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where the terms represented by • • • are of degree less than 
k — i + 2 in y. Thus (2) is established for k + 1 and hence by in­
duction for k^n — l. Hence pi(h\ p2

(fc\ • • • , pn
(k) are linearly 

independent for k ^ n — 1. 
We have now proved that, for every k, every linear homo­

geneous polynomial of degree k which is a solution of Of = 0 has 
the form 

erft» +c2pék) + • • • +cnpnw, 

where the c's are arbitrary constants. 
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1. Introduction. We consider the ^-dimensional projective 
space Sn defined analytically by means of any abstract field F. 
The points P of Sn are given by a set of w + 1 elements Xi of 
F, P = (x0, Xi, • • • , xn), (not all Xi = 0), with the convention 
that proportional sets define the same point. The points 
P whose coordinates satisfy a linear homogeneous equation 
u(0)x0 + u(l)Xi+ - - • +u(n)xn = Q, (not all u(i) = 0), form a hyper-
plane e = (w(0), u(1\ • • • , u(n)). There is no difficulty in defining 
such notions as those of straight lines, projections, and cross 
ratios, and discussing the elementary properties. 

Let M be a non-singular skew-symmetric bilinear form with 
coefficients « a in F, 

n 

M = 2 VikyiXk, aik = — aki, det (aik) ^ 0. 

For every point P — (xo, x±, • • • , xn) the equation M = 0 is the 
equation of a hyperplane e in the coordinates (yo, yi, • • • , yn) 
of a variable point of e. We obtain in this manner a one-to-one 
correspondence between the points P = (xo, 

X\y , X^ ) and 
hyperplanes e = (^(0), w(1), • • • , u(n)) of 5 n which is called a 
ww/Z system. The relation between corresponding values of the 
u{i) and Xi is given by 
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U^ = X ) QikXk. 
k=0 

The assumption that det(aik) is different from zero implies 
that n is odd. 

As is easily seen a null system has the following properties: 
(1) Every point P lies in the associated hyperplane e. 
(2) If P corresponds to e, then the points Q in e are associated 

with hyperplanes through P . 
Conversely, a one-to-one correspondence between points and 

hyperplanes of Sn with these two properties is a null system. A 
geometric proof of this fact for the ca«e n = 3 is contained 
in Chapter 11, Volume 1, of the book by O. Veblen and J. W. 
Young on projective geometry. In this note I will give an ana­
lytic proof for any odd number of dimensions. The proof by 
Veblen and Young and the following one are independent of any 
properties of continuity. They hold for every field F. It may be 
remarked that the property (1) alone is not sufficient to char­
acterize null systems. 

2. Definition of Collineation. We assume that a one-to-one 
correspondence between the elements of Sn is given by 

(la) F = (#o> #i) * * * j %n) *• F = (XQ , X\ , • • • , xn ) , 

and, furthermore, a one-to-one correspondence between the 
hyperplanes by 

e = <y°\ «<*>, . . . , u^) 
(lb) 

->€ / = ( ( « 0 ( 0 ) , ( « / ) ( 1 ) , - - - , ( « , ) ( n ) ) . 
We call the correspondence a collineation, if the point P' lies 
in the hyperplane e' when and only when P lies in e. 

If the mapping f—>0(f) is an automorphismf of the field F, if 

t An automorphism of a field F is a one-to-one mapping of the elements of 
a field onto themselves, £*—>r* = </>(£"), such that 

0(ri + f 2) = 0(ro + <Kr2), </>(fir2) = «(nMft) 
for any two elements f 1 and £2 of F. If a symbol 00 is added to the elements of F, 
we postulate <f>( 00 ) = 00. 

The zero element 0 and the unit element 1 correspond to themselves under 
an automorphism of any field F. 

Let, for instance, F be the field of all real and complex numbers. One ob­
tains an automorphism by associating with any f the conjugate complex num­
ber f. There are no automorphisms of the field of all real numbers except the 
identical automorphism £*—>£". 
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A = (a,ik) is a non-singular matrix of degree w + 1, (i, k = 0, 1, 
2, • • • , n), and if A,~l = (aik) is the contragredient matrix, 
the transformation 

n n 

(2) xl = 2 ( ï r f W , w'(i) - Xa<*0(«<*>), 

defines a collineation. 

