
4 1 4 THE NEW HAVEN COLLOQUIUM LECTURES. [ M a y , 

the designation of the method? Why not call it the "Ruffini-
Horner method " ? 

I t should be stated here that Budan, in his famous pamphlet 
of 1807,* explained a process of transformation of an equation 
into another whose roots are diminished by h} which bears some 
resemblance to that of Ruffini and Horner. When the roots 
are to be diminished by unity, the computation is identical. 
But when a root is to be diminished by, say 8, there is a differ­
ence : Budan does this by eight steps, the roots being dimin­
ished by unity in each step. Regarding Budan, Ruffini once 
wrote to Delambre, the secretary of the French Institute, as 
follows : f 

" Troppo giuste sono le lodi che Ella dà al metodo del Sig. 
Budan di sciogliere le Equ. numeriche ; avrei perö desiderato 
che avesse Ella avuta occasione di vedere la Memoria che sopra 
lo stesso argomento présentai già alla nostra Società Italiana, 
che da essa riportö graziosamente il premio e che fu poi stam-
pata nel 1804 fuori degli Atti. Coincido col sig. Budan nella 
maniera di fare le trasformazioni successive e nel servirmi dei 
decimali." 

T H E N E W H A V E N COLLOQUIUM LECTURES. 

The New Haven Colloquium. By ELIAKIM HASTINGS MOOEE, 
ERNEST JULIUS WILCZYNSKI, M A X MASON. Yale Uni­
versity Press, 1910. x + 222 pp. 

T H E fifth Colloquium of the American Mathematical Society 
was held at New Haven, September 5-8, 1906, under the 
auspices of Yale University. All the lectures related to fields 
in which recent progress has been considerable, and were given 
by men who have made important contributions ; on this account 
the volume which contains the lectures should be of substantial 
interest, particularly to the American mathematician. Pro­
fessor Moore gives a first systematic account of what he has 
termed " a form of General Analysis." Professor Wilczynski 
outlines the point of view and some of the principal results in 

* F . D. Budan, Nouvelle methode pour la résolution des équations 
numériques, Paris, 1807, pp. 14, 15, 29, 39. 

f Memorie délia Società Italiana délie Scienze (detta dei XL) , Serie 3a, Tomo 
XIV, 1906, p. 296. 
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projective differential geometry. Professor Mason treats a 
variety of boundary value problems. 

I . Introduction to a Form of General Analysis, 

I t is obvious to those who have been following recent mathe­
matical progress that, since the researches of Hill, Volterra, 
and Fredholm in the direction of extended linear systems of 
equations, mathematics has been in the way of a great develop­
ment. That attitude of mind which conceives of the function 
as a generalized point, of the method of successive approxima­
tion as a Taylor's expansion in a function variable, of the cal­
culus of variations as a limiting form of the ordinary algebraic 
problem of maxima and minima is now crystallizing into a 
new branch of mathematics under the leadership of Pincherle, 
Hadamard, Hubert, Moore-, and others. For this field Pro­
fessor Moore proposes the term " General Analysis/' defined 
(page 9) as " the theory of systems of classes of functions, 
functional operations, etc., involving at least one general 
variable on a general range." He has fixed attention on the 
most abstract aspect of this field by considering functions of an 
absolutely general variable. The nearest approach to a similar 
investigation is due to Fréchet (Paris thesis, 1906), who re­
stricts himself to variables for which the notion of a limiting 
value is valid. 

In the General Analysis we consider a class 9JI of real single 
valued functions <f> of the variable p ; important illustrative 
cases are : 

I . p = 1, 2, . • . , n ; cf)p == (<j>v <f>2, . . . , <£J, where $v . . -, <£n 

are arbitrary real quantities. 
I I . p = 1, 2, . • . , n, • . . ; (^ s» (4>v <£2, . • . , </>n, • • •), where 

4>v </>2, • • • are restricted in that limji=ao cf)p = 0. 
I I I . The same as I I , except that the convergence restriction is 

now that ^a0
=:1 <j>2 converges. 

I V . 0 =p = 1 ; q>p is any real continuous function of p. 
The class SDÎ is linear (L) if the sum of every two functions 

of 3JI or the product of one such function by any real constant 
is in Wl. 

