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HAUSDORFFS GRUNDZÜGE DER MENGENLEHRE. 

Grundzüge der Mengenlehre. By FELIX HAUSDORFF. Veit 
and Company, Leipzig, 1914. viii + 476 pp. 
I F there are still mathematicians who hold the theory of 

aggregates under general suspicion, and are reluctant to grant 
it full recognition as a rigorous, mathematical discipline, they 
will find it hard to retain their doubts under fire of the logic of 
HausdorfFs treatise. I t would be difficult to name a volume 
in any field of mathematics, even in the unclouded domain of 
number theory, that surpasses the Grundzüge in clearness 
and precision. 

But it is only in a subsidiary rôle that the Grundzüge is an 
answer to the skeptics. Its most striking feature is that it is 
a work of art of a master. No one thoroughly acquainted 
with its contents could fail to withhold admiration for the 
happy choice and arrangement of subject matter, the careful 
diction, the smooth, vigorous and concise literary style, and 
the adaptable notation; above all things, however, for the 
highly pleasing unifications and generalizations and the har­
monious weaving of numerous original results into the texture 
of the whole. 

I t is not an uncommon fault of authors of treatises on general 
subjects to expound their own researches with an unwarranted 
degree of detail; so that at times, if one has no other evidence, 
one may be rightly led to suspect particular portions, on ac­
count of their remoteness from the central ideas, of being 
the author's own handiwork. This fault is not shared by the 
Grundzüge. Few treatises on as comprehensive a subject 
as the theory of aggregates contain as large a proportion of 
the author's investigations; yet the parts that are distinctly 
HausdorfFs own contributions are properly inserted in view 
of their generality and in relation to other topics. 

The author is endowed with a keen psychological and 
didactic instinct that prompts him to depart from his usual 
succinctness when engaged in the clarification of the more 
important ideas. The following quotation may serve to 
illustrate this pedagogic sense and the general lucidity of style, 
not without an occasional glimmer of humor. After speaking 
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of the primitive stage of numerical comparison—by means of 
direct, successive mating—of a pile of apples and a pile of 
pears, he says (page 45): "Bu t if the apples and the pears 
are in different places, and the transportation of one pile to 
the other is attended with difficulties, the inventive mind of 
man will in the next stage make use of an intermediary set 
of conveniently transportable objects, such as stones, shells, 
or chips, and infer the equivalence A ~ B from the equiva­
lences A ^ C, B ~o C. Finally, however, even this earthly 
residuum will be eliminated, and the intermediary set will be 
replaced by a system of spoken, written, or thought symbols, 
—the number symbols, 1, 2, •••. Comparison turns into 
counting, and equivalent sets now acquire a common property, 
the number of their elements. 

"These remarks, for which no claim whatsoever is entered 
on psychological or cultural-historical grounds, are intended 
merely to make clear that equivalence is the natural founda­
tion for the comparison of aggregates, and that by its means 
we may undertake even the seeming paradox of counting 
infinite sets." 

That the author enjoyed himself while at work may be 
seen from such passages as the following (page 61): "From 
an 'a lphabet/ i.e. a finite set of ' let ters/ we may construct 
a countable assemblage of finite complexes [= ordered sets] 
of letters, i.e. ' words/ among which, of course, meaningless 
words such as abracadabra occur. If in addition to the letters, 
other elements are used, such as punctuation marks, type-
spacings, numerals, notes, etc., we see that the assemblage of 
all books, catalogs, symphonies and operas is also countable, 
and would remain countable even if we were to employ a 
countable set of symbols (but for each complex only a finite 
number). On the other hand, if in the case of a finite number 
of symbols we restrict the complexes to a maximum number 
of elements, agreeing for example, to rule out words of more 
than one hundred letters and books of more than one million 
words, these assemblages become finite; and if we assume with 
Giordano Bruno an infinite number of heavenly bodies, with 
speaking, writing, and musical inhabitants, it follows as a 
mathematical certainty that on an infinite number of these 
heavenly bodies there will be produced the same opera with 
the same libretto, the same names of the composer, the author 
of the text, the members of the orchestra and the singers." 
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Several other examples of spirited and colorful language 
are the following. Speaking of the equivalence of the whole 
and the part of an infinite set, he says (page 34) : " Of course, 
when asserted in the rather provocative form, A haé as mariy 
elements as B, it is one of those 'paradoxes of the infinite' that 
shock the unprepared mind." Again, page 34 : " A segment and 
an arbitrarily small partial segment, a kilometer and a milli­
meter, the sun's globe and a drop of water have in this sense 
the 'same number of points. '" Page 48: " . . . we shall 
have to desist from giving every proper subset a cardinal 
number < a; we must violate the hallowed axiom ' totum 
parte majus/ as we must in general expect that calculation 
with infinite cardinals will deviate in many respects from that 
with finite cardinals, without thereby espying the minutest 
objection against these infinite numbers." On page 63, after 
learning that lO^o = K, we are led to the equations 
K = 2No = 3Ko = . . . by the remark that " the fact that we 
have ten fingers is obviously without influence on the theory 
of aggregates." Page 60: "The equivalence of the set of 
whole numbers with the much more inclusive set of rational 
numbers belongs to those facts of the theory of aggregates 
which impress you on your first acquaintance with them as 
astonishing and even paradoxical; especially if you have 
before your eyes the geometric representation (of the corre­
spondence between the numbers and the points of a straight 
line), and picture to yourself on the one band, the 'integral ' 
points, which lie isolated at finite distances from one another, 
and on the other hand, the 'rational ' points, which are dis­
tributed over the entire line as dust of more than microscopic 
fineness." 

