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fall into one of four classes, according to the sequence of the 
quantities involved. 

The geometric interpretation of a formula has been ex­
plained wherever possible, when used for the expression of an 
electromagnetic quantity, as mutual induction, magnetic poten­
tial, vector potential, and so forth ; and the advantage of the 
Stokes function in analytic simplicity has been emphasized 
over the ordinary potential function. 
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N E T O F M I N I M U M ADJOINT CURVES. 

BY PROFESSOR VIRGIL SNYDER. 
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I N researches on plane curves a very fruitful configuration 
has been employed by Küpper * in obtaining particular curves 
having double points in abnormal position. His method con­
sists in using as basis points part of the intersections of two 
curves which satisfy certain prescribed conditions ; pencils and 
nets are then constructed having these basis points as nodes. 
The question naturally arises whether the same procedure can 
be employed in other cases, making use of all the constants in 
the system. In the following note it will be shown that in 
such cases the special series which are obtained cannot be em­
ployed to reduce the order of the curve. Incidentally, an 
illustration is furnished of configurations having a g^fo-i) (a 

linear series with two degrees of freedom and of order 2(n — 1)), 
although the curve cannot be reduced to order 2(n — 1). 

1. Through n — 1 points on a straight line pass two general 
curves of order n, cn, c'n. These curves intersect in n2 — n + 1 
residual points through which can be passed oo2 curves of 
order n. Any two points P, Q of the plane will determine 
two pencils en + \en = 0, <j>n + \(j>'n = 0 contained in this net, 
which can so be made projective that the locus of the variable 
intersections is the curve c2n of order 2n 

a) «„*:-«:*,=<>. 
*C. Küpper: "Ueber das Vorkommen von linearen Schaaren . . . , " 

Sitzungsberichte der BÖhmischen Gesellschaft, Prag, 1892, pp. 264-272. 
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The n2 — n + 1 basis points are all double points of c2n ; the 
net cn defines upon it a g\n_iy I f o2n has no other double 
points, the net defines an adjoint system. The canonical 
adjoint curves of order 2n — 3 can be composed of <pn and any 
fixed curve of order n — 3. The usual form of the theorem of 
birational transformation is that any system of adjoint curves 
of order 2n — 3 and having two degrees of freedom may be 
used for transforming curves, but for our net the double points 
furnish the minimum number of conditions for a curve of 
order n. Moreover, the «^(n-i) *s °^ s u c n a n a ^ u r e that one 
point determines n — 2 others, analogous to the case of the 
hyperelliptic curves. If n > 3, p > 2n — 2, hence c2n cannot 
be hyperelliptic. 

2. When n = 3, the g\ is composed of two g\y the groups 
being associated arbitrarily, hence it is hyperelliptic. 

The necessary and sufficient condition that a sextic curve with 
seven double points be hyperelliptic is that every pencil of cubic 
curves through the seven double points and one simple point on the 
curve shall have the residual basis point on the curve also. 

The curve can be reduced to a quintic with a triple point by 
means of adjoint quartics ; it cannot be reduced to a quartic 
curve. 

3. If we now write px^ = cnxn_v px2 == <xn_3, pxz = < x _ 3 

then (1) will go into a conic section, but it will be shown that 
(1) can never be rational. If we use (for a moment) the notation 
of Amodeo in his memoir on minimum adjoint curves (Rendiconti 
dei Lincei, series 5, volume 2 (1893), pages 460-467) we have 
m = 2n, p = n1 — 2n, a = b — 3, p = %(n — 2)(n — 3), wherein 
adjoint curves of cm of order m — 3 — a exist and will pass 
through the remaining p double points if required to pass 
through all but p. As is shown by Amodeo, if these conditions 
are satisfied, then the intersection of c2n with any cn_B (not ad­
joint), forming a g^$Zz)> w ^ n o t be a complete series, but will 
be contained in another having p further degrees of freedom. 
Equation (1), page 466, is satisfied if t = 1, hence all the formulas 
are satisfied when our c2n has the maximum genus n2 — 2n. 

4. Any two curves of the net will intersect in n — 1 points 
lying on a straight line. The pencil of adjoint curves which 
has any fixed basis point on c2n will have n — 2 other fixed 
basis points upon it, and define a gl

n__v The n — 1 points of 
each group of this series are collinear. Such a series can be 
defined by starting from any point of c2n as basis point, but from 



7 2 A SPECIAL ALGEBRAIC CURVE. [ N o v . , 

the form of the equation it immediately follows that all the g\_x 

are identical. The groups of g\_x determine an [n — 2] involu­
tion on c2n. I f p be the genus of c2n, the number of coincidences 
is 20 + p - 2).* 

I f c2n has a double point apart from the n2 — n + 1 basis 
points, it will count for two coincidences, hence if c be the num­
ber of simple coincidences we have 

2(n + p — 2) = 2(n2 — 2n — p) + c 
or 

4p = 2n(n — 3) + c + 4. 

Since c cannot be negative, the minimum value of p is that 
of the general cn, thus 

f 0 - l)(n - 2) ^ p ^ w(w - 2). 

If singular 6rn_x exist in g\_v double points may arise which 
do not involve two coincidences, but they can only occur for 
particular relations among the coefficients of c2n, which we ex­
clude. 

Since p > 0, we can now state the following results : 
(a) The complete series ^(n-i) cann°t be used for birational 

transformation. 
(6) The envelope of the straight lines on which lie the groups 

of gl
n_A is a conic.f 

(c) The normal or canonical form of c2n is a conic, taken 
(n-l)fold. 

The analogy between these curves and the hyperelliptic 
curves thus becomes apparent. 