The class Tt is closed (C) if the limit (f> of a convergent 
sequence a , /S ,̂ . •. of functions of 3Ji is itself a function of 9JJ 
whenever there exists a function X of 5DÎ such that the dif­
ference between the successive members of the sequence and 
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the limit <f>p becomes and remains uniformly not greater in 
absolute value than e\p, where € is an arbitrary small positive 
quantity. This mode of convergence is termed relatively uni­
form convergence as to the scale function \ , and becomes uni­
form convergence if the scale function is a constant. 

The class 3JÎ possesses the dominance property D if for every 
finite or infinite sequence a } {3p, • . . in 30Î there exists a domi­
nating function \ of 9JJ such that each particular element of 
the sequence does not exceed in absolute value a suitable con­
stant multiple of \ for any p .* 

Finally if the absolute value of any function in the class 3JÎ 
is a function of Wl, that class is said to be absolute (A). 

I t is clear that in the cases I, I I , I I I , I V the class of func­
tions has the properties i , A and it is also easily seen that (7, 
D will hold (cf. Theorem, page 42). 

The property O in case I V is equivalent to the property 
that the limit of a uniformly converging sequence of con­
tinuous functions is itself a continuous function. In case 
I I , C may be seen to hold as follows : Suppose we have a 
sequence of sequences each converging to zero, like terms of 
successive sequences converging to the like terms of a limit 
sequence, and furthermore in such a way that the term-by-
term différence from the limit becomes and remains less than 
e times the corresponding term of some sequence converging to 
zero. The limit sequence will then have the property of con­
verging to zero since its terms are less in absolute value than 
the sum of the absolute values of the corresponding terms of 
two sequences converging to zero. In case I I I , C also holds 
and to demonstrate this fact we need merely to modify the 
above argument by replacing the condition l converging to zeroy 

by the condition 'with sum of squares convergent/ and to 
note that the sum of squares of the elements of the limit sequence 
is less than twice the sum of squares of the elements of two 
sequences in 2K by virtue of the inequality 

(a + b)2^2(a2+b2). 

The property I) holds in case I V when we may take \p = 1 
as the dominating function for any sequence ; in case I I if 
Mv M2, • • • denote positive quantities greater than any term of 

* The word * dominating1 is not used in the Lectures with the same 
significance. 
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the sequence of a , /3^, . • • respectively in absolute value, we 
may take 

* Kl , l&l , \%\ ... 
* "~ M1 "+" 2M2

 + 4if3 "*" * " 

since then clearly l im^^ X = 0, so that Xp is in 9)î and also, by 
definition, will dominate the members of the sequence ; in case 
I I I we may take \p so that 

a2 62 ry2 

*>~ M^ 2M2^~ 4if3"f" ' " ' 

where Mv M2, • • • exceed the sum of the squares for the 
sequences ap, /3p, •. • respectively, since then clearly S ^ i -̂2 

is a convergent series and also Xp is a dominating function for 
each sequence. 

Suppose now that any class 3JÎ of functions be given which 
possesses the property D. We may extend the class 3tfl by 
adding to it all finite sums of constant multiples of functions of 
9JI. Since by D we may find a dominating function fi of S0Î 
for the functions in this sum, every function of this extended 
linear class WL does not exceed in absolute value a constant 
multiple of some function of 9Jt, for example m ^ , where fip is 
chosen as indicated and m is a sufficiently large constant. Let 
us now add to WlL the limit functions <j>p of every convergent 
sequence of functions of TlL which is relatively uniformly con­
vergent as to a function Xp of 9JÎX ; such a sequence may be 
written in the form of an infinite series of functions of WlL 

6 = a + /3 + . . . 
i P p • ' p • 

since SJt̂  is linear. Inasmuch as Xp does not exceed in abso­
lute value some function of 9JÎ, we may take the scale function 
Xp to be in 9JÎ. This extension of the class WL is called the 
*-extension of 9JÎ and is denoted by SD?̂ . Since the remainder 
after n terms in the above series may be taken not to exceed 
| Xp | itself, by taking n sufficiently large, and since we can find 
a dominating function for each of these n terms and for X 
which belongs to 3JÎ, the same argument that was made above 
shows that <j> does not exceed in absolute value some constant 
multiple of a function of 9)î. Hence Wl^. possesses the domi­
nance property also, and the dominating function of any 
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sequence may be taken in 9Jt (cf. Theorem, page 53) ; it is 
apparent that W* is linear. 

