) were a proper sub-field of H = K(u), the 
field H would be inseparable. Hence every quantity of H of de­
gree m over K is uniquely expressible in the form 

(2) w = a0 + aiuq + • • • + am_1««(TO-1), (at in K). 

If K(uy x1/p) did not have degree p over K(u), the quantity x 
would have the form wp with w in K(u). Apply (2) with &=0 
and obtains = wp=a0

p +aipup+ • • • +aP^^1u
Pim"~1\ The unique­

ness of the expression (2) for k = 1 implies that ai = • • • = am-i = 0, 
x =a0

p is the quotient of two polynomials in xp, which is clearly 
impossible. Hence H(x1,p) has degree p over H> and an evident 
induction implies that if ype =x then H(y) = F(yt u) has degree 
pe over H. 

We now let G\ be algebraic of finite degree over K so that G\ 
has a maximal separable sub-field i7 and degree t = pe over Ü. 
It is conceivably not a simple extension of H. Without loss of 
generality we assume that G\ is contained in a field which also 
contains the quantity y and hence the field ^(3^) = G. Every z 
of G\ has the property zt = w in Hy and if w has the form (2) 
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for q = t then each a,-=j8»' with £»• in Ko = F(y), w = vt, where 
z>=j#o+|3i^ + • • • +j3m-1u

m-1 is in KQ(u)=G. Thus 2' = »', z = z; 
is in G, Gi^G. Since G and Gi have the same degree over H, we 
have G\ = G. 

An immediate corollary of our proof maybe stated as follows:* 

THEOREM 2. Let H be separable of finite degree over K = F(x) 
and g in H, y* = x where t = pe. Then g = dt for d in F(y) =K(y) 
of degree tover K. 

3. The Determination, The fundamental result on ^-algebras 
over fields of our simple type may be thus stated : 

THEOREM 3. Let D be a normal division algebra of degree p* 
over a field G which is algebraic of finite^ degree over a simple 
transcendental extension of a perfect field F of characteristic p. 
Then G is separable of finite degree over F(x), x an indeterminate 
over F, and D is a cyclic algebra 

(3) (Z, S, x) over G. 

The exponentt of D is its degree pe so that conversely the cyclic alge­
bra (3) is a division algebra if and only if x is not the norm of any 
quantity of the cyclic sub-field of Z of degree p over G. 

The now standard notation (3) in our case means that Z is a 
cyclic field of degree pe = t over G with generating automorphism 

S: z<—>zs, (z,z8mZ), 

and that every quantity of D has the form 

zo + ziy + • - • + Zf-iy1"1, fa in Z). 

* F . K. Schmidt, Analytische Zahlentheorie in Körpern der Characteristik p , 
Mathematische Zeitschrift, vol. 33 (1931), pp. 1-32, p. 8, showed that every 
algebraic field of finite degree over a simple transcendental extension of a finite 
field F is separable over F(x), for some indeterminate x. This inexplicit form of 
our Theorems 1, 2 is of course insufficient for our proof of Theorem 3. 

t The results of Theorem 3 are also true for the case when G is algebraic 
but not of finite degree over K. For the method which leads to the reduction 
to the case of finite degree see the author's paper in this Bulletin, vol. 39 (1933), 
pp. 746-749. 

t The result that the exponent and degree are equal was proved for arbi­
trary degree n by E. Witt, Mathematische Annalen, vol. 110 (1934), pp. 12-28. 
However his proof requires the same formidable machinery used for the analo­
gous result on algebras over algebraic number fields, whereas the proof we give 
here is almost trivial. 
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Moreover yrz = zsryr for every z of Z, yt = x. Thus (3) states that 
all cyclic algebras of degree t = pe over G have G(y) as a common 
splitting field (equivalent to a maximal sub-field of all such alge­
bras). 

For proof we notice that the result concerning G is clearly 
part of Theorem 1. Let A = ( F, T, g) be any cyclic algebra of 
degree s=pf^pe over G. By Theorem 2 we have g=d8 with d 
in L=G(x1/8)f AL— (YL, T} 1) is a total matric algebra over L. 
Thus L is a splitting field* of every cyclic algebra of degree pf. I t 
is known* that D has exponent pf^pe over G and also that f then 
D is similar to a direct product of cyclic algebras Ai of degree pf. 
But L splits each Ai and hence the algebra D. Since* the degree 
of every splitting field of D is divisible by the degree pe of D 
it follows that pe^pf, t = pe = pf. Thus D has exponent pe and 
L = G(x1!t) as a splitting field. But then it is knownj that D has 
the form (3). The final statement in the theorem is a known § 
consequence of the result that D of (3) is a division algebra if 
and only if its exponent is its degree. 

UNIVERSITY OF CHICAGO 

* These results are due to R. Brauer, E. Noether, and the author and are 
now well known. Their proofs with references may be found in the Ergebnisse 
tract of M. Deuring on Algebren. 

f This is Theorem 18 of the author's paper in the Transactions of this 
Society, vol. 40 (1936), pp. 112-126. 

t Loc. cit. See the proof of Theorem 12. 
§ Cf. American Journal of Mathematics, vol. 54 (1932), pp. 1-13 for proof. 


