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Abstract

In Sections 1–5 of this paper an axiomatic formulation of general the-
ory of rativity (GR) is given and studied. Here use is made of the concept
of pre-radar charts. These charts have “infinitesimally” the same prop-
erties as the true radar charts used in space–time theory. Their existence
in GR has far-reaching consequences which are discussed throughout the
paper. For the sake of simplicity and convenience I consider only such
material systems the state of which is defined by a velocity field, a mass
density and a temperature field. But the main results hold also for more
complex systems. It follows from the axiomatics that the pre-radar charts
define an atlas for the space–time manifold and that, in addition, they
generate the metric, the velocity field and the displacement of the matter.
Therefore, they are called generating functions. They act like “poten-
tials”. In Section 6 it is shown that the existence of pre-radar charts
allows to simplify the original axiomatics drasticly. But the two versions
of GR are equivalent. In Sections 7 and 8 the so-called inverse problem
is treated. This means the question whether it is possible to define pre-
radar charts, i.e., generating functions in arbitrary space–times. This
problem is subtle. A local general constructive solution of it is presented.
Sufficient conditions for the existence of global solutions are given. The
aim of the last sections is formulating GR as a scalar field theory. The
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basic structural elements of it are a generating function, a generalized
density and a generalized temperature. One of the axioms of this theory
is a generalized Einstein equation that determines the generating function
directly. It is shown that basic concepts like orientation, time orientation
and isometry are expressible in terms of generating functions. At the end
of the paper six problems are formulated which are still unsolved and can
act as a stimulant for further research.

1 Introduction

1.1 Some general features of GR

The subject of this treatise is the general theory of relativity (GR) in its
classical form. In a strict sense, GR is not a single physical theory, rather it
is a class of theories that share common features. From this point of view
Schwarzschild space–time, Robertson–Walker space–times, etc., are counted
as separate relativistic theories.

The common features of all these theories are “principles” they obey.
More properly, these principles should be called “axioms” because they have
the same status as the axioms in mathematical theories. An inspection of
relativistic theories reveals that their axioms can be grouped into five classes
as follows.

GK. Axioms concerning geometry and kinematics.
EM. Axioms concerning matter and its motion, e.g., equations of motion

and constitutive equations.
ED. Axioms concerning electromagnetism, e.g., Maxwells equations and

constitutive equations.
EE. Einstein equation and constitutive equations.
AC. Additional conditions, e.g., initial conditions.

Clearly, in vacuum theories the axioms EM and ED are empty. The above
classification of axioms possibly includes redundancies.

1.2 Different forms of physical theories

Among the many forms of presenting physical theories there are two extreme
forms which are of special interest in our context.

(i) The first form is characterized by the property that the fundamental
terms as in our case a set of events M , an atlas A, a metric g, a velocity
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field, etc., are implicitly determined solely by axioms. Examples of
such formulations of theories are well known in many branches of
physics.

(ii) The second form of a physical theory can be characterized as “model
theory”, also widely known under the label “solution.” In this case the
letters M , A, g, etc., are replaced by explicit terms of mathematical
analysis, and the axioms of case (i) occur as theorems, i.e., the axioms
are satisfied by these explicit terms. Also this type of a theory is well
known in physics. Clearly, mixed forms are on the market, too. In
what follows, I will consider relativistic theories according to the first
form. Formulating their axioms, I will make use of some results of
the space–time theory (STT) which is developed in [1–3] and which is
reviewed in [4]. A detailed account of this STT can be found in [5].
More specific, I will take some features of radar coordinates in order to
define a weaker form of them which I call pre-radar coordinates. Using
these coordinates in the context of GR is the essential new aspect of
this treatise. They can be comprised into one function Ψ depending
on two events p, q which is a generating function for the atlas A, the
metric g and the velocity v, and which, in addition, determines the
integral curves of v.

1.3 Radar charts

A few remarks may illustrate the notion of radar coordinates as it is used in
[1–5]. Let A be an observer, b an event and t1, t2 times measured by the clock
of A. Finally, let e = (e1, e2, e3) be the direction of a light signal which leaves
A at instant t1 and comes back to A at t2 after being reflected at b. Then, if

t := 1
2(t2 + t1), r := 1

2(t2 − t1),

the radar coordinates x of b are given by x = (re1, re2, re3, t). Here and in
the sequel all quantities are dimensionless, and c = 1.