A second extension (3W*)* adds no new functions (cf. Theorem 
I I I , page 52 ). For arrange the elements of the twice ex­
tended set as a double array of functions of SB 

</>,= («, + £ , + •••) 

+(«; + £ ;+• • • ) 
+ , 

where the series in the successive rows converge relatively 
uniformly with respect to functions \p, \p9 • •. of 9JÎ and 
where the series of rows converges relatively uniformly with 
respect to a function \p of 9Jl^. According to what has been 
said, the sequence \p, \p, V , . . . possesses a single dominating 
function in 9Jt. All the scale functions may therefore be 
taken to be A, so that by taking a sufficiently large but finite 
number of elements of the double array we may obtain a func­
tion of WlL which differs from <£ by a quantity not exceeding 
e\p in absolute value. Hence, we may replace the double array 
by a single array relatively uniformly convergent as to \p. 
This proves the statement to the effect that 9JÏ* is closed under 
^-extension (cf. Theorem I , page 80). 

By adding to Wl its absolute value functions, one obtains 3RA> 
and then by extending TtA to be linear one obtains (WtA)L ; all 
functions obtained from 9Jt by a succession of operations of this 
character form a class ^flAL with the properties A, L, D. The 
^-extension of TlAL is called the ^-extension of 9JÎ and of course 
has the property A in addition to i , C, D for when any 
sequence of functions of 3SlAL is relatively uniformly convergent 
as to a function of $RAL the absolute value sequence will lie in 
Wi and have the same convergence property. Thus we have 

(g»#)# = [(mUU = (3R#)* == [(2^z)*]* = ( « * * Wy, 

hence 9Jl# is closed under #-extension (cf. Theorem I I , page 80). 
In the logical excursus of §§28-42 of Part I , Professor 

Moore considers the characteristic logical schemes suggested by 
the ideas of ( extension ' and i closure/ Thus for the subclasses 
•Ji containing 9JÏ of a fundamental class 9ft the extension of 9JÏ 
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as to P is the greatest common subclass of the classes contain­
ing 9ft and having the property P . 

Part I concludes with a proof of the complete independence 
of the properties A, L, C} D : that is, it is proved that all the 
24 = 16 conceivable combinations of these properties and their 
negatives are consistent. 

In Part I I are treated the composition of classes Tt and 9JT on 
the respective ranges p and p. If both 2JÎ and 2JT possess the 
property D, the product class 3JÏÏ)t' on the product range pp' 
obtained by multiplying any function <£ of 5DÎ by any function 
4>'p, of 9ft', has also the property D : for from any sequence apa'p,} 

/3 /3'p,} • • • we deduce dominating functions Xp for the sequence 
a , S , • • • and X', for a',, B',. • . . , and thus obtain a domi-
nating function XXy in WW for the given sequence. 

We may now obtain (9^9)1% which is readily shown to be the 
same as (3ft*9JT)*, (9ÏÏ9)V)* or ( ^SK* ' )* (cf. Theorem I, page 
95). In fact the classes 3Jt*9JT and 3J£$y form part of (3J£2ft')* 
and contain 9Ji3JT. Hence the statement must be true for the 
first two of the three classes since (3)Î3)Î% is the same as its 
^-extension. By a second extension as to p one concludes that 
9ft*9ft*' belongs to (3JÊ3JÏ% and at the same time contains of 
course Wlffi. Hence the statement is true for the third class. 
Similar results may now be given at once for the composition 
of more than two classes (cf. Theorems I I , I I I , I V , pages 
95, 96). 

In the special case where 2Jt and 3JT are the classes of all 
continuous functions of̂ > and p respectively, the class (93Î2)Î% 
is the class of all continuous functions of the two variables. 
This well known fact serves to orient one toward the remainder 
of Part I I . The continuity in p, p of a function 6 > of this 
class (9J19JI% is equivalent to the following two conditions (1) 
that $ f is uniformly continuous in p, uniformly over the range 
p ; (2) $ , is continuous in p for every p. Professor Moore 
treats properties B of 9JI such that for every 5DÎ' with proper­
ties L, Cy D every function of the class (3Jt3JT)* is in 3JÎ; for 
every p' and has the property B uniformly, and is in 9JT for 
every p (cf. §§ 57-65). Of course the precise kind of uniform­
ity needs to be stated in each case. The fact that (ïft-JJl')^ in 
the particular case is the class of all continuous functions of pp 
suggests a consideration of the class $ of all functions of pp 
belonging to the class 3JI and having a property B uniformly 
for every p and belonging to the class 9JT for every p (cf. 
Theorem, page 109, Theorem I , page 110). 
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From here on, while the range p is kept general, the range p 
is taken to have a certain additional property A closely allied to 
the limit property of Fréchet, but of a non-metric character.* 
In the application of the General Analysis it is found necessary 
to have such properties, in order to secure a satisfactory char­
acterization of functions of (9)19)1')* on the range pp.f 

