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If p occurs in the set (12), >̂ — 8 is not in it except for 
£ = 232, 240, 472, 480. For these four, £ - 8 * 2 4 is not in the 
set (12). This proves Theorem 4. 

9. Corresponding results for cubes are obtained in the 
writer's paper in the American Mathematical Monthly 
for April, 1927. Assistance has been provided by the 
Carnegie Institution for the more elaborate investigation 
of fifth and higher powers. 
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There are, generally speaking, two distinct methods for 
determining the primality of a large integer without trying 
possible divisors. Up to this time the method which goes by 
the name of Lucas' test f has yielded the most results. I t is 
particularly well adapted to the investigation of Mersenne 
numbers and has consequently led to the identification 
of the three largest primes heretofore known, namely, 
2 8 9 - 1 , 2 1 0 7 -1 and 2 1 2 7 - 1 . The other method is based on 
the converse of Fermâtes theorem. It is the purpose of this 
paper to discuss certain improvements in this method, and 
to apply it to some numbers of the form 1 0 n ± l . 

I t has long been known that the simple converse of 
Fermat's theorem, namely: If a* = l (mod N) for x = iV—1, 
then N is a prime, is not true, as is shown by the simple 
example : 4 1 4 ^1 (mod 15). A true converse of this theorem 
was first given by LucasJ in 1876: If ax = l (mod N) 
for x = N—l, but not for x<N— 1, then N is a prime. In 
1891 he proved the following theorem. § 

* Presented to the Society, San Francisco Section, April 2, 1927. 
t American Journal, vol. 1 (1878), pp. 184-220. 
J Lucas, loc. cit., p. 302. 
§ Théorie des Nombres, 1891, pp. 423, 441. 
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THEOREM 1. If ax = \ (mod N) for x = N—l, but not f or 

x a proper divisor of N—1, then N is a prime. 

When applied to a particular N, this theorem exhibits 
three defects. In the first place, the complete factorization 
of N— 1 must be known. Secondly, the number of values of 
x which must be tried in order to show that the second part of 
the hypothesis is fulfilled, may be impossibly large. Thirdly, 
the condition for primality is sufficient but not necessary. 
If, however, N is of the form 2 n + l , the first two defects 
vanish ; for in this case all the divisors of N — 1 are powers of 
2, so that in testing for the first part of the hypothesis, the 
second part is automatically taken care of in the successive 
squarings of the residues modulo N. Unfortunately the only 
numbers of the form 2 n + l that have any chance to be 
primes are the Fermât numbers in which n is a power of 2. 
The numbers 2128 + 1 and 22 5 6+l have been tested in this 
way by Morehead and A. E. Western,* and both numbers 
were found to be composite. The next such number awaiting 
investigation is 2 1 0 2 4 +1, a number of 309 digits. A skillful 
computer could test this number in about ten years. As 
far as is known to the present author, no prime above the 
range of ordinary methods of factorization has ever been 
identified by the converse of Fermat's theorem.f It is clear 
that Theorem 1 must be improved before further results 
are possible. 

The first defect has to do with the factorization of N—1, 
and is difficult to overcome in case N is a number of unknown 
form. In many cases it is no easier to factor N—1 completely 
than to factor N. If, however, N is the maximum algebraic­
ally prime factor of a number of the form yn±l, it is usually 

* This Bulletin, vol. 11 (1905), pp. 543; and vol. 16 (1909), pp. 1-6. 
f An a t tempt to establish the primality of 261— 1 was made by Seelhoff 

(Zeitschrift für Mathematik und Physik, vol. 31 (1886), pp. 174-178) 
using methods depending on the converse of Fermat 's theorem. The proof 
is invalid, as was pointed out by Cole. It depends upon the false proposition 
tha t if a divides b and also c, then either b divides c or else c divides b. 
Despite this obvious error, the proof of the primality of 261 — 1 is invariably 
at tr ibuted to Seelhoff. 
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possible to decompose N—l into algebraic factors as is 
shown in the following examples: 
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The large factors on the right are differences of squares. 
Thus the factors of N—l are made to depend upon factori­
zations of yn ± 1 for much smaller values of n. These may 
be taken from tables* previously computed. In case N—l 
cannot be expressed in some such form as the above, one 
can always be assured of having n as a factor oî N—l. If 
a small factor of N is known (as it often is from congruence 
tables) and if N' is the residuary factor, the factorization 
of N' — l is again very difficult. In this case, however, 
we have n as a factor, but it is of little use except in 
reducing the size of the number to be factored. We shall 
see later that it is not necessary to know the complete 
factorization of N—l. 