One of the .characteristic traits of the style is its continuity, 
brought about by the neat and confident conjunctional devices 
of the author. On page 335 there is need of the awful descent 
from the general spaces previously considered to the very 
special euclidean plane. The author is unwilling to take the 
plunge without assuring himself of the reader's good-will: 
" I n the subsequent discussion we prefer to confine ourselves 
to the plane. The extension to three or more dimensional 
space presents in part not inconsiderable difficulties, because 
the rôle which polygons play in the plane falls there to the 
lot of the much less simple polyedra and hyper-polyedra. 
Even in the plane we shall find that the apparently most 
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plausible, intuitive assertions require fairly complicated proofs. 
A certain prolixity is already produced by the fact that sets 
that are not compact, and are therefore unbounded, behave in 
many respects not like bounded sets, and indeed, less regu­
larly. A radical remedy would be the adjunction of a point 
' a t infinity/ as in function theory; but thereby the character 
of a metrical space is destroyed, and if again, you get rid of 
this evil by means of stereographic projection on the sphere, 
you lose in exchange certain elementary geometric advantages 
of the plane. We must, therefore, come to terms as best we 
can with the ' dreary infinities of homaloidal space ' as Clifford 
says." 

We now turn to a more detailed description of the contents. 
In view of the great wealth of ideas—made possible by the 
concentrated style—we must refrain from attempting to dis­
cuss even all the important topics; only some of these can 
we describe in detail, and we shall give preference to the more 
novel or the less technical features. 

The book is fittingly inscribed to Georg Cantor, " the creator 
of the theory of aggregates." 

Chapter I (pages 1-31) deals with the sum (denoted by ©), 
section (Durchschnitt, denoted by ©), and difference of sets. 
Of the numerous topics treated in this chapter, we shall discuss 
the notion of aggregate, the principle of duality, and sym­
metric sets. Among the other topics may be mentioned 
difference chains, rings and fields (Ringe und Körper), se­
quences of sets and of real numbers, a- and S-systems, and the 
non-convergence points of a sequence of functions. 

Aggregate is defined in the cantorean naïve fashion—as 
distinguished from the less debatable, but more restraining 
manner of Zermelo—as a whole constituted by the conceived 
assembling of individuals. The author makes it clear that 
it is inadvisable on pedagogical and other grounds to found 
everything upon Zermelo's Grundlagen; paradoxes are duly 
banished, however, by appropriate interpretation of the naïve 
definition (see page 106 for the disposal of the Burali-Forti 
antinomy). 