Professor Moore has found it possible to define the analog 
of the class of all continuous functions over ranges of this 
general description including the types presented in I - I V . 
The property of these ranges which is generalized is that of the 
denumerability in I , I I , I I I and that of sequential halving of 
the interval in I V . 

The generalization is obtained as follows : A development A 
of the range p is a sequence Am(m = 1, 2, • • • ) of systems of 
subclasses Am\l — 1, 2, • • ., Im) of elements of the range, for a 
particular m giving the mth stage Am of the development A. A 
function <j>p dominated by a function of 9JÎ is said to have the 
property Kl2 relative to 9JÎ and A (generalization of convergence 
and continuity) in case the difference between the values of <j>p 

at a fixed point pml and a variable point p in any one class Aml 

of the mth stage tends to zero, as m increases, relatively uni­
formly to some function of 9JÎ, and at the same time <j>p itself 
tends to zero in the same manner for points p in no class Aml of 
the mth stage. I t is then easy to demonstrate that all functions 
of 9JÏ* possess the property Ku if those of 9JÎ do, and also that 
in case 9JÏ' is a second class of functions having the property 
K12 with respect to 9JÏ' and A', the set 9J19JI' possesses the prop­
erty Kl2 with respect to the composite development AA' (cf. 
Theorem I I , page 135). 

Suppose now that we have a set of functions of 9JÎ, say 8™1, 
one for each subset of the development A of the range, such 
that (Î) the sum of the absolute value of the functions hml(f> ml 

(pm* a representative point of Aml and <£ with the property 
JT12) whose corresponding Aml does not contain p becomes small 
relatively uniformly with respect to some function <j>0 of 9JI as 
m increases, (2) the sum of those Sml whose corresponding AmZ 

does contain p, as well as the sum of their absolute values, 
tends toward 1 uniformly as m increases. This set of functions 

* Dr. T. H. Hildebrandt deals with the matter in his Chicago thesis of 
1910. 

tSee the article by Professor Moore in the Atti of the Rome International 
Congress, 1908, vol. 2, pp. 98-114. 
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have clearly the property that any such function <f>p may be 
written as 

l i m E ^ ' . 
m=ao m 

In fact we have 

i *P - E «Mr i=11 - z. v s r i +1 r , v*r i» 
m m m 

where the first and second summation are extended respectively 
to the functions 8™1 whose AmZ does and does not contain p. But 
by (1) the second term on the right is not greater than e | <f>0p j , 
where € is arbitrarily small for m large, and cj>Qp is a function of 
9JÎ. Also the first term is not greater than 

i^-EiWI + I E ^ - ^ T\ 
By (2) the first member of this sum does not exceed e\<f>p\ for m 
large if there are any terms in J^ , and by Kl2 does not exceed 
€ 1<\>lp I in the contrary case (p not in any Aml). The second term 
does not exceed e | <f>2p | by Kl2 and (2) or else is zero. Hence 
any function <j>p with the property Kl2 can be represented as 
stated and the convergence is relatively uniform with respect to 
some function of 9ÏI (namely with respect to any function which 
dominates <f>p, <f>op, <f>lp, <f>2p)} since 3JÎ possesses the property D. 
It follows that <f>p belongs to S0l̂  (cf. Theorem I, page 140). 

The simplest illustration of the above is afforded by I I , I I I 
when 

*» = [°'ps¥l, and 1=1, 2, p 11, p = I ' ' 

In case I V a developmental system is well known also. 
The composition theory of developments A and of develop­

mental systems Bp
l is now finally considered ; the functions of 

the composite developmental systems for any stage m are given 
by the products of the developmental functions of each of the 
classes for the same stage. 

The notational scheme of the General Analysis makes pos­
sible a very abbreviated statement of the results. For example 
the last theorem dealt with above is written 

9JÏMl2A .D-9JÏ*= [all £*"* ] . 

