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ON T H E ANALOG FOR D I F F E R E N T I A L EQUATIONS 
OF T H E HILBERT-NETTO T H E O R E M 

BY H. W. RAUDENBUSH, JR. 

The Hilbert-Netto theorem for polynomials* has an analog, 
obtained by J. F. Ritt , f for differential polynomials. J By a dif­
ferential polynomial is meant a polynomial in a finite number of 
unknown functions 3/1, • • • , yn of the independent variable x and 
a certain number of their derivatives. To any finite set of differ­
ential polynomials Fi, • • • , Fr there corresponds a finite system 
of ordinary algebraic differential equations Fi = 0, - • - , Fr = 0. 
It is supposed that the coefficients of the Fi are all elements of 
a field g of differentiate functions of x which is closed with re­
spect to differentiation. Let G be any differential polynomial 
with coefficients in % such that G = 0 has every solution § of the 
system. If we denote by 2 the totality of differential polyno­
mials that are linear combinations of the Fi and a certain num­
ber of their derivatives with differential polynomials with co­
efficients in § as coefficients, then Ritt 's theorem is that some 
power of G is in 2 . 

We show in the following that this is as far in this direction 
as the analogy between the theories of polynomials and differ­
ential polynomials extends. For our result is that, contrary to 
the easy conjecture, it is not generally true that for a given sys­
tem there exists a single positive integer p such that any differ­
ential polynomial G, defined as above for that system, has the 
power Gp in the corresponding S. We give an example of a sys­
tem for which there exist G's with arbitrarily high powers not 
in 2 . This result shows, in particular, why the ideal theory of 

* See B. L. van der Waerden, Moderne Algebra, vol. 2, p. 66. 
t J. F . Ritt , Differential Equations from the Algebraic Standpoint, Col­

loquium Publications of this Society, vol. 14. (Cited as a.) 
I J. F . Ritt , Systems of algebraic differential equations, Annals of Mathe­

matics, (2), vol. 36 (1935), p. 293. The term "differential polynomial" is equiva­
lent to the terms "differential form" or "form" used in a. 

§ See a for a precise definition. For an abstract formulation, see H. W. 
Raudenbush, Jr., Ideal theory and algebraic differential equations, Transactions 
of this Society, vol. 36 (1934), pp. 361-368. 
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differential polynomials as far as it has been developed is 
marked by the absence of primary ideals.* 

In our example, the finite system consists of the single equa­
tion F = yz = 0. The differential polynomials G, such that G = 0 
has every solution of F = 0, are simply those differential poly­
nomials in y that have no term free of y and its derivatives. We 
suppose that there exists a single positive integer p, such that 
for any G, the power Gp is in S, and show that this assumption 
leads to a contradiction. 

The weight of a power product in y and a certain number of 
its derivatives is defined as the sum of the products of the order 
of each derivative present and the degree to which it appears. 
The totality of differential polynomials whose terms are all of 
degree p and weight w, where w is to be fixed later, we shall de­
note by 2£. 

A linear basis with respect to % for 2£ may be obtained by 
taking all products consisting of F or some one of its derivatives 
dlF/dx\ i^w, multiplied by a power product in y and its deriva­
tives of degree p — 3 and weight w or w — i, respectively. The 
number of differential polynomials in a set of linearly indepen­
dent differential polynomials of 2^ is consequently not greater 
than the number of distinct power products of y and its deriva­
tives of degree p — 3 and weight w or less. An upper bound to the 
number is (w-\-\)p~*-\-wp~ZJr{w — l ) p - 3 + • • • + 1 , or conse­
quently and more simply, (w-\-l)p~2. 

We consider now the power products in y and its deriva­
tives of degree p and weight w. Suppose, for simplicity, that 
w is divisible by p. Then their number is greater than 
wp~l/(pp~l(p — 1)!). This lower bound is obtained by noticing 
that if we fill the first places in the product with y or any of 
its derivatives of order less than w/p, then it is always possible 
to fill the last place with a derivative of order greater than w/p 
to make a power product of degree p and weight w. The num­
ber of permutations with repetitions of the w/p things (y and 
its derivatives of order less than w/p) taken p — 1 at a time is 
{w/p)p~l. Not more than (p —1)! of these permutations can give 
a single combination, that is, a single power product. Now since 
these power products form a linearly independent set with re-

* See Raudenbush, loc. cit. 
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speet to g a n d since for a certain large w, their number exceeds 
(w + l)p~2 , we conclude that, for a certain large w, 2^ does not 
contain all power products of degree p and weight w. 

Under our assumption, on the other hand, 2 would contain all 
differential polynomials of the form (a0y+aidy/dx+ • • • 
+awdwy/dxw)p, where the at are arbitrary elements of %. It is 
easily seen that each power product of degree p and weight w 
is a linear combination of certain of these differential poly­
nomials and hence is in 2£. This contradiction shows that for 
the system F = yz = 0 no integer p exists or, in other words, dif­
ferential polynomials G exist having arbitrarily large powers not 
in S. 

Y A L E UNIVERSITY 

NOTE ON T H E GALERKIN AND PAPKOVITCH 
STRESS FUNCTIONS 

BY R. D. MINDLIN 

1. Introduction. H. M. Westergaard* has given a useful inter­
pretation of the Galerkin stress functions f as the components 
of a vector function satisfying a fourth order equation. From the 
Galerkin vector, P. F. Papkovitch $ has developed a new solu­
tion of the three-dimensional elasticity equations for a homo­
geneous, isotropic solid in terms of harmonic functions. The 
same solution has been given by H. Neuber.§ 

Some interesting aspects of the Galerkin and Papkovitch 
functions may be observed when they are approached from a 
consideration of Helmholtz's theorem. In so doing, it is found 
that these functions may be reached by a direct analytical proc­
ess and that they are connected through simple functional rela-

* H. M. Westergaard, this Bulletin, vol. 41 (1935), p. 695. 
t B. Galerkin, Comptes Rendus, vol. 190 (1930), p. 1047. See also Tod-

hunter and Pearson, History of Elasticity, vol. 2, part 2, pp. 268-270. 
t P . F . Papkovitch, Comptes Rendus, vol. 195 (1932), pp. 513, 754. 

J. N. Goodler calls attention to Todhunter and Pearson, loc. cit., vol. 2, part 2, 
p. 373. 

§ H. Neuber, Zeitschrift für angewandte Mathematik und Mechanik, vol. 
14 (1934), p . 203. 