The next improvement in Theorem 1 that suggests itself 
is the reduction of the number of values of x to be tried. 
In the following theorem this number is reduced from the 
number of divisors of N—l to the number of its prime 
factors. 

* Cunningham and Woodall, Factorization of yn±l, London, 1925. 
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THEOREM 2. If ax s= 1 (mod N) for x = N—l,but not for x 
a quotient of N— 1 on division by any of its prime factors, 
then N is a prime. 

Let 

N - 1 = p&pf*pf* • • • pf* = tmpi, (i = 1,2,3, • • • , / ) . 

Then we have for an hypothesis : 

(1) aN~l s 1 (mod N) 

(2) a " « ^ 1 (modJV), (i = 1,2,3, • • • , t). 

Now let e be the smallest value of x satisfying ax = 1 (mod iV). 
Then e divides N— 1. For, if not, let iV—1=W€+S. Then 
since 

a *- l « fl»H-a s ! (mod 7^), 

it follows that a5 = l (mod iV), which is impossible, since 
ö < e. But e does not divide w», for if it did, we would have 
ami==l (mod N). Now let us write 

e = np\$ip£* - • • pf', 

where jS* may be zero and n is free of pi. Consider the 
quotient 

N - 1 ^ i a ^ 2
a 2 • • • pf' 

e npi^p^* . . - pft 

Since N— 1 is divisible by e, we see that n = 1, and further, 

Now the quotient 

*»i pi^P"* - • - PV 

€ p$"pê* ' ' ' pf* 

is not an integer, but it is identical with the preceding 
quotient except for the pi's, so that we can write fii>ai — 1, 
and in general f$i>ai— 1. But we have seen that jSt^ou. 
Hence (3i = ai and e = N— 1. Finally let 0(iV) be the to tient 
of N. Then a ^ ^ - l (mod iV). Now if N were composite, 
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we would have <I>(N) <iV— 1. But this is impossible since 
N — 1 = e, and this is the smallest value of x satisfying 
ax = l (mod N). Hence N is a prime. 

Although this theorem is an improvement on Theorem 1, 
it still has the third defect of that theorem ; that is, it tells 
us nothing of the character of a number N which satisfies 
the first part of the hypothesis but not the second. We 
have this situation, for example, whenever a is a quadratic 
residue of the prime N. I t is clear that this defect cannot 
be eliminated by any theorem having the general form of 
Theorems 1 and 2. With this in mind we change our point 
of attack, and, by introducing a new element in the hypothe­
sis, arrive at the following theorem. 

THEOREM 3. If ax^l (mod N) for x = N—l and if 

a*==r > 1 for x= (N—l)/p, and if r — \ is prime to N, then 
all the prime factors of N are of the form npa + l, where a 
is the highest power to which the prime p occurs as a divisor 
ofN-1. 

Let N—l~qpa = mp. Then we have for an hypothesis: 

(1) aN~l = 1 (modiV), 

(2) am == r (mod N), 

(3) r — 1 is prime to N. 

Now let K be any prime factor of N and let £ be the smallest 
value of x such that ax^\ (mod /c). Then since aN~l = \ 
(mod K), we can show as in the preceding theorem that 
£ divides N—l. Also by Fermâtes theorem aK~x^\. (mod K). 
Hence £ divides K — 1. But £ does not divide m, for if it did 
we would have a m = l (mod /c), which would imply that 
r — 1 is divisible by /c. But r — 1 is prime to N, and hence is 
prime to K. Let us write £ = ^ i ^ , where n\ is prime to p, 
and jo may be zero. Consider the quotient 

N—l qpa 

£ nip? 
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Since q is also prime to p, we have /3^ce. Now the quotient 

m qpa~l 

£ n\pP 

is not an integer, since m is not divisible by £. Hence /3 > a — 1. 
That is, j8 = a and % = nipa. But since £ divides K — 1, we 
have K — 1 = TZ2 £ = nin2p

a. Hence K = npa + 1 . 
This theorem is the basis of a method given by Pockling-

ton,* the importance of which seems to have escaped atten­
tion. In order to remove the final defect of Theorem 1, 
we must discuss the cases in which the various parts of 
the hypothesis are not fulfilled. If aN~x^l (mod N)1 then 
N is composite, and its factors are not obtainable by this 
method. If am^l (mod iV), all the factors of N divide the 
number am—l, whose primitive factors are of the form 
2nm + l. I t is usually too troublesome, however, to try 
to show that N is a primitive factor. In practice, it is better 
to take m/p2 or tn/p? for a new value of m. If then a m ^ l , 
all the factors of N are of the form np£*-\-\ or npf^~l + \} re­
spectively. If pi = 2, this last case may be investigated with­
out further calculation. However, this failure of the second 
part of the hypothesis is very rare, especially when care 
is taken in choosing the base a. Finally, if r — 1 is not prime 
to N, their G.C.D. will be a factor of N. 