Iî Ai, A2, • • • are subsets of a set M and Ai = M — Ai, 
A2 =_M — A2, - • • their complements,—we denote generally 
by X the complement of X in M—, then the complement in 
M of the sum of the given sets is the section of their com-
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plements [@(-4i, A2, •••) = SD(̂ 4i, ^2, •••)] an<l the com­
plement of thejsection of the given sets is_the sum of their 
complements [3)(-4i, Ai, • • •) = @(-4i. ^.2^ • • 0 ] . Since 
P = Q,PCQ (i-e., P is a subset of Q) imply P = Q, P O *Q, 
it follows that every equation between sets remains true if 
every set is replaced by its complement and the symbols © 
and 3) are interchanged; and every inequality remains true 
after the same changes and the additional interchange of 
O and C • For example, A £ @ U , B) leads to 2S35(4, ~B) 
and hence to A S © ( 4 , B). This simple property Hausdorff 
calls the "principle of duality"; he utilizes it in various con­
nections to secure results through formulas usually obtained 
otherwise. We remark here that the author uses formulas to 
a much larger extent than is customary in the theory of 
aggregates, one of whose noticeable characteristics is the 
unusual freedom from calculational methods. 

Let Xi, X2, • • •, Xm be m given sets. Taking a cue from 
algebra, we seek a list of simple sets which like the sum 
©(Xi, X2, • • •, Xm) and the section 2)(Xi, X$, • • •, Xm) involve 
the given sets symmetrically. Hausdorff calls these sets 
"symmetrische Grundmengen," and defines them as follows: 
Ai(i = 1, 2, • • -, m), the i th such set, consists of the elements 
that occur in at least i X's. Thus A\ = @(Xi, Z2 , • * -, Xm), 
Am = £)(Jfi, %2, • • -, Xm)- An essential property of these 
sets is that they are expressible in terms of the X's by means 
of sums and sections. Their introduction is due to Hausdorff. 
The author considers various properties of these sets, and in 
particular, utilizes them in an interesting theory of measure, 
which was at first planned as final but was later discarded for 
a more concise treatment; a sketch of the old theory appears 
in the appendix. 

The second chapter (pages 32-45) deals with functions, 
products, and powers, and their laws of operation. 

The third chapter (pages 45-69) treats of the cardinal 
numbers. Cardinal number is not defined with Cantor as 
what remains of a set after the individual nature and the order 
of the elements are abstracted; nor with Russell, as a class 
of classes. Hausdorff takes the simple and formal point of 
view, which is clearly the most satisfactory: We associate 
uniquely with a system of sets A a system of things a—of 
indifferent nature—in such a way that the same things corre-
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spond to two sets if and only if the sets are equivalent. These 
things or symbols we call cardinal numbers. Two proofs are 
given of the Bernstein equivalence theorem, the first essentially 
like that of Bernstein, and the second, according to Zermelo, 
without the use of the infinite set of integers. The rest of the 
chapter is devoted to the comparison of cardinal numbers, 
and includes such theorems as N ô = K, K0K = 2N > « 
(K = cardinal number of the continuum), and the theorem of 
J. König. Famous theorems, such as those of the non-
denumerability of the continuum, and of the equivalence of 
the plane of points and the line of points, frequently appear— 
as is also the case in other chapters—as very special cases of 
general considerations, or as side remarks in the current text. 
For the non-denumerability of the continuum, however, a 
special proof is added. 

Chapter IV (pages 69-101) takes up order; a substantial 
portion of the ideas and results is due to Hausdorff. After 
various definitions of simple ( = linear) order, the sum of 
an ordered set (the "argument") of any number of ordered 
sets, and the product of a finite number of sets are defined, 
and the laws for operating with these processes given. The 
subset M of the ordered set A is said to be "coinitial" with A 
if no element of A exists preceding every element of M. 
Similarly, "cofinal." M is "dense in A" if for every pair 
a < b of elements of A there exists a pair of elements m < n of 
M such that a ^ m < n ^b. The decomposition A = P + Q, 
where P ( =(= 0) and Q( 4= 0) have no elements in common and 
every element of P precedes every element of Q, is said to be a 
" j u m p " (Sprung) if P has a last element and Q a first; a " gap " 
(Lücke), if neither P has a last, nor Q a first. A "dense se t" 
(in the "absolute," as contrasted with the "relat ive" sense) is 
one without jumps; a "continuous set," one without jumps or 
gaps. A "scattered se t" is one possessing no dense subset» 
A sum 2/Ai (Ai 4= 0) is scattered when and only when the 
argument J is scattered and each Ai is scattered. Every 
ordered set is either scattered or the sum of scattered sets over 
a dense argument. The chapter closes with the discussion of 
types of order, in particular, of the class of countable dense 
types, and of continuous types. 

