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TRANSFORMS OF FUCHSIAN GROUPS* 

BY P. K. REES 

This paper gives four theorems concerning the relative 
sizes of the isometric circles of the transformations, T(z) 
= (az+c)/(cz+â), of a Fuchsian group and those of the trans­
forms, S(z)=GTG-l(z) = (Az + C)/(Cz+A), of T in which 
G(z) = (az-\-v)/(vz-\-â) is considered as fixed and T any trans­
formation of the Fuchsian group. 

THEOREM 1. The necessary and sufficient condition that the 
radii, rs and rt, of the isometric circles of S and T be equal is that 
the midpoint, (a — a)/(2c)—m, of the line segment joining the 
centers, gt and gl, of the isometric circles, It and I[ , of T and T~l 

be on the circle Qh(z) with the origin and the center, g= — â/v, of 
the isometric circle of G as opposite ends of a diameter or on the 
circle Q*(z) with the origin and \/g as opposite ends of a diameter. 

PROOF. The equations of Qh(z) and Qt(z) are 

Qs>(z) = Ivvzz + avz + avz = 0, Q<s(z) = 2aâzz + avz + âvz = 0 . 

If z lies on either Ç5 or Q&, then Qh(z)Q§(z) =0 . But 

(a — a)(— avc + avc) — aavv[(a — a)2 — 2cc] 

(avc)2 — (avc)2, 

which vanishes if and only if rs = rt. Multiplying (1) equated to 
zero by — [(a — â)/(2cc)]2 and replacing (a —a)/(2c) by m, we 
have Qt>(m)Qe(m) = 0. 

THEOREM 2a. The necessary and sufficient condition that 
r8<rt(rs>rt) is that z = m substituted in the expression f or Q$Q% 
makes that expression positive (negative). 

PROOF. rs>rt according as l/rs
2 —l/rt

2^0. Furthermore 

/ 1 1 \ (a - a)2 

\r2 r?) 4c*c* 
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Therefore QbQ& > 0 according as l/rs
2 — l/rt

2 > 0, that is, accord­
ing as r s < n . 

THEOREM 2b. The necessary and sufficient condition that rs<rt 

is that m be outside both Q5 and QQ or inside both; the necessary 
and sufficient condition that rs>rt is that m be inside Q& or Q% and 
outside the other. 

PROOF. The expressions for each Ç5 and QQ are negative (posi­
tive) according as m is inside (outside) the circle. Theorem 2b 
follows from this and Theorem 2a. 

REMARK 1. The diameter of Q$ is equal to | g\ = | â/v\. This 
can be made as large as one may wish by choosing | v | suffi­
ciently near zero. Furthermore, the radius of Ce is the reciprocal 
of that of ft- Hence, by choosing G with \v\ sufficiently near 
zero, one can make the region inside Ç5 or Qe and outside the 
other as nearly a half-plane as desired. Therefore, for g suffi­
ciently large, those transformations of the group T with m in 
approximately one half-plane (the one g is in) have their 
isometric circles increased in magnitude by transforming by G 
whereas those with m in the other approximate half-plane 
have rs<rt. 

Furthermore by choosing \g\ sufficiently near to unity one 
can make the region inside Qz or Q& and outside the other as 
small as he may wish. Thus the transformations with m in as 
nearly the entire plane as desired have their isometric circles 
decreased in magnitude by transforming by G. 

THEOREM 3. The necessary and sufficient condition that rs = rt/k, 
k a non-negative real number, is that m lie on the locus 

(2) (laâvvzz -f- av2vz + aâ2vz)(2aâvvzz -f- âvv2z + a2âvz) 

= k2zzaâvv. 

PROOF. From the definitions of rs and rt and from the equation 
rs = rt/k, we have (rt/rs)

2 = (CC)/(cc) =k2. Replacing CC by its 
value in terms of the coefficients of T and G and then replacing 
{a —a)/{2c) by m, we have (2), since c/c— —m/m. 

REMARK 2. The number k is not determined by (2) for a real, 
since then m==0. However, m is on both CO and Ce for m = 0, and 
therefore, by Theorem 1, & = 1. 
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COROLLARY 1. The absolute minimum value of k is zero; this 
value is taken on if the midpoint of the line segments (gt, gt) 
and (g, l / l ) coincide and is possible only for T an elliptic trans­
formation. 

PROOF. Substituting m= — (aâ-\-vv)/(2av) into (2), we see 
that k = 0 if (a — a)/(2c) = —(aâ+i>v)/(2ap). Furthermore, we 
have Qo[ — (aâ-\-av)/(2av)\ > 0 for all G and all T of Fuchsian 
type, whereas Qo[(a — a)/(2c)] > 0 for T elliptic only. 

REMARK 3. Changing (2) to trigonometric form, one finds the 
discriminant of the resulting quadratic in p to be 

f(k) = 4(aveie + âve~iey - \6aâvv{\ ~ k2). 

This is a perfect square if and only if k = l or 0; hence (2) is 
factorable rationally in terms of the coefficients of G in these 
two cases and only in them. The factors for k = 1 are Ç5 and QQ 
of Theorem 1, and for k = 0 they are immediate from (2). 

STATE COLLEGE OF NEW MEXICO 

T H E EQUATION 2*-3*' = d* 

BY AARON HERSCHFELD 

1. Introduction. According to Dickson's History of the Theory 
of Numbers,^ Leo Hebreus, or Levi Ben Gerson (1288-1344), 
proved that 3m± 1 ^2n if rn>2, by showing that 3 m ± l has an 
odd prime factor. The problem had been proposed to him by 
Philipp von Vitry in the following form : All powers of 2 and 3 
differ by more than unity except the pairs 1 and 2, 2 and 3, 
3 and 4, 8 and 9. In 1923 an elegant short proof by Philip 
Franklin appeared in the American Mathematical Monthly.{ 

In 1918 G. Polya§ published a very general theorem which, 
as was later pointed out by S. Sivasankaranarayana Pillai,11 
proved as special cases that the equations 
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i Vol. 30 (1923), p. 81, problem 2927. 
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