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CYCLIC FIELDS OF DEGREE p* OVER F OF
CHARACTERISTIC p*

BY A. A. ALBERT

1. Introduction. The theory of cyclic fields is a most interest-
ing chapter in the study of the algebraic extensions of an ab-
stract field F. When F is a modular field of characteristic p,
a prime, particular attention is focussed on the case of cyclic
fields Z of degree p» over F. Such fields of degree p, p* were
determined by E. Artin and O. Schreier.

In the present paper I shall give a determination of all cyclic
fields Z of degree p* over F of characteristic p.

2. Normed Equations. An equation
(1) A2 =\+ g, (@ in F),

is called a normed equation. If x is any root of (1), then so are
x+1,x+2, - -, x+p—1. Using this fact, Artin-Schreier have
proved the following lemmas.

LEMMA 1. A normed equation is either cyclic or has all of its
roots in F. Every cyclic field of degree p over F may be generated
by a root of a normed equation.

LEMMA 2. Let F(x) be cyclic of degree p over F,
2) x? = x + a, (a in F).

Then a quantity y of F(x) which is not in F satisfies a mormed
equation if and only if

3) y=rkx+bd (k=1,2---,p;binF).

LeEMMA 3. Let ¢ in Z have degree t < p—2 in x. Then there exists
a quantity g=g(x) in Z such that

(4) glx + 1) — g(x) = c.

Moreover, g is uniquely determined up to an additive constant in F.

* Presented to the Society, March 30, 1934.
1 Hamburg Abhandlungen, vol. 5 (1926-7), pp. 225-231.
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By applying Lemmas 1, 2, 3, Artin-Schreier proved the fol-
lowing fact.

LEMMA 4. Every cyclic field Z of degree p over F is the sub-field
of cyclic overfields Z , of degree p?over F. If Z1= F(x1), x:» =%1-} a4,
a11n F, then all such fields Z 5 are obtained by

(5) Zo = F(x,), XP = X9 + a (asg in Zy),
where ay ranges over all solutions of (4) in the case

(6) ¢ = (%1 + a1)?! — xpL,

A generating automorphism S of Z, is given by

@) xS = 21+ 1, X8 = %9 + x177,

so that

@) x% =x+art+ (w+ D7+ (v — D

(”=172)"')’
and in particular
(9) xS =dat a1 (A p— 1P = wy — 1.

As an immediate corollary of (9) we have the following
lemma.

LeMMA 5. Let Z=F(x), x?»=x-a, be cyclic of degree p over F.
Then

Tzip(x?™) = 277 + (x + 1)7?

(10)
+ e (xp— D= — 1,

3. Generating Automorphisms. Now let Z=_Z, be any cyclic
field of degree p™ over F and let S be a generating automorphism
of the cyclic automorphism group of Z. It is well known that

(11) Zn>Zn_1>"'>Z1>Zo=F,

where Z; is uniquely determined, is cyclic of degree $¢ over F,
cyclic of degree p over Z;_;. Moreover the automorphism S
applied in Z; may be taken as generating the automorphism
group of Z; with

(12) Q: = 57



1934.] CYCLIC FIELDS 627

as identity automorphism for Z;. In fact Z; is defined as the
set of all quantities of Z, (and no others) unaltered by the
automorphism Q;.

We may consider Z; as cyclic of degree p over Z;_;. Then the
group of Z; over Z,_; is evidently generated by Q;_,

(13) Qi-1)? = Qi.

If b; is any quantity of Z;, then we write

(14) Tzap(ds) = b+ bS + - - + b5,
We then evidently have

(15) Tzar(8:) = Tzs ¢ [Tzi2,-,(83)],
where

(16) Tz,1zi-(0:) = bi + 01 + - - - + b9

is evidently in Z;_;.

The field Z; is cyclic of degree p over Z;_; so that, by Lemma
1,
(17) Z; = Zi_l(xi), x®? = x; + ai (d,’ in Z,'_l).

Moreover, x; is not in Z;_;, so that F(x;) is in Z; but not in
Z;—1. The cyclic field Z;_, contains every proper sub-field of Z;
and hence must contain F(x;), if F(x;) is a proper sub-field of Z;.
Thus, in fact, we have

(18) Z.' = F(x,)

We may now prove the following fact.

LEMMA 6. Let bip1=(x1%2 - - - %3)7 1=x;7"10;. Then by, is in
Zi;and
(19) Tz, r(biv1) = (— 1)%.