Suppose that we have applied Theorem 3 to a particular 
N and we find that K = np\ a*-\-\. Then N is a prime if p"1 > N112. 
If on the other hand pf^ is too small, other factors of N—l 
may be dealt with in the same manner, so that we obtain 

Kz=npl
ai p2

a2 . . . + 1 , a form sufficiently exclusive to meet 
our needs. Suppose we have found in this way that K = nP + 1 , 
where P is the product of certain odd prime factors of N— 1. 
Our first inclination is to let n take on successive integral 
values, beginning with unity, and then try as divisors of 
N the prime values of K. If iV1/2>107 however, /c will run 
above the present limit of the list of primes, and we must 

* Proceedings of the Cambridge Philosophical Society, vol. 18 (1914— 
16), p . 29. 
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try composite values of K as well. Of course, about 5/6 
of these are easily seen to be multiples of small primes; 
as for the others, it is easier actually to try them as divisors. 
All this may entail considerable labor, which may, for the 
most part, be obviated by seeking to express N as the differ­
ence of two squares. If every factor of N = a2 — b2 is of the 
form nP+ly where P is odd, it follows that* 

(1) a2 = N (modP2), 

(2) a = 1 (mod P). 

One of the two values of a involved in (1) is eliminated by 
(2) so that a is restricted to one case in P2 . In fact, if 

N s 1 + kP (mod P 2) , 
then 

k 
a = H P (mod P2) , 

where, if k is odd, k/2 is taken modulo P . If the factors of 
N are, at the same time, of the form w2x + l, a similar restric­
tion may be set up modulo 22X~~1, which may be useful when 
X is large. Suppose it is known that no factor of N is less 
than some limit W. Then a has the following range of 
values: 

N112 < a < 
1 / N\ 

2\ W 

In our case W is at least as large as 2P, so that we have 

N1'2 < •<(p +5)-
Although a has a greater range than K, the possible values of 
a are more restricted especially when P is large. When P is 
small, so that there are a great number of values of either 
a or K to be tried, use can be made of the "movable strip" 
methodt of combining linear forms, which again favors the 

* Lawerence, Quarterly Journal, vol. 28 (1896), pp. 285-311. 
Kraitchik, Théorie des Nombres, Paris, 1922, p. 146. 

t Kraitchik, loc. cit., Chapter 2; also see Lawerence, loc. cit. 
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search for a. I t is sometimes advantageous to use both 
methods. The direct method may be used to increase the 
limit W, thus decreasing the range for a, so that the work may 
be easily finished by the difference of squares. 

Of the numbers yn±l, those for which y = 2 have been 
most extensively investigated. Perhaps y = 10 comes second 
in importance. If the results with 10n— 1 are comparatively 
few, it is not to be attributed to lack of interest, but rather 
to the lack of adequate methods with which to deal with 
these larger numbers. The preceding theory is most easily 
applied to divisors of 10n ± 1, because of the ease with which 
the calculations may be performed. 

Instead of employing the modulus N in our work, we may 
use any multiple of N; and, having found the residue of aN"1 

modulo kN, we have only to divide the result by N to obtain 
the desired result. If N is a divisor of 1 0 n ± l , we may 
choose k such that 10n±l=kN. The advantage in using 
the modulus 10n + 1 is that the division by this modulus may 
be performed by a single subtraction or addition. To cast 
10n + l out of a number of 2n digits, we separate it into periods 
of n digits each, beginning at the right, and subtract the sec­
ond period from the first. For 10n — 1, we simply add the two 
periods. An added advantage in using a composite modulus 
is that it provides an easy method of checking the work. We 
may select some small divisor of &, such as S, and then con­
struct an auxiliary table of ax (mod ô), containing at most </>(S) 
entries. This table enables us to predict what any particular 
residue of ax (mod kN) should be congruent to (mod ô), 
by finding what x is congruent to (mod 0(8)). The cal­
culation of the residue of aN~x may be most easily performed 
as follows. We first make a table of exponents beginning 
with w—1, in which each entry is obtained by writing in 
the greatest integer in half the entry just above. This table 
has roughly 3 logio N entries, the final one being unity. 
Starting now at the bottom, we make a table of powers of 
a, each line being obtained by taking the square of the 
preceding entry, modulo 1 0 n ± l , and multiplying this result 
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by a, whenever the desired entry corresponds to an odd 
exponent. On arriving at the top of the table, we cast N 
out of the final result and obtain aN~l (mod N). Of course 
the same procedure applies to the calculation of the residue 
of am. 