The fifth chapter (pages 101-139) is devoted to normally 
ordered (wohlgeordnete) sets and the ordinal numbers. The 
treatment comprises comparability of cardinal numbers, trans-
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finite induction, powers and products, alephs and the number 
classes, the initial numbers (Anfangszahlen) and Zermelo's 
Wohlordnungssatz. The proof of the general theorem 
XaKa = «a for every ordinal number a, is given in elegant and 
brief form; the first proof of the theorem, given by Hessenberg 
in his Grundbegriffe derJMengenlehre, is long and roundabout. 
I t may be remarked that frequently the simplest and most 
elegant proofs of important theorems are to be found in the 
Grundzüge, either directly or after appropriate modification 
of the generalized form in which they usually appear. 

For the Wohlordnungssatz both of Zermelo's proofs with 
unessential but neat modifications are given. Hausdorff has 
no difficulty—neither has the reviewer—in accepting either 
of these proofs as rigorous. In fact, as is sometimes the case 
with the work of mathematicians who have misgivings about 
the theorem, the multiplicative principle (Prinzip der Auswahl) 
steals in noiselessly (cf. for example, page 54) before the 
Wohlordnungssatz is mentioned. 

The sixth chapter (pages 139^209) contains a wealth of 
material mostly from the author's own researches. Unfor­
tunately space will not permit—especially because of the more 
technical character of the subject matter—a description of 
these elegant and general results. We must content ourselves 
merely with mentioning the partially ordered sets, the dis­
tinction as related to coinitiality and cofinality of the element 
and gap characteristics and the consequent classification of 
ordered sets, the general products and powers of ordered sets 
and the interesting connection with non-archimedean number 
systems, as shown by the general theorem of Hahn (Berichte 
der Wiener Akademie der Wissenschaften, 1907). 

The remaining chapters of the book (VII-X) will prove of 
more general interest because they are concerned with the 
applications of the abstract theory to the study of space 
relations. I t is in these chapters especially that Hausdorff 
impresses you with his masterful exposition. The theory of 
point sets is cast into a new and more general mold, and the 
resulting treatment is characterized throughout by originality, 
naturalness, and beauty. 

Chapter VII (pages 209-260) begins with the statement: 
"The theory of aggregates has celebrated its most beautiful 
triumphs in its application to point sets and in the clarification 
and heightened precision of the fundamental concepts of 
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geometry; this is admitted even by those who demean them­
selves skeptically towards the abstract theory of aggregates." 
The subject matter of the chapter concerns point sets in 
general spaces. The author's justification of his abstract 
treatment is as follows (page 210): "Now a theory of spatial 
point sets would naturally have, in virtue of the numerous 
accompanying properties, a very special character, and if we 
wished to confine ourselves from the outset to this single case, 
we should be obliged to develop one theory for linear point 
sets, another for planar point sets, still another for spherical 
point sets, etc. Experience has shown that we may avoid 
this pleonasm and set up a more general theory comprehending 
not only the cases just mentioned but also other sets (in 
particular, Riemann surfaces, spaces of a finite or an infinite 
number of dimensions, sets of curves, and sets of functions). 
And, indeed, this gain in generality is associated not with 
increased complication, but on the contrary, with a consider­
able simplification, in that we utilize—at least for the leading 
features—only few and simple assumptions (axioms). Finally 
we secure ourselves in this logical-deductive way against the 
errors into which our so-called intuition may lead us; this 
alleged source of knowledge—the heuristical value of which, 
of course, no one will impugn—has, as it happens, shown 
itself so frequently insufficient and unreliable in the more 
subtle parts of the theory of aggregates, that only after careful 
examination may we have faith in its apparent testimony/} 

Hausdorfï does not bind himself to a single set of assump­
tions. The center of interest lies, of course, in the theorems, 
and the assumptions are graded accordingly, a new assump­
tion or a modification being adopted only when the mathe­
matical content naturally calls for such a change. In the 
carefully planned march from the abstract in the direction of 
greater specialization, Hausdorfï gives repeated evidence of his 
mathematical-esthetic insight. 

The developments in Chapter VII are based entirely upon 
the following "neighborhood" postulates (Umgebungsaxiome, 
page 213). A "neighborhood" is a point set. The abstract 
set or space E in question is unrestricted except for the 
postulates : 

(A) To every point x of E there corresponds at least one 
neighborhood Ux; every neighborhood Ux contains the point x. 

