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ON SYMMETRIC DETERMINANTS
BY W. V. PARKER
In a former paper* the writer proved the following theorem:

THEOREM A. If D= laﬁl 15 a symmetric determinant of order
n>4 with a;; real and a;;=0, (=1, 2, - - - , n), and if all fourth-
order principal minors of D are zero, then D vanishes.

The purpose of this note is to give some results which are
obtained immediately from this theorem and which are in one
sense a generalization of this theorem.

Suppose D is a symmetric determinant of order » >4, with
real elements, in which all principal minors of order »—1 and
also all principal minors of order n—4 are zero. If D' = |4, is
the adjoint of D, then 4;;=0, (:=1, 2, - - -, n). Each fourth-
order principal minor of D’ is equal to the product of D? by a
principal minor of D of order n—4.1 Therefore D’ satisfies the
conditions of Theorem A and hence is zero. But D’ =D""1 and
hence D is also zero and we have the following theorem:

THEOREM 1. If D is a symmetric determinant of order n>4,
with real elements, in which all principal minors of order n —1 and
also all principal minors of order n—4 are zero, then D vanishes.

Suppose D is a symmetric determinant of order #» >4, with
real elements, in which all principal minors of some order 2 >3
and also all principal minors of order 2 —3 are zero. Let M be
any (k+1)-rowed principal minor of D, (M =D if n=35), then
M is a determinant satisfying the conditions of Theorem 1 and
hence M is zero. Therefore, in D, all principal minors of order %
and also all principal minors of order 2+1 are zero, hence D
is of rank k—1 or less.] We have thus proved the following
theorem:

* On real symmetric determinants whose principal diagonal elements are zero,
this Bulletin, vol. 38 (1932), pp. 259-262. See also, On symmetric deter minants,
American Mathematical Monthly, vol. 41 (1934), pp. 174-178.

t Bécher, Introduction to Higher Algebra, p. 31.

1 Bécher, loc. cit., page 57, Theorem 2.
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THEOREM 2. If D is a symmetric determinant of order n>4,
with real elements, in which all principal minors of some order
k>3 and also all principal minors of order k—3 are zero, then D
s of rank k—1 or less.

If n>5, and k<% —1 the minors of Theorem 2 may be di-
vided into two complementary sets such that if all minors of
either set are zero the determinant vanishes. This division into
sets may be done in » different ways.

Suppose D is a symmetric determinant of order »>35, with
real elements, and M is a principal minor of D of order n—1.
If all principal minors of M of some order 2>3 and also all
principal minors of M of order k£ —3 are zero, then M is of rank
k—1 or less by Theorem 2. Let us suppose now that M is in
the upper left hand corner of D and expand D according to the
products of the elements of the last row and the last column.
We get

n—1
D = d,mM -_ Z Qi@ jnlij,

%, j=1

where a;; is the cofactor of a;; in M. If now we make the further
restriction that % be less than #—1, then, since the rank of M
is k—1 or less, each a;;=0 and consequently D =0. We have,
therefore, the following result:

THEOREM 3. If D is a symmetric determinant of order n>35,
with real elements, and M is a principal minor of D of order n—1,
and if all principal minors of M of some order k, 3<k<n—1, and
also all principal minors of M of order k—3 are zero, then D
vanishes.

Suppose D is a symmetric determinant of order »>35, with
real elements, and that M is a principal minor of D of order
n—1. Suppose also that all principal minors of D of some order
n—t and also all principal minors of D of order n—¢+3, (¢>3),
which are not minors of M, are zero. We may assume further,
without loss of generality, that M is in the upper left hand
corner of D. Let D’ be the adjoint of D and M’ be the minor of
D’ corresponding to M in D. Any principal minor of M’ of order
¢t (of order t—3) is equal to the product of D*! (D**) by the
complement in D of the corresponding minor in M. This com-
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plementary minor is a minor of D of order n—¢ (n—¢+3) and
is not a minor of M and hence is zero by hypothesis. Therefore
M' is a symmetric determinant of order n—1 >4, with real ele-
ments, in which all principal minors of some order £>3 and also
all principal minors of order {—3 are zero, and hence M’ is of
rank ¢—1 or less by Theorem 2. If we make the further restric
tion that ¢ be less than » — 1 we find, by expanding D’ according
to the products of the elements of the last row and the last col-
umn, that D’ is zero. But D’=D""! and hence D is zero also.

If we write n—¢+3=EF, since 3<t<n—1, we have 4<k<n
and hence the truth of the following theorem is apparent:

THEOREM 4. If D is a symmetric determinant of order n>35,
with real elements, and M is any principal minor of D of order
n—1, and if all principal minors of D of some order k>4 and also
all principal minors of D of order k— 3, which are not minors of M,
are zero, then D vanishes.

In a second paper the writer* proved a theorem stated as
follows:

THEOREM B. If D= Iai,-l 15 a symmetric determinant of order
n>35, in which a;=0, (1=1,2, - - -, n), and M is any principal
minor of D of order n—1, then if all fourth order principal minors
of D which are not minors of M are zero, D vanishes.

From this theorem we see that the restriction that the ele-
ments of D be real is not necessary in Theorem A when # is
greater than five. Consequently the theorems of this paper may
be extended to include determinants with complex elements.
Theorem 1 is true for complex elements if #>5. Theorem 2 is
true for complex elements if #>5 and 2>4. Theorems 3 and 4
are true for complex elements if #>6 and 4 <k <n—1.
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* A theorem on symmetric determinants, this Bulletin, vol. 38 (1932), pp.
545-550.