Below are the results of applying Theorem 3 to seven 
divisors of 10n± 1 for n = 19, 20, 23, 24, 27, and 31. Besides 
the check already mentioned, every step in the following 
work has been verified by casting out multiples of 1001. 
I t is confidently believed that, in those cases where a^""1^!, 
this result is not due to a slip in the computation. However, 
the actual residues are given in hopes that they may prove 
useful to future workers who may wish to verify the results 
obtained. 

1. Example 1. # = 440,334,654,777,631. 

This number is the residuary factor of 1027 — 1. In fact 

1 0 2 7 - 1 = 3 5 • 37 • 757 • 333667 • N. 

The discovery of the factors 3 and 757 by congruence tables 

makes the factorization of N—l & rather serious problem. 

At first sight we have 

i\T—1 = 2 • 33 • 5 • 1,630,869,091,769. 
The first two factors are of no use, since we know in advance 
that every factor of N is of the form 54^ + 1. After examining 
the large factor for divisors less than 1000 without result, 
5 was chosen as pa ; it was found that 

3W-D/6 = 3m == 31343325933897 = r (mod N), 

and further that 

f5 « 3*-i = i (modiV), 

r — 1 being prime to N. Every factor of N is then of the form 
5n + l. I t was next decided to undertake the arduous though 
not impossible task of seeking to represent N as the difference 
of two squares, taking for W the limit 120,000 set by con­
gruence tables. Before actually starting the work, however, 
a further at tempt to factor the number 1,630,869,091, 769 
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was made by means of the "factor stencils" of D. N. Lehmer,* 
which, though still incomplete, are fortunately available 
to the present author. Although this number of unknown 
form is nearly 1000 times larger than the intended limit of 
the stencils, it was found without great difficulty that 

1,630,869,091,769 = 31249-52,189,481. 

Choosing 52189481 as a new value of pa, it was easily found 
that 

3™ s= 78533825886276 = r (mod N), 

r — 1 being prime to N. The factors of N are then of the form 
52189481» + 1 . But iV1'2 is less than 20984153. Hence N 
is a prime and we have the complete factorization 

1027 - i = 35.37 .757 .333667 -440334654777631. 

2. Example 2. N = 9,999,000,099,990,001. 

This number is (10 2 0+1)/(10 4+1.) I t was found that 

3*- 1 - 3703264653988674 (mod N). 

Hence N is composite. This number has been examined for 
factors less than its cube root without success. I t is therefore 
the product of two primes. 

3. Example^. N = 9,999,999,900,000,001. 

This number is (1024 + l ) / ( l 0 8 + l ) . In this case we have 

1024 + 1 108 

N - 1 = 1 = (1016 - 1) 
108 + 1 108 + 1 

= 28 • 58 - 3 2 • 11 • 73 • 101 • 137. 

The divisors 28 and 58 were chosen as values of pa and tested 
in one operation as follows. I t was first found that 

7wr-D/io s 7128121476353673 = r (modN). 
Then 

r2 E= jw-i)/* s 428233546143224 (mod N), 

* Proceedings of the National Academy, vol. 11 (1925), p. 97. 
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and finally 

r5 = - 1 and r10 = 1 (mod N). 

Since r2 — 1 is prime to N, it follows that every factor of N 
is of the form 5sn + l and also of the form 28n + l. But 
iV1/2<108, so that N is a prime and we have the complete 
factorization : 

1024 + 1 = 17 • 5882353 • 9999999900000001. 

4. Example^. # = 909,090,909,090,909,091. 

This number is (1019 + 1)/11. I t was found that 

3*- 1 s 1 (modiV). 
Now we have 

1019 + 1 10 
N _ 1 = 1 = _ ( i o w - 1) 

1 0 + 1 11 
= 2 • 34 • 5 • 7 • 13 • 19 • 37 • 52579 • 333667. 

Choosing as p the number 333667, we obtain 

3m s 314776999832050172 = r (mod N), 

r — 1 being prime to N. Every factor of N is then of the form 
333667n + l, and also 19n + l ; or, in other words, 6339673?* 
+ 1. Using this restriction, we might test directly for the 
factors of N with n ranging from 1 to 150. About 125 of 
these values of K might be ruled out as being multiples of 
small primes. The remaining 25 would have to be tested. 
Instead, let us write N = a2 — b2. Then since 

ffsl + 56743-6339673 (mod (6339673)2), 

it follows that 
a s 1+3202708- 6339673 (mod( 6339673)2), 

or 

(1) a = 4019453746929^ + 20304121434485 . 