(JS) If Ux, Vx are two neighborhoods of x, there is a neigh­
borhood Wx contained in both* 
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(C) If the point y lies in Ux, there is a neighborhood Uy 

lying in Ux. 
(D) For x 4= y there are two neighborhoods UX9 Uy with 

no point in common. 
For the euclidean plane, the neighborhoods of a point P 

may be taken as the circles (exclusive of the boundary) having 
P as center. 

A space satisfying the four neighborhood postulates is called 
"topological." 

There are numerous concrete examples of topological 
spaces, among which may be mentioned the ordinary euclidean 
spaces (also after adjunction of the ideal point at infinity), 
certain spaces in which the distance from point to point is 
measured on a non-archimedean scale, space of a denumerable 
infinity of dimensions, and function space. Some of these 
spaces are also "met r ic" (see below). 

An "inner point" of a set A—belonging to the entire space 
or "universe" E—is one possessing a neighborhood lying 
entirely in A. A point of A that is not one of its inner points 
is a "b r ink" point (Randpunkt), as distinguished from 
"boundary" point (Grenzpunkt), which need not belong to 
the given set. A " region " (Gebiet) is a set every point of which 
is an inner point of the set; a " brink aggregate " (Randmenge), 
one every point of which is a brink point. The inner points of 
the complement B of A {A + B — E) are called the "ou te r" 
points of A ; the boundary points of A consist of the brink 
points of both A and B. The universe E and every neighbor­
hood is a region. The inner points of an arbitrary set con­
stitute a region; the brink points, a brink aggregate. The 
sum of any number, and the section of a finite number, of 
regions are regions. 

Connected with the last statement, there is a simple but 
fruitful principle: If a system of sets M—like the system of 
regions—has the property that the sum of any number of 
sets of the system belongs to the system, we may, for any 
given set A containing at least one M as subset, define the 
largest M contained in A ; if the section of any number of M's 
is an M, we may for every A contained in at least one M 
define the smallest M containing A. This principle is used in 
various connections, for example, in the definition of the 
"kernel" (see below). 

The introduction of the sets Aa, Ap, Ay—the first has been 
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little used—leads to considerable formal simplification, and 
enables Hausdorff to give many short proofs through formal 
processes instead of direct reflection upon the nature of the 
hypotheses, x is an a-point of A if every neighborhood TJX 

contains at least one point of A (which may be x itself); 
a /?-point, if every neighborhood Ux contains an infinite 
number of points of A ; a Y-point, if every neighborhood Ux 

contains a non-denumerable set of points of A. Aa, Ap, Ay 

are the respective totalities of these points (Ap, the derivative 
of A). That A is "closed" may be expressed by A=LAp9 

or by A = Aa; "dense-in-itself," by ASAp or by Aa = A$; 
"perfect," by A = Ap. The sets Aa9 Afi, Ay are closed. The 
section of any number of closed sets and the sum of a finite 
number of closed sets are closed. The sum of any number of 
sets each dense-in-itself is dense-in-itself. The largest subset 
of A that is dense-in-itself exists according to the principle 
just mentioned; it is called the "kernel" of A. 

An infinite set without /3-points is said to be "divergent"; 
a set without divergent subsets, "compact," The set A 
converges to the limit x if every neighborhood of x contains 
all the points of A with the possible exception of a finite 
number. A decreasing sequence Ai â A<i S • • • of compact, 
closed, non-vanishing sets has a non-vanishing section 
(Cantor). A compact, closed set contained in the sum of a 
sequence of regions is contained in the sum of a finite num­
ber of these regions (Borel). 

A clear and systematic treatment is given of the limits of 
a sequence of sets {An}. Six different kinds of limits are 
distinguished: (1) the "lower limit" consists of the points 
belonging to "nearly a l l" the Any i.e., all with the possible 
exception of a finite number; (2) the "upper limit," of the 
points belonging to an infinity of the An\ (3) the "lower 
closed limit," of the points (belonging to the An or not) every 
neighborhood of which contains points of nearly every An; 
(4) the "upper closed limit," of the points every neighborhood 
of which contains points of an infinity of the An; (5) the 
"lower limit region," of the points for which a neighborhood 
exists belonging (in its entirety) to nearly all they4n ; and (6) 
" the upper limit region," of the points for which a neighbor­
hood exists belonging to an infinite number of the An. Various 
modes of representation of these limits by means of sums and 
sections are given. 
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Another novel feature is the systematic introduction and 
use of the notion of "relativity." A is said to be (relatively) 
"closed in M" if it is the section of M and a closed set; a 
"relative region of M," if it is the section of M and a region. 
These notions are special cases of a complete theory of rela­
tivity, which arises by substituting for the universe E an 
arbitrary subset M of it. The neighborhoods Ux are replaced 
by their sections with M, which again satisfy the neighborhood 
assumptions; M may therefore be regarded as a new universe 
possessing all the properties of topological spaces. We thus 
have relative a-points, relative inner points, and so on. 