If A describes this situation with the help of its own radar coordinates
he or she will get in two dimensions of R

4 the picture shown in Figure 1.
Here the outgoing light signal is a straight line by definition, whereas the
incoming signal is not necessarily straight, but it is a curve that is a subset
of a Minkowskian backward light cone. Intuitively, a pre-radar chart of
an observer A has the properties of a radar chart only in an “infinitesimal
neighborhood” of the worldline of A. In each case, radar coordinates are
also pre-radar coordinates as introduced in Definition 3.2 of Section 3.1. It
is to be emphasized that the term radar coordinate is not uniformly used in
literature. Two examples may illustrate it. Coleman and Korté [7] define
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Figure 1.

radar charts that are similar to those introduced above. The difference is
that the measurement of the direction e is performed on the incoming part of
the radar signal. The radar coordinates used in EPS axiomatics [6] are more
different from ours. Here the radar coordinates (u, v, u′, v′) of an event a are
defined by two observers A and A′ which send out radar signals starting at
the times u, u′ and arriving at v, v′ after being reflected at a.

1.4 Types of continuum theories

Though the class of theories I want to consider are continuum theories the
notions observer, particle or real point are employed. This does not contra-
dict the continuum point of view. Rather it reflects only the fact that we
have two possibilities to describe continuum systems, namely in the way of
Lagrange as systems of particles or in the way of Euler by fields. Later on
I will use a mixture of both these descriptions.

1.5 Matter and test particles

Throughout this paper I will use the following strategy: each material point,
i.e., each point which contributes to gravitation, is a part of the system of
pre-radar observers. However it is possible that there are gravitationally
irrelevant test particles which are pre-radar observers.
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1.6 Remarks on literature

As indicated in Section 1.2 I intend to give a new axiomatic formulation
of general relativity. There is already a considerable amount of work done
in axiomatics of relativity and space-time theory which cannot be reviewed
here. Rather I refer to the paper of Schelb [5] where the reader will find
an almost complete list of relevant papers. One of the most recent treatises
in this field is that of Hehl and Obukhov [8] where a Lorentz metric on
a manifold is constructed using electrodynamics without metric. But in
what follows I do not adopt this general supposition, rather I will take into
account only some special features of electrodynamics by using light signals
as a basic concept. (Cf. also [9] and the literature quoted there.)

2 Description of the systems to be considered

2.1 Some basic suppositions

In what follows, I will not treat the most general continuum systems, rather
I consider only material systems that can be described by one velocity field
v, one mass density η and one empirical temperature ϑ. This means that
mixtures of fluids, especially plasmas are not taken into account. (Mixtures
of fluids are treated e.g., in [10, p. 13].) The above restriction is only a
matter of convenience because the main results of this treatise are also valid
for more complex systems.

Though each system considered is supposed not to have electromagnetic
interaction it is assumed that all observers, i.e., particles of the material
system and test particles can exchange light signals. It is assumed that
these signals are irrelevant with respect to any kind of interaction. The only
thing they can transport is information. They have the same status as test
particles. The reason to take into account light signals is that we want to
introduce pre-radar coordinates. This can be effected most simply if we have
light signals at our disposal.

2.2 The primitive notions of GR

In order to formulate a physical theory in the sense of (i) Section 1.2 which
is adequate to treat the systems described in Section 2.1, the fundamental
mathematical terms have to be specified with the help of which the whole
theory can be formulated and which are implicitly determined by the axioms
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of the theory. There are two kinds of fundamental terms, the so-called base
sets and the so-called structural terms. The first ones contain the signs for
the objects to be treated, whereas the latter, the structural terms define the
basic properties of these objects. Expressed mathematically, the structural
terms are relations that are elements of sets constructed from the base sets
solely with the help of the operations “power set” and “Cartesian product.”

Let us first specify the base sets. The most fundamental term in any
relativistic theory is the set of signs for events. This is indispensable! In
addition, we want to speak about particles some of which bear gravitation-
ally active masses, and we take into account (light) signals. Finally, we need
the real numbers because we have to express the values of some quantities
by numbers.

Let us now come to the structural terms. They are the metric, the velocity
field, the mass density and the (empirical) temperature field. As usual in
GR the set of events should be a manifold. This means that there are
coordinates defined on certain sets of events. The structural term that is
introduced in the present context is a relation which assigns four coordinates
to each event in some neighborhood of an observer.

It is convenient to assign a common name to the theories treated in this
paper.

Notation 2.1. The physical theories that are determined by the above-
mentioned (and in Section 2.3 precisely described) base sets and structural
terms which in turn are ruled by the axioms of Sections 3 and 4 are denoted
ΦR. Since ΦR represents a class of physical theories (in a strict sense) it is
called a frame theory.