Taking IP or 12679346 as a value of W, we find that a has 
the following range: 

(2) 933462589 < a < 35855622005. 
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The smallest value of a allowed by (1) is more than 500 
times larger than the largest value allowed by (2). Hence a 
does not exist and N is a prime. We then have the complete 
factorization 

1019 + 1 = 11 • 909090909090909091. 

5. Example 5. N == 999,999,999,000,000,001. 

This number is (1027 —1)/(109 — 1). In this case it was 
found that 

3*-1 s 437299180785434949 (mod N) ; 

N is therefore composite. This number and the third one 
examined above fill in two entries in the following rather 
curious table: 

91 Composite 
9901 Prime 

999001 Composite 
99990001 Prime 

9999900001 Composite 
999999000001 Prime 

99999990000001 Composite 
9999999900000001 Prime 

999999999000000001 Composite 
Unfortunately, the next entry in this table is composite. 

6. Exampleô. N = 11,111,111,111,111,111,111,111. 

This number is (1023 —1)/9. I t was found that 

3*-1 = 1268486354649455149380 (mod N). 

Hence we know that N is composite. This number is listed 
as a prime in a table of divisors of 10n ± 1 given by Loof.* In 
a French edition f of this table is given the curious entry: 
11111 • 11111? BickmoreJ marks this number as a prime 

* Archiv der Mathematik und Physik, vol. 16 (1851), pp. 54-57. 
t Nouvelles Annales, vol. 14 (1855), pp. 115-117. Compare Messenger 

of Mathematics, vol. 33 (1903-04), p. 96. 
t Nouvelles Annales, (3), vol. 15 (1896), p. 222. 
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on the authority of Loof. The character of (1023 —1)/9 as 
revealed for the first time by the above result will be settled 
once and for all only when the factors are discovered. The 
numbers made up entirely of the digit 1 are of interest on 
account of the rarity of primes among them. Only those 
numbers that have a prime number of digits have any chance 
to be primes, and this set may be said to correspond to the 
Mersenne numbers. Besides the obvious cases 1 and 11, 
this former set contains but one other prime less than the 
limit ( 1 0 3 7 - l ) / 9 . This prime is ( 1 0 1 9 - l ) / 9 and was ex­
amined independently by Hoppe and Kraitchik by the dif­
ference of two squares. By way of comparison with the 
Mersenne numbers, it is found that there are no less than 9 
primes less than 237 — 1. The numbers 102^ + 1, which corre­
spond to the Fermât numbers, also show a scarcity of 
primes. The only primes that have been found in this set 
are 11 and 101, up to the limit 106 4+1. 

7. £^«1^7.^=909,090,909,090,909,090,909,090,909,091. 

This number is (1031 + 1)/11. In this case it was found that 

3N~l s 1 (mod N). 

Now we have 

1031 + 1 10 
N - 1 = 1 = —(1030 - 1) 

1 0 + 1 11 
= 2-33-5-7-13-31-37-41-211-241-271 

•2161-9091-2906161. 

Here N — l breaks up into so many small factors that no 
single one used for p gives sufficient restriction. Selecting 
£1 = 2906161 and £2 = 9091, it was found that 

3"i s 404215974512301275864167721473 = n (modiV), 

and 

3*« =« 554330112450224372250010348117 = r2 (mod N), 
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ri — 1 and r2 — 1 being prime to N. Hence the factors of N 
belong to the forms 

31» + 1\ 

9091» + 1> or 819017199181»+1. 

2906161» + V 

Now Nll2 = 953462589245592. To test directly for the 
factors of N would require 1164 values of ». Instead, we 
find that 

N = 1 + 645945952735-819017199181 (mod (819017199181)2), 

so that 

a = 1 + 732481575958-819017199181 (mod (819017199181)2) 

or 

(1) a = 670789172554289827070761» 

+ 599915008792806066890399. 

To find the range for a, we let W=2P = 1638034398362 and 
obtain 

(2) 953462589245592 < a < 554988900110999445. 

We see that the smallest value of a in (1) is more than a 
million times larger than the largest value in (2). Hence 
a does not exist and N is a prime. We then have the com­
plete factorization 

1031 + 1 = 11-909090909090909090909090909091. 

The author's acknowledgements are due to Miss E. M. 
Trotskaia for help in carrying out the above calculations. 
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