This affirms that if 33Î possesses the properties : D, the domin-
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ance property ; Kn, that every function of 3JÎ has the property 
Kl2 [relative to SDÎ and some development A] ; A, that 2JÎ 
possesses a developmental system of functions [relative to this 
same development A] ; it follows that -Jft̂  is the class of all 
functions having the property Kl2 relative to 9JÎ [and to A ] . 
This example shows two of the principal features of the nota­
tion, namely the employment of superscripts to indicate proper­
ties, and the use of the Peano symbols. 

There can be no doubt that the principal mathematical 
results of these lectures are of a simple character, admitting of 
very brief proof, and the reviewer has tried to bring out this 
fact. But Professor Moore has broken up his treatment into 
its component abstract parts, and at the same time has employed 
a sufficiently extensive technical notation to distinguish numer­
ous special cases by their abstract properties; in this way a com­
plex mathematical situation has arisen. The reason which led 
Professor Moore to adopt this form of treatment lies of course 
in the indisputable fact that the whole of mathematics needs to 
be presented from a standpoint which recognizes common ele­
ments of thoughts in diverse fields. I t is Professor Moore who 
has most consistently advanced this important thesis. 

The following list of errata has been forwarded by Professor 
Moore to the reviewer : 

P. 128. A definition (6) is needed for use in § 74 (2). After 
lines 5 and 9 respectively insert : 

-*•*• p'xp'?m ' P * •"* * -***plpffp£p'fm > 

(6) (K'2, Kl2f, (227, Kl2)\ {K'2, K'2', KJ; 

P. 129, 11. 3-5 . For final superscript3 read 5. 
P . 143, 11. 16-26. From the equation 

h g g 

by suitable use of (19, 12, 15, 14, 16) we obtain the relation 

(21) p * . ( w S m 0 , mw m2e, mJ . D . 
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P. 147, 1. 15. After in fact, insert 

in case 3»,AJr> and Wl"^*'2', 

P . 147, 11. 20-21. Insert the respective conditions 

DXK'„ BxK'l; K'2> K'2', 

on the classes 9JÎ', 9Jt" in the hypotheses of the propositions 
of lines 2 0 ; 21. 

P . 148, 1. 12. For DA read DK$A. 
P. 148,1. 25. For LCDA read LCDK*A. 

I I . Projective Differential Geometry, 

In these lectures Professor Wilczynski presented an outline 
of some of the most important results of the projective differen­
tial geometry of curves and ruled surfaces, and at the same 
time gave an indication of the method of proof. A com­
plete presentation of these results will be found in Professor 
Wilczynski's treatise on Projective Differential Geometry. For 
this reason the reviewer confines himself to a very brief synop­
sis of these readable lectures. 

Projective differential geometry deals with the differential 
properties of geometrical configurations that are invariant under 
the projective group. 

The curve in (n— 1) space presents itself as given by n homo­
geneous coordinates yv • • •, yn, each a function of the param­
eter x. Any other set of such coordinates in the same param­
eter will be given by any n linearly independent combinations 
of these, aside from a multiplicative transformation. Hence 
the homogeneous linear differential equation of the nth order, 
a fundamental set of whose solutions is yv • • -, yn is the same 
as that given by any other projectively equivalent curve, or 
else is obtained from it by a multiplicative transformation of 
the dependent variable. If the factor is chosen so as to make 
the (n — l) th derivative disappear, the ratios of the remaining 
coefficients will then be projective invariants of a given curve 
with given parameter and are called the semi-invariants. The 
semi-covariants are similarly defined. 

The absolute invariants and covariants are further invariant 
and covariant under a transformation of the parameter and are 
readily obtainable from the semi-invariants and covariants. 
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The geometrical interpretation of these functions leads to the 
projective differential geometry of curves, and is not given in 
the lectures by Professor Wilczynski. His contribution in this 
direction has been to make systematic use of the elegant ana­
lytic instrument afforded by the differential equation, and thus 
to obtain Halphen's results for the plane and space, and in 
addition like results in a general space. 

The projective theory of the ruled surfaces in space whose 
generators are the lines joining corresponding points of two 
curves O and Cz with coordinates 

Vv Vv Vv Vi a n d zv %v zv h 

is then treated. The most general set of coordinates (aside 
from a factor) is obtained by taking the same four linearly in­
dependent linear combinations of the y's and s's. Thus we are 
led to consider 

X><y< and £ e A . 

