TRANSFORMS OF FUCHSIAN GROUPS*

BY P. K. REES

This paper gives four theorems concerning the relative sizes of the isometric circles of the transformations, $T(z) = (az + \bar{c})/(cz + \bar{a})$, of a Fuchsian group and those of the transforms, $S(z) = GTG^{-1}(z) = (Az + \overline{C})/(Cz + \overline{A})$, of T in which $G(z) = (\alpha z + \overline{\nu})/(\nu z + \overline{a})$ is considered as fixed and T any transformation of the Fuchsian group.

Theorem 1. The necessary and sufficient condition that the radii, r_s and r_t , of the isometric circles of S and T be equal is that the midpoint, $(a-\bar{a})/(2c)=m$, of the line segment joining the centers, g_t and g_t' , of the isometric circles, I_t and I_t' , of T and T^{-1} be on the circle $Q_5(z)$ with the origin and the center, $g=-\bar{a}/\nu$, of the isometric circle of G as opposite ends of a diameter or on the circle $Q_5(z)$ with the origin and $1/\bar{g}$ as opposite ends of a diameter.

PROOF. The equations of $Q_5(z)$ and $Q_6(z)$ are

$$Q_5(z) = 2\nu\bar{\nu}zz + \alpha\nu z + \bar{\alpha}\bar{\nu}\bar{z} = 0, \quad Q_6(z) = 2\alpha\bar{\alpha}zz + \alpha\nu z + \bar{\alpha}\bar{\nu}\bar{z} = 0.$$

If z lies on either Q_5 or Q_6 , then $Q_5(z)Q_6(z) = 0$. But

(1)
$$\frac{1}{r_s^2} - \frac{1}{r_t^2} = -(a - \bar{a})(-\alpha\nu\bar{c} + \bar{\alpha}\bar{\nu}c) - \alpha\bar{\alpha}\nu\bar{\nu}\left[(a - \bar{a})^2 - 2c\bar{c}\right] - (\alpha\nu\bar{c})^2 - (\bar{\alpha}\bar{\nu}c)^2,$$

which vanishes if and only if $r_s = r_t$. Multiplying (1) equated to zero by $-[(a-\bar{a})/(2c\bar{c})]^2$ and replacing $(a-\bar{a})/(2c)$ by m, we have $Q_5(m)Q_6(m)\equiv 0$.

THEOREM 2a. The necessary and sufficient condition that $r_s < r_t(r_s > r_t)$ is that z = m substituted in the expression for Q_5Q_6 makes that expression positive (negative).

PROOF. $r_s \leq r_t$ according as $1/r_s^2 - 1/r_t^2 \geq 0$. Furthermore

$$Q_{5}Q_{6} = -\left(\frac{1}{r_{s}^{2}} - \frac{1}{r_{t}^{2}}\right) \frac{(a - \bar{a})^{2}}{4c^{3}\bar{c}^{3}}.$$

^{*} Presented at the Southwestern Section of the A.A.A.S., April, 1935.

Therefore $Q_6Q_6 \leq 0$ according as $1/r_s^2 - 1/r_t^2 \leq 0$, that is, according as $r_s \geq r_t$.

Theorem 2b. The necessary and sufficient condition that $r_s < r_t$ is that m be outside both Q_5 and Q_6 or inside both; the necessary and sufficient condition that $r_s > r_t$ is that m be inside Q_5 or Q_6 and outside the other.

PROOF. The expressions for each Q_5 and Q_6 are negative (positive) according as m is inside (outside) the circle. Theorem 2b follows from this and Theorem 2a.

Remark 1. The diameter of Q_5 is equal to $|g| = |\bar{\alpha}/\nu|$. This can be made as large as one may wish by choosing $|\nu|$ sufficiently near zero. Furthermore, the radius of Q_6 is the reciprocal of that of Q_5 . Hence, by choosing G with $|\nu|$ sufficiently near zero, one can make the region inside Q_5 or Q_6 and outside the other as nearly a half-plane as desired. Therefore, for g sufficiently large, those transformations of the group T with m in approximately one half-plane (the one g is in) have their isometric circles increased in magnitude by transforming by G whereas those with m in the other approximate half-plane have $r_s < r_t$.

