SOME PROPERTIES OF CONTINUOUS CURVES*

BY G. T. WHYBURN

The points A and B of a continuum M are said to be separated in M by a point X of M if M-X is the sum of two mutually separated sets S_1 and S_2 containing A and B respectively. The point P of a continuum M is a cut point of M if and only if the set of points M-P is not connected, i.e., is the sum of two mutually separated point sets.

A continuous curve M will be said to be *cyclicly connected* provided that every two points of M lie together on some simple closed curve which is contained in M. In this paper use will be made of the following fundamental theorem.

THEOREM A. In order that the continuous curve M should be cyclicly connected it is necessary and sufficient that M should have no cut point.

A proof for Theorem A will be found in my paper Cyclicly connected continuous curves, which will appear soon.

THEOREM I. If A and B are any two points of a continuous curve M and if K denotes the set of all those points of M which separate A from B in M, then K+A+B is a closed set of points.

PROOF. The curve M contains a simple continuous arc t from A to B. Clearly K must be a subset of t. Let P be any point of t-(K+A+B). Since P does not belong to K, A and B must both belong to some connected subset† of M-P, and by a theorem of R. L. Moore's‡ it follows that M-P contains an arc t' from A to B. On the arcs PA

^{*} Presented to the Society, December 31, 1926.

[†] See an abstract of a paper by R. L. Wilder, A characterization of continuous curves by a property of their open subsets, this Bulletin, vol. 32 (1926), pp. 217-218.

[‡] Concerning continuous curves in the plane, Mathematische Zeitschrift, vol. 15 (1922), p. 255.

and PB of t, in the order from P to A and from P to B respectively, let X and Y respectively denote the first points belonging to t'. Then no point of the segment XPY of t can belong to K+A+B. Since thus every point of t-(K+A+B) belongs to some segment of t which contains no point of K+A+B, the set K+A+B is closed.

DEFINITION. A cyclicly connected continuous curve C is said to be a *maximal cyclic curve* of a continuous curve M if C is a subset of M and is not a proper subset of any other cyclicly connected continuous curve belonging to M.

THEOREM II. If A and B are any two points of a continuous curve M, t is any arc of M from A to B, K denotes the set of all those points of M which separate A from B in M, and S is any maximal segment of t-(K+A+B), then M contains a maximal cyclic curve which contains S.

PROOF. Let E and F denote the end points of S. Let G denote the collection of all the maximal connected subsets of M-(E+F). At least one element of G, namely, the one which contains S, must have both of the points E and F for limit points. Only a finite number of elements of G can have this property. Let H denote the point set obtained by adding together all the elements of G which do have this property, and let F denote the point set F and F are F and let F denote the point set F and F are F and let F denote the point set F and F are F and F are connected im kleinen. For since F is connected im kleinen. Then from a theorem of F are F and F are the end of F are the end of F and F are the end of F and F are the end of F and F are the end of F are the end of F and F are

Now if N has no cut point, then by Theorem A, N must be cyclicly connected. If N has any cut points, then for every cut point X of N, let H_x denote the maximal connected subset of N-X which contains (S+X)-X, and let N_x denote the point set H_x+X . That H_x exists in case X is

^{*} A report on continuous curves from the viewpoint of analysis situs, this Bulletin, vol. 29 (1923), pp. 296-297.

not on S is obvious. If X belongs to S, then since X does not belong to K+A+B, M-X contains an arc* t' from A to B. The arc t' must contain the points E and F, for E and F belong to K+A+B. The arc EF of t' must belong to N, hence also to N-X. Therefore, S-X, being the sum of the segments EX and EF of t, must lie in some connected subset of N-X. Thus, in any case, H_x exists. Now let L denote the set of all points which are common to all the point sets N_x . Clearly L exists, is a closed point set, and contains S. Let C denote the maximal connected subset of L which contains S. I shall show that C is a maximal cyclic curve of M.

Clearly C is closed and connected. I shall first show that if P and Q are any two points of C and POQ is any arc of N from P to Q, then every point of POQ must belong to C. This must be true, for if X is any cut point of N not on POQ, then H_x contains every point of POQ because it contains P and Q. And if X is any cut point of N on POQ, then H_x contains POQ-X, because POQ-X is either a single connected set containing a point of H_x or the sum of two connected sets each of which contains a point of H_x . Hence, in any case, POQ belongs to every set N_x and therefore belongs to L and to C.

The continuum C is a continuous curve. For let P be any point of C and ϵ any positive number. Then since N is connected im kleinen, there exists a positive number δ_{ϵ} such that every point of N whose distance from P is less than δ_{ϵ} can be joined in N to P by an arc which is of diameter less than ϵ . Let X be any point of C whose distance from P is less than δ_{ϵ} . Then N contains an arc a from X to P of diameter less than ϵ . But as was shown above, a must belong to C. Hence C is connected im kleinen at every one of its points and is therefore a continuous curve.

The curve C has no cut point. For suppose, on the contrary, that C has a cut point X. Then $C-X=S_1+S_2$,

^{*} See R. L. Wilder, loc. cit., and R. L. Moore, Concerning continuous curves in the plane, loc. cit.

where S_1 and S_2 are mutually separated point sets. Let P_1 and P_2 be points of S_1 and S_2 respectively. Now if X is a cut point of N, then since H_x contains P_1 and P_2 , it follows* that N-X contains an arc s from P_1 to P_2 . And if X is not a cut point of N, again it follows that N-X contains an arc s from P_1 to P_2 . And in either case, as was shown above, the arc s must belong to S_2 . Hence S_3 and S_4 are not mutually separated, contrary to supposition. Therefore S_3 has no cut point, and by Theorem S_3 it follows that S_4 is a cyclicly connected continuous curve. That S_4 is a maximal cyclic curve of S_4 follows immediately from the facts (1) that every arc of S_4 joining two points of S_4 must belong wholly to S_4 and (2) that every arc of S_4 joining two points of S_4 must belong wholly to S_4 . This completes the proof.

THEOREM III. If A and B are any two points of a continuous curve M and if K denotes the set of all those points of M which separate A from B in M, then M contains two simple continuous arcs t_1 and t_2 from A to B whose common part is K+A+B.

PROOF. By Theorem I, K+A+B is a closed set of points. Hence if t is any arc of M from A to B, t must contain K, and t-(K+A+B) is the sum of a countable number of non-overlapping segments S_1, S_2, S_3, \cdots . By Theorem II it follows that for every positive integer i, M contains a maximal cyclic curve C_i which contains S_i . For each i, let the end points of S_i be denoted by A_i and B_i . Since C_i is cyclicly connected, then for each i, C_i contains two arcs t_{1i} and t_{2i} from A_i to B_i whose common part is only the points A_i and B_i . Let

$$t_1 = K + A + B + \sum_{i=1,2,3,\cdots} t_{1i}, \quad t_2 = K + A + B + \sum_{i=1,2,3,\cdots} t_{2i}.$$

Then t_1 and t_2 are simple continuous arcs of M from A to B whose common part is K+A+B.

THE UNIVERSITY OF TEXAS

^{*} See R. L. Moore, loc. cit.