These functions form the general solution of a pair of ordinary 
linear differential equations 

V" + PnV + Pnz + 9ny + 9uz = °> 
Z + P2lV + P>22Z' + ?2# + 922

Z = 0 -

Conversely any set of four linearly independent particular solu­
tions y, z of such equations yield always protectively equivalent 
ruled surfaces. These equations are fundamental for the theory 
which has been created by Professor Wilczynski. 

A. change of the dependent variables 

y = Kx)y + P(x)z> * = y(x)y + Kx)z 

changes O and Oz into any other pair of curves CTj and Oz on 
the same ruled surface, and a change of independent variable 
x=f(x) changes the parameter on the curves in any given 
way. The invariants and covariants under these transforma­
tions are now obtained analytically and their interpretation 
leads to the geometrical results. 

Since the space dual of a ruled surface is a second ruled sur­
face one may expect a second pair of adjoint equations to be 
associated with the given one. The invariants are the same for 
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the adjoint equations as for the given equations, except in sign. 
The condition that these two sets of equations are the same 
leads to the theorem that a ruled surface is projectively equiva­
lent to its dual only in case it is a quadric. 

The asymptotic lines on ruled surfaces are clearly projec­
tively invariant. The condition that the curves G and Gz are 
asymptotic lines is simply p12 = p2l = 0 and in this case the 
integral curves of the given equations form the asymptotic 
lines. A simple consequence is the theorem of Paul Serret : 
the cross ratio formed by the intersection of a moving generator 
with four fixed asymptotic lines is constant. 

The totality of the tangents to the asymptotic lines along a 
given generator g form one set of rulings of an osculating 
hyperboloid of the ruled surface. The totality of generators of 
the hyperboloids thus constructed form a congruence V. One 
of the covariants JP gives a unique second generator g of the 
hyperboloid H of the same set as g and thus a second ruled 
surface varying arbitrarily with the choice of independent 
variable of which it serves as the image. This ruled surface is 
the derivative ruled surface S' of 8 with respect to x. 

The flecnode curves are two curves along which the tangents 
to the asymptotic lines have four points in common with the 
ruled surface. The flecnode points are determined by the equa­
ting to zero of a certain quadratic covariant (7. If the flec­
node points coincide, one of the invariants #4 vanishes. The 
developables of which the flecnode curves are the cuspidal edges 
form the focal surfaces of the congruence I \ The condition 
that another invariant A vanishes is that the ruled surface 
belongs to a linear complex. 

In the final lecture there are given first some theorems con­
cerning the derivative surface of S. The lecturer then passes 
on to develop the notion of the two complex points (arising 
from another quadratic covariant) on each generator which with 
the flecnode points form a harmonic group. Lastly the theo­
rems which state the extent to which the flecnode curves may 
be arbitrarily assigned are given. 

I I I . Theory of Boundary Value Problems. 

Professor Mason considers a functional equation ƒ = g + Sf 
for x on a range R, where 8 is a linear operator such that (1) 
8(f> is continuous when (j> is continuous, (2) the series 

<j> + S<l) + S2<l>+ . . . 
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converges uniformly in JR, and (3) the result of the operation 
8 on the series is the same as operating with S term by term. 
In this case 8 is suggestively termed a convergent operator and 
the infinite series above for <f> = g is easily proved to form the 
unique continuous solution of the given equation. 

As a first application, the existence theorem for ordinary 
linear differential equations of the second order is obtained. 
The method does not differ from the method of successive 
approximation, save in form. 

The second application is to a linear partial differential equa­
tion in two independent variables of hyperbolic type. The 
standard reduction of linear partial differential equations of the 
second order to normal forms is first effected. In the hyper­
bolic case, this form is 

h2u Bu Su 

Professor Mason treats the following new boundary value 
problem : Given a rectangle x1 ~x = x2 and yl^=y~y2 and 
upon it two curves Cx: y = <j>(x) (xJ = x =032) and G : x = yjr(y) 
(yl^==y~ y2) where <£, i/r, and the derivative of ^r are continuous, 
to determine a solution u of the above equation such that u and 
Bu/Sy take assigned values U(x) and Y(y) along Gx and G 
respectively. Professor Mason proves that a unique solution u 
exists. The critical portion of this demonstration is less satis­
factorily presented than the remainder of the lectures. The 
operator S which appears in this case is shown to admit of a 
" majorant operator." 