Furthermore by choosing |g| sufficiently near to unity one can make the region inside Q_5 or Q_6 and outside the other as small as he may wish. Thus the transformations with m in as nearly the entire plane as desired have their isometric circles decreased in magnitude by transforming by G.

THEOREM 3. The necessary and sufficient condition that $r_s = r_t/k$, k a non-negative real number, is that m lie on the locus

(2)
$$(2\alpha\bar{\alpha}\nu\bar{\nu}z\bar{z} + \alpha\nu^2\bar{\nu}z + \alpha\bar{\alpha}^2\bar{\nu}\bar{z})(2\alpha\bar{\alpha}\nu\bar{\nu}z\bar{z} + \bar{\alpha}\nu\bar{\nu}^2\bar{z} + \alpha^2\bar{\alpha}\nu z)$$

$$= k^2z\bar{z}\,\alpha\bar{\alpha}\nu\bar{\nu}.$$

PROOF. From the definitions of r_s and r_t and from the equation $r_s = r_t/k$, we have $(r_t/r_s)^2 = (C\overline{C})/(c\overline{c}) = k^2$. Replacing $C\overline{C}$ by its value in terms of the coefficients of T and G and then replacing $(a-\overline{a})/(2c)$ by m, we have (2), since $c/\overline{c} = -\overline{m}/m$.

REMARK 2. The number k is not determined by (2) for a real, since then m = 0. However, m is on both Q_5 and Q_6 for m = 0, and therefore, by Theorem 1, k = 1.

COROLLARY 1. The absolute minimum value of k is zero; this value is taken on if the midpoint of the line segments (g_t, g'_t) and $(g, 1/\bar{g})$ coincide and is possible only for T an elliptic transformation.

PROOF. Substituting $m = -(\alpha \bar{\alpha} + \nu \bar{\nu})/(2\alpha \nu)$ into (2), we see that k = 0 if $(a - \bar{a})/(2c) = -(\alpha \bar{\alpha} + \nu \bar{\nu})/(2\alpha \nu)$. Furthermore, we have $Q_0[-(\alpha \bar{\alpha} + \alpha \bar{\nu})/(2\alpha \nu)] > 0$ for all G and all T of Fuchsian type, whereas $Q_0[(a - \bar{a})/(2c)] > 0$ for T elliptic only.

REMARK 3. Changing (2) to trigonometric form, one finds the discriminant of the resulting quadratic in ρ to be

$$f(k) = 4(\alpha \nu e^{i\theta} + \bar{\alpha}\bar{\nu}e^{-i\theta})^2 - 16\alpha\bar{\alpha}\nu\bar{\nu}(1-k^2).$$

This is a perfect square if and only if k=1 or 0; hence (2) is factorable rationally in terms of the coefficients of G in these two cases and only in them. The factors for k=1 are Q_{δ} and Q_{δ} of Theorem 1, and for k=0 they are immediate from (2).

STATE COLLEGE OF NEW MEXICO

THE EOUATION $2^x - 3^y = d^*$

BY AARON HERSCHFELD

1. Introduction. According to Dickson's History of the Theory of Numbers,† Leo Hebreus, or Levi Ben Gerson (1288–1344), proved that $3^m \pm 1 \neq 2^n$ if m > 2, by showing that $3^m \pm 1$ has an odd prime factor. The problem had been proposed to him by Philipp von Vitry in the following form: All powers of 2 and 3 differ by more than unity except the pairs 1 and 2, 2 and 3, 3 and 4, 8 and 9. In 1923 an elegant short proof by Philip Franklin appeared in the American Mathematical Monthly.‡

In 1918 G. Polya§ published a very general theorem which, as was later pointed out by S. Sivasankaranarayana Pillai,|| proved as special cases that the equations

^{*} Presented to the Society, October 26, 1935.

[†] Vol. 2, p. 731; see J. Carlebach, Dissertation, Heidelberg, 1909, pp. 62–64.

[‡] Vol. 30 (1923), p. 81, problem 2927.

[§] Zur Arithmetische Untersuchung der Polynome, Mathematische Zeitschrift, vol. 1 (1918), pp. 143–148.

^{||} Journal of the Indian Mathematical Society, vol. 19 (1931), pp. 1-11.