For b; is in Z;_; and is unaltered by the automorphism
Qi-1. Hence Tz, 2, ,(bsy1) =0Tz, z,_,(x:#1). Since Qi_; is a gener-
ating automorphism of Z; over Z,;_;, some power .S; of Q;_; car-
ries x; into x;+1. But then Lemma 5 implies T'z;,z,_, (x:#!) = — 1.
Hence

(20) Tzyp(bir1) = Tz ywlb:Tz02,_ (s 0] = — Tz, r(bs).

-1
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By repeated application of this recursion formula, we evidently
obtain (19).
Let S be a generating automorphism of Z,. Then

(%:5)? = x5 + a5,

But evidently x® is a primitive quantity of Z; of degree p
over Z;_1, so that, by Lemma 2,

(21) xS = kiw; + b, (ki=1,2,---,p—1;b;inZ;_y).

Then xisz=kixis-|-bis=ki2x,~+b“, and ﬁnally xisy=ki”x,-+bi,,.

Hence, if m=p", we have x> =k/x;+bim=x:; But then
M=1. Since k;?»=Fk;, we evidently have k*=k;=1. Thus

(22) 28 = x; + by, G=12,---,m).

Moreover,

(x8)? = aP + b = 2+ a; + 0P = 2 + b + aF,

(23) S — a; = bP — b;.

The automorphism Q;_; is a generating automorphism of
Z;over Z;_; and replaces x; by x;+hi, (Bi=1,2, - - -, p—1). But

0 = w; + Tz, r(b)) = % + by,
so that
Tz;_gr(bs) = b #0
(= 1,2, p—16=1,-,n).

Conversely, let b; satisfy (24), a; be determined by (23), and
let x,» =x;+4a; be irreducible in F. Then Z,= F(x,) is cyclic of
degree p™ over F when Z, is defined by (17), Z;=F(x;), and S
generates the automorphism group of Z,. For assume this true
for Zy, Zs, -+ -, Zyn_1, and define Z,=2,_1(x,). The degree of
Z., over F is then p», for otherwise x, is in Z,_;1, by Lemma 1,
and hence (x,) 9" '=x,, contrary to (24) and (22). Moreover,
(22) defines an automorphism S of Z, which has order at least
p™1, since S generates the automorphism group of Z,_;. But S
actually has order p~, since Q,_1=S?"" alters x,. Hence the
group of automorphisms of Z, has a cyclic sub-group of order
p*, the degree of Z,, and Z, is cyclic. It follows that Z, = F(x.,).
We have proved the following result.

(24)
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LeMMA 7. Every cyclic field of degree p over F is generated by o

quantity x, such that

(25) 2P = x; + a, a;inZ, g = F(xi—l); (i = 1’ 2,000, "’):

and x,? =x1+a; is irreducible in F. If S is a generating automor-
phism of the group of Z,, then

xS = x; + by, Tz, ir(biy1) = hi,

(26) )
(hi=1,---,p—1;i=1,--,n),

with

(27) bP — b; = aS — a; (t=2,--+,m).

Conversely, every field Z, defined by (25), (26), (27) and x,» =x:1+a
srreducible in F, is cyclic of degree p» over F with generating
automorphism S given by (26).

Let ¢; be an arbitrary quantity of Z; and write

C; = Z )\j,f,...f‘xlilxzil ceeogdl
jr=0,1’...,p_1
with coefficients N in F. If Ny_y, p—1,...,p-1=0, we call ¢; a non-
maximal quantity of Z;, We may prove the following lemma.

LeMMA 8. If b= (x1%s - - - xi_1)?Y, the polynomials

(28) i1 = b2 — bi = [(x14 a)) (w2 + @) - - - (w1 + a;0) 7!
- (xlxz e xi—l)p—ly (7' = 2; cet 7”)’
are non-maximal and (27) have solutions a; in Z,_1 which are
unique up to an arbitrary additive constant in F. Then the a;
define cyclic fields Z;, (1=2, - - -, n), containing Z,, where Z; is
cyclic of degree p* over F. In fact, if ¢; is any non-maximal quan-

tity of Z;, there exist solutions d; in Z; of
ci=dis.—di d,,SEd,x b, X bi
(29) ) ( 1+ b ) . + ))
(1= 1)"'1"’)’

which are unique up to an additive constant in F.