5. When n = 4, it was seen that the straight lines of the 
plane cut from c8 a partial series g\ contained in the complete 
series g\y hence c8 is the projection of a space curve of the same 
order. Curiously, the same thing is true for every value of n. 
Consider the space curve on the quadric surface, cutting the 
generators of one system in n + 1 points, and those of the other 
in n— 1 points. The space curve B2n has therefore h=n2—n-\-l 

*From the Cayley-Brill principle of correspondence, or from Zeuthen's 
formula. See Bertini : " La geometria delle serie lineari sopra una curva 
piana secondo il metodo algebr^a," Annali di Mat. (2), vol. 22 (1894), pp. 
1-40. 

fAmodeo, " Curve /c-gonali," Ann. di Mat. (2), vol. 21 (1893), pp. 221-
336. See formula, bottom page 231. m = 2M, K = n — 1, t = 1, hence y, the 
class of the envelope, is 2. 
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apparent double points. I f now we project into c2n from a 
center not on the quadric, the n2 — n + 1 double points will 
be distinct. We thus have the theorem : " If through 
h — ^i(i + 1) of the h double points of the projections curve 
c2n a curve of order 2n—i— 3 can be passed (2n—i—3=n—1), 
then this curve will pass through the remaining \ i(i + 1) 
double points also."* 

Through \ n(n + 3) — 2 arbitrary points can be passed oo2 

c . If i = n — 3, we see from the above theorem that all such 
curves cn through \ n(n + 3) —- 2 of the double points will pass 
through the others also, hence a net of adjoint curves of order 
n exists for our projection curve c2n. The adjoint curves define 
upon c2n a g\u_xy In case n == 4, the g\'h the residual oî g\ by 
the Riemann-Roch theorem, but in no case can this net be used 
to transform the curve c2n birationally into another of order 
2(n — 1). If we project R2n from a point of the quadric on 
which it lies, c2n will have an (n — 1) fold point JPn_1 and a Pn+V 

and in general no other singularities. The gl
n_t defined by one 

system of generators is thus defined by one pencil of lines, and 
the gl+l by another. By projecting B2n from a point upon the 
curve, or by ordinary inversion of c2n we obtain a c^^ with a Pn 

and a Pn_2, and no other singularities. By inversion, an infinite 
number of projectively distinct c2n_x can be obtained, but they 
will all have multiple points of the same order. In no case 
can this curve be reduced to a curve of lower order by any 
birational transformation.f 

When n = 4, c8 has a g\ which is invariant, but when cm has 
a g\, p = 2m — 5 ; since c8 is of genus 8, it follows that m = 7. J 

Probably similar deductions can be made for larger values of 
n from the memoirs of Amodeo and of Bertini. Any adjoint 
(j>n containing a point P must also contain the whole group Gn_l 

to which P belongs (Bertini, 1. c , page 29), hence if two different 
$n pass through P , the n — 1 points of intersection will be the 
@n-i

 t o which P belongs. These points always lie on a straight 
line (Bertini, page 30, 6). This shows that our projection curve 
c2n can be generated projectively by the method of § 1, and the 

* H. Valentiner, " Z u r Theorie der Raumkurven," Acta rnat^vol. 2 (1883), 
pp. 136-230. See p. 177. Also M. Noether, " Zur Grundlegung der Theorie 
der algebraischen Raumkurven," Berliner Abhandlungen (1883), pp. 1-120. 
See p. 24. 

f V . Snyder. " O n birational transformation of curves of high genus," 
Amer. Jour. Math., vol. 30 (1908), pp 11-20. 

% K. Bobek : " Ueber Dreischaarkurven, ' ' Wiener Berichte, vol. 98 (1889), 
pp. 141-172. 
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two systems are thus coextensive. Since on R2n the gn_x is de­
fined by the generators of one system of the hyperboloid, the 
envelope of the lines containing the Gn__x is the section of the tangent 
cone to the hyperboloid from the center of projection. 

6. If <j>n, 4>'n, <j)'n' be three cones of order n containing the n 
bisecants from (0, 0, 0, 1 ), then, since the n — 1 remaining 
edges of intersection with the cone R2n from the same point lie 
in a plane, the equation of the defining monoid may be written 

xà>' xà>" 

in in 

from which the equation (1) results. Incidentally, these equa­
tions furnish a means for reducing e2n to c2n_1, namely, the oo2 

plane sections of the monoid from a point on H2n) lying on one 
of the n — 1 simple edges. 

7. If R2n has also actual double points or cusps, <f>n will not 
in general pass through them, hence in the plane curves c2n we 
can distinguish between projection of actual double points and 
apparent double points. Actual double points will not always 
absorb two coincidences in the [n — 2] involutions, but when 
P < K n ~" l)(w — 2), the projection curve can not be written 
in the form (1). 

For other curves on the hyperboloid, the maximum number 
of basis lines of a net formed by bisecants will not be reached ; 
but when no actual double points occur we may say that the 
projection curve cn with jp > ^(n — l)(?i — 2) cannot be biration-
ally transformed into any curve of order less than n — 1. 

CORNELL U N I V E R S I T Y , 
August, 1907. 

NOTE ON CERTAIN I N V E R S E PROBLEMS I N T H E 
S I M P L E X T H E O R Y O F NUMBERS. 

BY PROFESSOR R. D. CARM1CHAEL. 

(Read before the American Mathematical Society, September 5, 1907.) 

Legendre * has considered the problem of finding the highest 
power of a prime p contained in m ! = 1 • 2 • 3 • • • m. Let m be 
written in the form 

(1) m = a0p
a + axp

& + a2py + • •., 

* A. M. Legendre, Théorie des nombres, 3d éd., I., p. 10. 