2.3 Basic mathematical terms

Summing up the considerations of Section 2.2 we arrive at the following
result: The base sets of ΦR are M, P, S, R:

M is the set of signs a, b, . . ., etc., for events;
P is the set of signs (i.e., indices) A, B, . . ., etc., for particles;
S is the set of signs (i.e., indices) s, s′, . . ., etc., for signals;
R is the set of the real numbers as usual.

The structural terms of ΦR are Ψ̂, g, v, η, ϑ:

Ψ̂ determines the pre-radar coordinates, i.e., (A, b, x) ∈ Ψ̂ means that
observer A coordinatizes event b by x
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g is the metric,
v is the velocity field,
η is the mass density and
ϑ is the temperature field.

3 Geometric and kinematic axioms

Following the notation of Section 1.1 the axioms of this section are denoted
GK. Throughout Sections 3–5 the same natural numbers k resp. r = k − 1
are meant in phrases like “. . . ∈ Ck, k ≥ 3” or “. . . ∈ Cr, r ≥ 2.”

3.1 Pre-radar charts

Intuitively, a pre-radar chart is a chart that has some (or perhaps all) of
the properties of a true radar chart. Therefore, the following axioms can
be motivated by pointing to the fact that true radar charts have a certain
property. In Section 1.3 it was outlined how a radar observer coordinatizes
a neighborhood of its worldline: he or she needs clocks and devices for mea-
suring directions. In what follows, it is assumed that each observer uses one
and only one clock and one and only one directional measuring instrument.
Therefore, the radar charts of observers thus equipped are unique. Hence
the following axiom is self-evident:

GK 1.1. the structural term Ψ̂ is a function: Ψ̂ :
⋃

A∈P {A} × VA → R
4,

where VA ⊂ M and VA �= ∅.

It is useful to introduce some notation.

Definition 3.1. For short we write ψA := Ψ̂(A, ·) and OA := ran ψA; by
definition dom ψA = VA. Then let A = {(VA, ψA) : A ∈ P}.

The next axiom expresses that Ψ̂ determines a manifold structure on M .

GK 1.2. A is a Ck-atlas, k ≥ 3 such that (M, A) is a connected Hausdorff
manifold.

A motivation for further axioms comes from the fact that each radar
observer A coordinatizes himself or herself by (0, 0, 0, t), the parameter t
being the time A measures. In addition, the fourth component of each
quadruple of radar coordinates measured by A is a time at A.
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GK 1.3. For each A ∈ P there are two real numbers u1, u2 with −∞ ≤
u1 < u2 ≤ ∞ such that for each τ ∈]u1, u2[=: JA the relation (0, 0, 0, τ) ∈
OA holds; moreover, if y1 < u1 or u2 < y2, then {(0, 0, 0, ρ) : ρ ∈]y1, y2[} �⊂
OA, i.e., JA is maximal.

Finally, some additional notation is introduced by

Definition 3.2. (1) The term D is the differential structure containing
all charts which are Ck-compatible, k ≥ 3 with A.

(2) The coordinates determined by the charts (VA, ψA) of A will be called
for short A-coordinates, etc. whereas the others are denoted by their
coordinate functions χ, etc.

(3) Within the theory ΦR the charts of A are called pre-radar charts.

3.2 Worldlines of particles

In our context there are two possibilities to define the worldline of an
observer. First, the worldline of A is the set of events that occur at A.
Second, the worldline of A is the set of events that A coordinatizes by
(0, 0, 0, t). This leads to the following

Definition 3.3. For each A ∈ P the (surjective) function γA : JA → WA ⊂
M is defined by γA(t) = ψ−1

A (0, 0, 0, t), t ∈ JA. The set WA := ran γA is
called the worldline of A. As usual γ̇A denotes the velocity of A.

Definition 3.4. For each A ∈ P the clock UA of A is defined by UA(a) =
ψ4

A(a), a ∈ WA.

Remark 3.5. (1) From Definition 3.3 it follows that ψA ◦ γA(t) =
(0, 0, 0, t). Therefore, the function γA is of class Ck, k ≥ 3 and bijective.

(2) From Definition 3.4 one concludes that

UA(γA(t)) = ψ4
A ◦ ψ−1

A (0, 0, 0, t) = t = γ−1
A (γA(t)).

Hence UA(a) = γ−1
A (a) for all a ∈ WA.