For evidently T p(bit1)=(—1)!=h;#0, so that (26), are
satisfied. It is thus sufficient to prove the existence of the a;
satisfying (27) and hence sufficient to prove the existence and
uniqueness of solutions of (29) of which (27) is a special case.
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We know that Lemma 8 is true for =1, 2* by Lemmas 3, 4.
Hence assume Lemma 8 true in its entirety for Z of degree
b, p?, - - -, ¥ L. Then, by our assumption (29), there exists a Z;
of degree p¢ over F, the equation (29) has a unique solution
in Z;_;, and we wish to prove (29) also has a unique solution in
Z;and hence the existence of Z;y1.

Write

i = Nt 4 - - o N, M;jinZ;y).

If \; is a non-maximal quantity of Z;_;, then, by our above
assumption, \;= ud —pe, (uein Z;_;). But then

(rexit)S — pawst = pd(; + b))t — pers = Newit + -+ -,

so that ¢;— [(uw:t)® — (uxs?) | has degree at most £ —1.
If \;is maximal, then { <p—1 and ¢; has leading term

)\(xlxz e x;_l)i"lxi‘ = Nb;xit, AZ0inF.
But then ¢+150,
ANt 4+ D)7 (at+1)8 — x;‘+1] =\t + 1)—-1[(xi + b))t — gyt+t]
=>\bixit+ ey,
so that ¢;— { N@E41) "t t+1 ]S — [)\(t+1)‘1x.-‘+1]} has degree at
most ¢ in x; and non-maximal leading coefficient. A repeated
application of the above process may evidently be made to ob-
tain a quantity §; in Z; such that ¢;— (85 —8:) =7s0, (Y40 in Zi_y).
But v; may be taken non-maximal as above with {=0,{+1=1,
and hence
Yio = ¥ — v, ¢ = dS — d, d; = 8; + vi.

Now let c¢;=df—d;=di’—di. Then (di—d)S=di°—dS
=dy—d;. The only quantities of Z; unaltered by S are quanti-
ties of F. Hence dy—d;=\ in F. We have proved Lemma 8.
We shall now prove our principal theorem.

THEOREM. Every cyclic field Z, of degree p over F of character-
istic p is the sub-field of cyclic overfields of degree p*. Write

(30) Zy = F(xy), 2P = %1+ ay, (a1 in F).

* Note that (28) is true for n=2 by Lemma 3, is vacuous for »=1. Hence
Z, is defined by Lemma 4. This is the first step in our induction, the case =2,
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Then all such fields Z ., are given by
31) Z; = F(x:), «® = x;+ as, a; in F(xiy), G =2,--+,n),

where a; is the unique (up to an arbitrary additive constant in F)
solution of

ai(xs 4+ b1, - -+, %1+ bim1) — 0
32) = [(x1+a) - -+ (Timr + @) |77 — (w22 - - - 2im1) P
b = (212 + + 259)?7, (2= 2,---,mn).

Conversely, all fields defined by (30), (31), (32) with x:? =x1-+a,
irreducible in F are cyclic of degree p™ with generating automor-
phism S given by

33) wo =1, 28 = x; + (xow129 - - - x:_)?Y, (2=1,.---,m).

For we have proved that the fields defined above are cyclic,
in Lemma 8. Assume now, conversely, that Z, is cyclic of
degree p" over F and that we have proved the above result for
its subfields Zy, - - -, Z,_1. Let x,°=x,+d, by Lemma 7 and
write d, =0b,+g., where b, = (x1x2 - - - x,1)?1, B is in F, and
— g, is a non-maximal polynomial in Z,_;. By Lemma 8, we have
also

— gn = S — ha, (hpin Zpy).

We then let y, =x,~+h,, so that
yns= an—f-k"S = xn+ﬂbn+grs+hn—gn= yn+ﬂbn-

Moreover, Z, = F(x,) = F(y,), since it is evident that vy, gener-
ates Z,_1(x,) over Z,_; and hence also F(x,), by Lemma 7 (in
which we proved Z,_i(x,) = F(x,)).

But now we have shown that we may take d,=p0b, without
loss of generality. Since

TZ,,_1IF(dn) = ﬁTZn_llF(bn) = (— l)n—lﬁ = kn;
(kﬂ:lf"'?P—l)r

the quantity 3 is a non-zero integer. There exists an integer v
such that y8=1 and, if we write z,=1vx,, we have 2.0 = %"
=v(xn+Bbn) =2,~+b,. Evidently F(x,) = F(2,) while z, satisfies
(33). By Lemma 7, (27), we have also (32) for ¢=#; and we
have proved the theorem.
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