3. Equations of the General Collineation. It is a well known 
theorem that the most general collineation for n>\ is given by 
(2). I will begin with a sketch of a proof of this theorem which 
seems to be more direct than the proofs previously given. 

We consider a fixed collineation. I t follows from the definition 
that points on a straight line are always transformed into points 
on a straight line. Let Pi , P2 , P3, P4 and Ci, Ça, Ç3, QA be two 
sets of four points, each set lying on a straight line such that 
both sets have the same cross ratio X. Then, it is possible to 
carry over the first set into the second one by effecting a suc­
cession of projections. We denote by R the figure consisting of 
all points and lines which are necessary for this construction. 

We apply the given collineation to the whole figure R. If Pv 

is transformed into Pi and Qv into Qi, the image Rf of R is a 
figure consisting of points and lines which shows immediately 
that it is possible to carry P{, Pi, Pi, PI over into Qi, Qi, 
Qi, QI by successive projections. Hence these sets have the 
same cross ratio A'. Consequently, X' is a function <p(k) of X 
alone and independent of the special choice of Pi , P2 , P3, P4. 
Hence four points on a straight line with the cross ratio X are 
always transformed by the given collineation into points with 
the cross ratio X ' = 0 (X). 

If P i and Pi coincide, so do P{ and Pi. Hence we have 
X/ = l,ifX = l , o r 0 ( l ) = l. Similarly, we find 0(0) =O,0(oo) = 00. 
The points Pi , P 3 , P2, P4 in this order correspond to P{, Pi, 
Pi, Pi. The cross ratios being 1—X and 1—0(X), we derive 

(3) 0(1 - X ) = 1 - 0 ( X ) . 

Let PÖ be a point on the straight line through Pi, P2 , P 3 , P4 
such that the cross ratio P1P2P4P5 has a given value /JL. Accord­
ing to a simple formula in analytic geometry, the cross ratio 
P1P2P3P0 has the value Xju. If by the collineation P 5 is trans­
formed into Pi, the sets Pi, Pi, Pi, PI ; Pi, Pi, P / , Pi ; 
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Piy Pi, Pi, P& have the cross ratios </>(X), <KM)> <KV)> re­
spectively. But the last one is the product of the preceding 
ones, that is, 

(4) 0(Xju) = * ( X ) 0 C U ) . 

Equations (3) and (4) show that the mapping X—>0(X) estab­
lishes an automorphism of the field F. For, if XF^O, we have 

</>(A - M) = *(X)*(l - v ) = ^ C 1 ~ * 
(5) \ A / \ 

= </>(A) -</>(M). 

From (4), f or X = JJL = - 1 , we derive 0 ( - l ) = ± l . I f 0 ( - l ) = + l 
we obtain <j>(2) = 0 from (3) for X = — 1 and hence </>(2X) — 0 from 
(4) for any X. If the characteristic of F is not 2, we find a con­
tradiction by putting X= —1/2. In the case of characteristic 2, 
we have —1 = 1. Therefore, </>( — 1) = — 1 and then 4>( — /*) = — /x, 
according to (4) for X= — 1. Hence (5) holds in the case X = 0. 
By replacing JJL by —fj, in (5), we obtain <j>ÇK+fx) = ^ ( X ) + 0 ( J U ) . 

Therefore, X—><£(X) is really an automorphism. The inner reason 
for this is the fact that one is able to construct points with the 
cross ratios X+ju, X— jit, X/x, X/ju by means of projective con­
structions if points with the cross ratios X and fx are given. 

We define a new collineation by associating 

P = Oo, Xi, • • • , tfn) 

-> P* = OOo), </>Ol), • • • , *(*n)) = (*<>*, *1*, ' * ' , *n*), 

(6) e = («co), «CD, . . . ? w<»>) 

- > € * = ( 0 ( « < ° > ) , 0 ( « C 1 ) ) , . . . ,0(|*Cn))) 

= («*C°>, «*<!), • • • ,«*<»>). 