Since we want to describe a continuum, the set of particles should be
a continuum. In addition, we want to describe the system by a smooth
velocity field. Therefore, the worldlines of different particles cannot have
common events. Hence the next two axioms are self-evident.

GK 2.1. The cardinality of P is that of a continuum and
⋃

A∈P WA = M .

GK 2.2. For all A, B ∈ P : if A �= B then WA ∩ WB = ∅.
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In other words, this axiom expresses that the set P of particles represents
a congruence.

Remark 3.6. It follows directly from axioms GK 2.1 and 2.2 that there is
a function F : M → P which is surjective and which is given by F (a) = A
for all a ∈ WA := ran γA.

With the help of F we are now able to define a function Ψ which later on
turns out to be a generating function for the metric g and the velocity v.

Definition 3.7. The function Ψ :
⋃

q∈M VF (q) × {q} → R
4 is defined by

Ψ(p, q) = Ψ̂(F (q), p) = ψA(p) for A = F (q). The values of Ψ and Ψ̂ are
mostly written as row vectors: Ψ = (Ψ1, . . . ,Ψ4), etc. But occasionally it is
more convenient to write them as column vectors: Ψ = (Ψ1, . . . ,Ψ4)T, etc.

At this point, Ψ is nothing but another form of Ψ̂ which has the advantage
that it allows to express the intuitively reasonable property of pre-radar coor-
dinates that “neighboring” observers attribute “neighboring” coordinates to
the same event. This means that Ψ is “smooth” with respect to all of its
arguments. Therefore, the following axiom is natural.

GK 2.3. Ψ is of class Ck with k ≥ 3.

3.3 Axioms for the metric

Since the metric g is defined in the usual way it suffices to write down the
axioms governing g.

GK 3.1. The structural term g is a function g :
⋃

a∈M{a} × (TaM × TaM) →
R, where TaM is the tangent space at a ∈ M .

It is convenient to introduce the

Notation 3.8. g(a, w, w′) = g(a)(w, w′) and g(a) = ga = g(a)(·, ·).

GK 3.2. g = g(·) is a
(0
2

)
-tensor field of class Cr, r ≥ 2.

GK 3.3. For each a ∈ M : ga is symmetric, non-degenerate and of signa-
ture 2.

With the help of g the clocks used by the observers now can be specified:
they are to show proper time. This is the content of the next axiom that
joins particles and metric.
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GK 3.4. For each A ∈ P and each t ∈ JA : g(γA(t))(γ̇A(t), γ̇A(t)) = −1.

3.4 Properties of signals

In this subsection the relation between particles and signals is studied. The
motivation for the following axioms comes from space–time theory (cf. [1–5])
where proper radar charts are treated in great detail. It is not possible to
repeat all arguments of these papers here. One result may suffice. A true
radar observer A describes outgoing light signals within his or her coordinate
system by straight lines leaving the worldline of A by an angle of 45◦. In
what follows, one should also have in mind that S is merely a set of indices
for signals.

GK 4.1. For each s ∈ S there is a function σs : Ks → W ∗
s ⊂ M, Ks ⊂ R

with the following properties:

σs is of class Ck, k ≥ 3 and a null geodesic; moreover, there is an A ∈ P
such that

Ks = [ts0, ts1] ⊂ JA,

ψ4
A(σs(t)) = t for all t ∈ Ks,

there is an a ∈ WA such that σs(ts0) = a,

there is an e = (e1, e2, e3) ∈ S2 (the 2-sphere) such that

d

dt
ψA(σs(ts0)) = (e1, e2, e3, 1).

To a certain extent also the converse of this axiom is needed.

GK 4.2. For each A ∈ P , for each a ∈ WA and for each (e1, e2, e3) ∈ S2

there is an s ∈ S such that the function σs determined by axiom GK 4.1 has
the following properties:

σs(ts0) = a,

d

dt
ψA(σs(ts0)) = (e1, e2, e3, 1).
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3.5 Velocity

According to Definition 3.3 the velocity of particle A is γ̇A. Therefore, the
field v is determined by γ̇A. This is the content of axiom GK 5.

GK 5. The structural term v is a function v : M → TM which is defined
for each b ∈ M by v(b) = γ̇F (b)(γ

−1
F (b)(b)) and which is of class Cr, r ≥ 2.

4 Further axioms

4.1 Equations of motion

Up to now only the geometric and the kinematic part of the theory ΦR

was treated, and this part can be characterized, roughly speaking, by the
phrase: everything is smooth. For the formulation of the further axioms we
have to take matter into account. The basic quantities describing matter
can again be smooth, but there are many interesting systems that show
material discontinuities. It is not possible to treat these different classes of
systems by the same kind of axioms.