This boundary value problem contains most of those already 
considered for this type of equation, including the classical case 
in which the curves reduce to x — x0 and y = yQ respectively 
and that in which u and its normal derivative are given along 
one and the same monotonie curve. 

The simplest equation of elliptic type, which is the potential 
equation in the plane, is next considered, and the method of 
Neumann is employed to show that a unique solution exists for 
a convex region bounded by a regular curve x = £(£), y == rj(t) 
which takes given values along the boundary. In this case 
the operator 8 is 

S(4>) = i JT' { m - m I arc tan | g ^ g } dt, 
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which is also proved to be convergent. A short review of the 
more general methods which permit one to consider regions not 
convex is given. 

The Green's function G(x, y : %,y) for the potential equation 
is exhibited in the customary way by means of the result just 
stated. Then follows the interesting question of the existence 
of doubly periodic solutions u of Au =ƒ(#, y), where f(x, y) is 
doubly periodic in x, y with periods a, b. The real part of log 
<r(z —- £) — log or(z — 77), where a is the Weierstrassian <r-func-
tion and z = x + iy, furnishes a solution of Au = 0 analytic at 
all points of the period rectangle save for an infinity at z = £ 
and z = r] like zb log r (r the distance from œ, y to £, rj) and 
furthermore is doubly periodic except for simple linear terms. 
By a slight modification destroying these terms the Green's 
function for the equation Au = 0 and the boundary conditions 
u(a) = u(a + a), u(fi) = u(& + b) are obtained. The necessary 
and sufficient condition for a doubly periodic solution is found 
by Professor Mason to be that the integral of ƒ over the rect­
angle vanishes.* The proof depends on the properties of the 
Green's function. 

I t is next shown that a solution of 

AM + cu =f 

taking assigned values on the boundary of a region i? exists if 
R is taken sufficiently small. The operator 8 is obtained by 
means of the Green's function of Au = 0. 

Attention is then called by the lecturer to the recent work 
of Serge Bernstein, in which are proved simple criteria for the 
analytic or non-analytic nature of solutions of partial differen­
tial equations of the second order. 

In conclusion, the lecturer considers the boundary value 
problem attaching to the equation and condition 

y' + \A(x)y = 0, y (a) = y (b) = 0, (X a parameter), 

as it arises from the consideration of the transverse vibrations of 
a stretched string. The method of the existence proof depends 
on the solution of a certain minimum problem, and in order to 

* See an article in the Transactions of the American Mathematical Society, 
vol. 6 (1905), p. 159. 
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carry through this proof the general solution of 

tf+\A(x)y=f, y(a) = y(b)=0 

is first derived. The minimum problem which is to be treated 
is to minimize J y dx under the condition that f Au2dx = 1 and 

J y{ydx = 0 (i = 1, 2, • • •, ri), where yv • . . , yn are the solutions 
belonging to \ v • • •, \ . This gives in order of increasing 
magnitude the positive values of X ; these exist in infinite num­
ber if <£ is anywhere positive. Likewise a series of negative 
values of X will be obtained if <ƒ> is anywhere negative.* 

A formal expansion of an arbitrary function is then given by 

ƒ = S c&i> Gi = =*= X JA.y.dx, 
00 

and Professor Mason states the theorem that this expansion 
holds if ƒ vanishes at a and b, is continuous, and has a deriva­
tive continuous save at a finite number of points. The proof 
however contains an error, j* 

G. D. B I R K H O F F 

SHORTER NOTICES. 

Vorlesungen uber Algebra. Von GTJSTAV BAUER. Heraus-
gegeben vom Mathematischen Verein Munch en. 2te Auf-
lage. Leipzig und Berlin, B. G. Teubner, 1910. v i + 
366 pp. 
T H A T Professor Bauer's lectures, which were published in 

honor of his 80th birthday by the Mathematical Club of 
Munich in 1903, are destined to outlive their author by many 
years, seems to be evidenced by the fact that a second edition 
became necessary in 1910, seven years after the first edition 
and four years after Professor Bauer's death, which occurred 
on April 3, 1906. 

*See an article in the Transactions, vol. 8 (1907), p . 373. 
f At bottom of p. 219 it is necessary to replace the multiplier 2 in the 

inequality 

by a multiplier m—n. This error appears to destroy the force of the proof. 