The definition of connectivity differs from those heretofore 
given, but it is the most desirable in the opinion of the reviewer : 
A non-vanishing set M is said to be "connected" if it is not 
expressible as the sum of two sets ( + 0) that are (relatively) 
closed in M and have no points in common. A "component" 
of a non-vanishing set is one of its largest connected subsets, i.e., 
a connected subset contained in no other such subset. The 
"quasi-component" of A belonging to the point p consists of 
the points belonging to the same summand as p in every 
decomposition of A as the sum of two sets closed in A and 
having the null-set as section. The quasi-components may 
differ from the components. After a series of theorems on 
connectivity, the chapter is devoted to density, and to the 
application of some of the results to sets of real numbers. 

In Chapter VIII (pages 260-358) special topological spaces 
are considered. A stride towards ordinary space is made by 
the successive introduction of the denumerability postulates: 

(E) The set of neighborhoods of x is denumerable for every x. 
(F) The totality of all neighborhoods is denumerable. 
With the aid of (JE), it follows, for example, that every 

convergent set (= set having a limit) is countable; and 
that if a; is a jS-point of a set A, there is a convergent subset 
of A with x as limit. With (F) the 7-points begin to play an 
important rôle. If a set has no 7-points belonging to it, it is 
countable. The following equations hold (Aaa = set of ap­
points of Aa, etc.): Aaa = Aa, Aa(i = Afif Aay = Afiy; 
Apa = Aft', Aya ~ Ay, Ayfi :=: Ay, Ayy == Ay, A SCt Ol YQ' 
gions no pair of which have common points is countable. 
There are in all « regions and « closed sets (K = cardinal 
number of the continuum). The sum of any number of re­
gions is the sum of a countable number (at most) of them. 
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By means of this result, Borel's theorem may be extended 
and its complete converse given. 

The connection of point set theory with the transfinite 
ordinals lies in such theorems, as the following (proved with 
the aid of postulate (F)): An ascending normally ordered set 
{Sç}—i.e., Sp z> S,, for p > a—of different regions Sç is at 
most countable. Similarly for a descending set of regions and 
for relative regions, and likewise for closed and relatively 
closed sets. I t is at this juncture that Hausdorff introduces 
his generalization of "reducible" sets. I t turns out that a 
Hausdorff reducible set is representable as the sum of differ­
ences of descending normally ordered closed sets, and con­
versely. 

Further developments refer to metric spaces: "We believe 
the time has come when a continuation of the neighborhood 
theory would be accompanied with a loss of simplicity." A 
metric space satisfies the following postulates, where xy 
denotes the "distance"—Fréehet/s écart—from xto y: 

(a) (Postulate of symmetry) yxj^ xy. 
(]8) (Postulate of coincidence) xy = 0 when and only when 

x = y- — _ _ 
(Y) (Triangle postulate) xy + yz ^ xz. 
Space will not permit a discussion of the rich content of the 

rest of the chapter. We mention: distances between sets, 
connectivity properties of metrical spaces including p-eonnec-
tivity, properties related to the various limits of a sequence of 
sets, Borel sets, conditions for compactness and "complete" 
(vollstândige) spaces. After certain general theorems con­
cerned chiefly with connectivity in euclidean n-space, the 
chapter turns to the euclidean plane—see quotation in early 
portion of this review—and after a succession of thirteen 
carefully graded theorems, culminates in a proof—modeled 
after that of Brouwer—of the Jordan theorem. 