This is a special collineation (2), the matrix A being the unit 
matrix. Since the cross ratio is a rational function of the co­
ordinates, points with the cross ratio X are transformed into 
points with the cross ratio <£(X). 

If the original collineation is given by ( la) , ( lb) , the trans­
formation P*—>P', e*—»e' defines a collineation (P and hence 
P* ranges over all points, e and hence e* over all hyperplanes). 
For this collineation, the cross ratio of four points is neces-

(f 
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sarily invariant. We see in the usual manner, f that a collinea-
tion with this particular property is given by a linear trans­
formation 

(7) Xi = Ê *ik*k*, « , ( 0 = Z «<*«*<*>, 

where (âne) is a non-singular matrix and (aik) its contragredient 
matrix. On comparing (6) and (7), we obtain (2). 

If the only automorphism of the field F is the identity as in 
the case of the field of the real numbers, then, of course, every 
collineation is given by a linear transformation 

4. Correlation. We speak of a correlation in a projective space 
whose number of dimensions is larger than 1, if to every point P 
corresponds a hyperplane TT in a one-to-one manner and to every 
hyperplane p corresponds a point R in a one-to-one manner, 
such that 7T passes through R if and only if P lies in p. 

We define a special correlation by associating the hyperplane 
ü(i) to the point Xi, where 

(8a) ü(i) = Xi, (i = 0, 1, 2, • • • , n), 

and by associating the point x{ to the hyperplane u(i\ where 

(8b) ^ = w<*>, (i = 0, 1, 2, • • • , ») . 

The inverse of a correlation is a correlation again, the product 
of two correlations is a collineation. Hence the most general 
correlation is obtained by performing first a collineation and 
afterwards the special correlation (8a), (8b). Therefore the 
most general correlation is given by 

t We determine the transformation (7) such tha t the n-\-2 points P0* 
= (1, 0, • • • , 0) ; P i*=(0 , 1, 0, • • • , 0); • • • ; Pn* = (0, • • • , 0, 1); Pn\i 
= (1, 1, • • • , 1) have the same images as they have in the case of the collinea­
tion P*—>P'. Equation (7) sets up a collineation for which the cross ratio is in­
variant. If we perform the inverse transformation to (7) after the collineation 
P*—*P', we obtain a collineation for which the cross ratio is invariant and 
the w-f-2 special points P* are fixed. Then, however, every point Q is fixed, 
because the position of Q with respect to Po*, Pi*, • • • , Pn*+i can be described 
uniquely by means of cross ratios only (projective coordinates). Therefore, the 
collineation (7) and the collineation P*-*P' map all points exactly in the same 
manner, and both are identical. 
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(9) #«) = J2 aik<l>(xk), Xi = T, aik(j>(uW), 
/c=0 /c=0 

where again (aik) and (aik) are non-singular contragredient 
matrices and X—>0(X) is an automorphism of the underlying 
field F. 

5. Correlations Defining a Null System. 

THEOREM. If a correlation associates to every point P a hyper-
plane Ir passing through P , the number n of dimensions of the 
space is odd and the correspondence defines a null system. The 
equation of w in point coordinates is given by the vanishing of a 
skew-symmetric bilinear form, one set of variables being the co­
ordinates of P, the other one the coordinates of a given variable 
point of 3r. 

PROOF. If the correlation is given by (9), then 
n 

X) aikXi4>{xh) = 0 
i,k=0 

must hold for every point P since Xi lies on u{i). Every automor­
phism of a field F leaves 0 and 1 unaltered. We put X; = l, 
Xj = 0 for j?^i and obtain aa = 0 for all i. Hereafter we set Xi = 1 
and leave xk indeterminate for the moment for a fixed pair 
iy^k. We set xy = 0 îorj^i, k. We get 

(10) aik<t>{xk) + akixk = 0. 

If we put Xk — 1, we see that a^ = —aki, the matrix (dik) is skew-
symmetric. Furthermore, there exists a pair i> k for which 
aik^O. By using the result we have just found we derive from 
(10), (j)(xk) =Xk for all elements Xk in F. Hence X—>0(X) is the 
identical automorphism. 