The ninth chapter (pages 358-399) deals with representa­
tions or functions. If the original set A and its image B 
( = totality of elements f (a), where a ranges over A) are 
topological spaces, the continuity of f (a) is equivalent to the 
condition that every relative region of B is the image of a 
relative region of A. If ƒ is continuous and A connected, then 
B is connected. From this it follows, in particular, that a 
continuous, real function defined in a connected set—for 
example, in a linear interval—takes every value between any 
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two of its values. Among other things, the chapter considers 
uniform continuity for metrical spaces, continuous curves in­
cluding the space-filling curves, the character of the points of 
continuity of a discontinuous function, sequences of functions 
and the generalizations of theorems of Arzelà and Baire. 
There are novel results on the classification of functions and 
the set of convergence points of a sequence of functions. 

The tenth and final chapter (pages- 399-448) treats of 
Peano-Jordan content and Borel-Lebesgue measure; both 
theories are developed in a new, elegant and appreciably 
similar fashion. There are applications to decimal and to 
continued fractions. After the deduction of the important 
properties of Lebesgue integrals, the chapter closes with the 
proof that a function of limited variation possesses a derivative 
except in a set of measure zero. 

The appendix (pages 449-473) gives references to the litera­
ture and contains numerous discussions of substantial content 
and interest. 

Misprints are few in number; and errors, invariably of a 
minor character. The mention of most of them would be re­
garded as hypercritical, were it not for the high standards of the 
author. The careful examination of the reviewer has brought 
to light only the following: page 11, line 15, "Elemente" in­
stead of "Punkte"; page 28, line 27, "Relationen" instead of 
" Gleichungen " ; page 58, line 14 and page 105, line 20, " Denn " 
instead of "Dann"; page 272, G^ is not printed clearly; page 
366, line 6, insert "Kap. VIII" after "nach"; page 442, line 
5, insert S before /x»8*. On pages 85 and 291, in the footnotes, 
occur the equations m = {m}, x = {x}; the author clearly in­
timates their objectionability, but it would be better to bar 
altogether such illogical statements. On page 106, the author 
speaks of numbers greater than W, when he means numbers 
greater than numbers of W. On page 229, he forgets to discuss 
A k at the end of the section. On page 276, the restriction that 
X shall be a limiting number does not enter the proof. This 
is an exception to prove the rule that in the Grundzüge every 
word counts. On page 444, the statement that X is normally 
ordered, although later cleared up, contains at first an ambi­
guity; for X may be normally ordered without being ordered 
according to magnitude. On page 470, \p~mibypmi is not neces­
sarily an a, but may be a 7; it is an easy matter, however, to 
fill out the gap. 
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As for more important criticism, one may quarrel with the 
author for his abstract style, for his euclidean manner of 
grading the proofs, so that no difficulties remain and none but 
mild climaxes are reached, for his finish that may excite 
admiration but hardly activity on the reader's part. One may 
crave for a book that is built like a drama around a single idea 
—a more sketchy book, leaving more to the reader's imagi­
nation, a book with a less diversified and more emphatic 
message. But such remonstrance would be like quarrelling 
with Beethoven for having written symphonies instead of 
operas. There is no such thing as the book. HausdorfTs 
Grundzüge is a treatise, and as a treatise it necessarily falls 
short of the summum bonum. But as a treatise it is of the 
first rank. 

HENRY BLTJMBERG. 

SHORTER NOTICES. 

The Casting-Counter and the Counting Board. By FRANCIS 

PIERREPONT BARNARD. Oxford, Clarendon Press, 1916. 
358 pp. + 63 plates. 
When we consider that Gerbert, the greatest mathematician 

living in Europe at the close of the tenth century, wrote 
upon the use of counters as an aid to computation; that Robert 
Recorde, who is often called the founder of the English school 
of mathematicians of the sixteenth century, did the same; 
and that nearly all computation in Europe before the year 
1500 (in Italy before c. 1200) was performed by the aid of 
some type of abacus, we may well infer that the "casting-
counter," as Professor Barnard calls it, has played an impor­
tant rôle in the history of calculation. Indeed, our very word 
"calculate" is, it need hardly be said, due to this very fact, 
the word "calculus" meaning a pebble, calculi being used in 
numerical work in the classical period of the Greek and Roman 
civilizations. 

When we also consider the fact that it was the bamboo 
rods, used by the early Chinese algebraists to express coeffi­
cients, that suggested to the Japanese the sangi which were 
used for the same purpose, and also suggested the idea of 
determinants which their scholars developed in the seventeenth 