Then the condition for a point (y0, yi, • • • , yn) to lie in the 
hyperplane ü{ï) corresponding to the point Xi is given according 
to (9) by y%2aikyiXk = 0, where (aik) is skew-symmetric as re­
quired by the theorem. The number of dimensions n is odd be­
cause otherwise the determinant of (aa) would vanish. 

A one-to-one correspondence between points and hyperplanes 
with the properties (1) and (2) defined in the introduction estab­
lishes a correlation of period 2. It follows that we have a null 
system. 
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6. General Correlations of Period 2. We consider more gen­
eral correlations of period 2 and prove the following theorem. 

THEOREM. A correlation of period 2 associates to a point 
(xo, • • • , xn) a hyper plane whose equation in point coordinates 
Zi is given either by 

2Z UikZiXk = 0 with aik = aki, (polarity), 
i,k 

or by 

/ ! dikZiXjc — 0 with aik = ~ aki, (null system for an odd 
%,k 

number of dimensions only), 

or by the vanishing of a Hermitian form\ 

zli ^ikZi(j>(xk) = 0, aik = <l>(aki), 

where A—>cj>(\) is an automorphism of period 2 of the underlying 
field F. 

PROOF. If a correlation of period 2 is given by (9), we derive, 
by effecting the correlation twice, 

n n 

yxi = J2aij(l>(üu)) = *22<Xij<l>(ajk)<M>(xk), 
j = 0 3, k=Q 

where 7 ^ 0 is a factor depending on (x0, XI, • • • , xn) but in­
dependent of i. 

Besides the matrix A = (aik) we consider A* = (<j)(aik))} and 
form 

(11) M = A'~XA*. 

Then, by the linear transformation with this matrix, 

0<£Oo), H>(XL), • • • , H>(xn)) 

is transformed into 

(7*0, 7*i> ' ' * > 7 * » ) . 

f In the general sense in which this word is used by L. E. Dickson in 
Modern Algebraic Theories, p. 66. The first case can, of course, be considered 
as a special case of the third case. 
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By putting all xk = 0 except one which has the value 1, we prove 
in the usual manner that M is a diagonal matrix. By putting all 
Xi = 1, we see that M = c-1, where 1 denotes the unit matrix and 
CF^O. Now we set #i = l, #2=X, Xz = x± = • • • = 0 , where X is 
an arbitrary element of F. Then we find 

7 = c-1, y \ = c-00(X), 

and hence 00(X) =X; the automorphism X—->0(X) is of period 2. 
Equation (11) in combination with M = c-1 gives 

(12) ,4* = cA'. 

We apply the automorphism X—>0(X) to the equation (12). Then 
A* = (0(a»fc)) is transformed into (00(a^)) = (a*fc) =^4 and hence 

(13) il = 0(cM*'. 

From (12) and (13) follows A =<fi(c) -c-A, and, since AT^O, 

(14) 0(c). c = 1. 

If c^ — 1 , we set Z = l + c and obtain 

£-0(0 = c(l + 0(c)) = c + c0(c) = c + 1 = / , 

so tha t 

(15) c = l/W). 

We then replace A by M , as we may, and consequently A* by 
<t>(l)A*. Then in (12), c is to be replaced by c0(/)/7 = l. There­
fore we can assume c = l, and (12) shows that A is Hermitian 
with respect to the automorphism X—>0(X) of period 2. 

If c= — 1, but if there exist elements ft in F with 0(^)^/4, 
(15) holds for /=/*—0(/x) and we obtain the same result. 

If, finally, 0(ju) =/x for all ;u in F, we have A*=A and from 
(14) follows c2 = l , c = ± 1, A' = +i4. Therefore, 4̂ is either sym­
metric or skew-symmetric. 

If (zo, ziy • • • , zw) is a point of the hyperplane corresponding 
to (x0, xi, - • - , xn), it follows from (9) that ^2aikZi<l)(xk) = 0. 
We have shown that here 0 is of period 2 and (a**.) Hermitian, or 
0(X) =X identically and (a^) symmetric or skew-symmetric. 
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