Therefore I restrict the further studies to the most simple class of systems
which are those with smooth η and ϑ. In this case the following axiom is
obvious.

EM1. The structural terms η and ϑ are functions η : M → R, ϑ : M → R

which are of class Cr, r ≥ 2.

In a next step the constitutive equations have to be specified. In a theory
of type ΦR as treated in this paper there is only one constitutive element,
the energy–momentum tensor T , and the constitutive equation relates T to
the structural terms g, v, η, ϑ. This is the content of the next axiom where
the bundle of

(
n
m

)
-tensors is denoted Tn

m.

EM2. T is a function T : M → T 2
0 M which is of class Cr, r ≥ 2 and which is

defined by the functional T of g, v, η, ϑ for all q ∈ M by T (q) = T (g, v, η, ϑ)(q)
∈ T 2

0qM . If η(q) = 0 for q ∈ N ⊂ M then T (g, v, η, ϑ)(q) = 0.

This axiom is the point why ΦR is a frame theory, for T is not explicitly
specified. Each such specification of T defines a subclass of the systems gov-
erned by the (frame) theory ΦR. The usual forms of the energy–momentum
tensor for systems of dust or for general Euler fluids are examples of classi-
fying systems with the help of T .
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The next two axioms are the equation of continuity and the balance of
energy and momentum. Although the latter is a consequence of Einsteins
equation it is written down here.

EM3. Throughout M : div(ηv) = 0.

EM4. Throughout M : div(T ) = 0.

4.2 Einstein equation

In our context there is no need to comment on Einstein’s equation or to
motivate it. It suffices to write it down. So let, as usual, R be the Ricci
tensor, R̄ the Ricci scalar, Λ0 the (unspecified) cosmological constant and
finally κ0 Einsteins gravitational constant. Moreover, T � denotes the covari-
ant energy–momentum tensor.

EE. Throughout M : R − 1
2gR̄ + Λ0g = κ0T

�.

4.3 Additional conditions

The general term additional conditions (AC) comprises all those axioms
that have to be imposed in order to get physically relevant and uniquely
determined classes of models. In this context, by a model (or a “solution”)
the following is to be understood:

Notation 4.1. Let M ′, P ′, S′ and Ψ′, g′, v′, η′, ϑ′ be terms defined within
mathematical analysis or, more precisely, within the theory of sets such that
the axioms GK, EM, EE and AC for a specified functional T and a specified
cosmological constant Λ0 are satisfied. Then we say that these terms define
an analytical or a set theoretical model of the frame theory ΦR.

A model is a theory of the form described in (ii) of Section 1.2. In this
sense Robertson–Walker space–times, the Schwarzschild space–time, etc.,
are models of ΦR. But this is not proved here.

There is a great variety of AC. Three examples may illustrate the role AC
play:

(i) Initial conditions, e.g., for solving a Cauchy problem.
(ii) Boundary conditions, e.g., for space–times which are to be asymptot-

ically flat in a certain sense.
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(iii) Symmetry conditions by which e.g., a general ansatz can be restricted
to a more special form.

A more detailed discussion of this subject is outside the scope of this
paper.

5 Some consequences of the axioms

5.1 Metric and velocity in B-coordinates

First of all let us fix some

Notation 5.1. The components of v and g with respect to B-coordinates
(cf. Definition 3.2) for each B ∈ P are denoted

vα
B(y) and gB

αβ(y) where y ∈ ψB[VB].

For the general coordinates χ with (W, χ) ∈ D we write

vα
χ(x) and gχ

αβ(x) where x ∈ χ[W ].

Then the following simple lemma holds:

Lemma 5.2. For each B ∈ P and for all y ∈ ψB[WB] it holds that

vα
B(y) = δα

4 .

Proof. By axiom GK5 and by making use of Definition 3.4 for all b ∈ WB

one finds that v(b) = ˙γB(t) where t = UB(b). Let ˙γB(t) = wα
B(t)∂ψα

B
. Then

wα
B(t) =

d

dt
(ψα

B ◦ γB)(t).

From Remark 3.5 it follows that wα
B(t) = δα

4 for all t = UB(b) and b ∈ WB,
i.e., for all t ∈ JB. Let y = ψB(b) and t = UB(b). Then for each b ∈ WB we
have vα

B(y) = wα
B(t), so that the proposition is proved. �
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A similar result holds for the metric g:

Lemma 5.3. For each B ∈ P and for all y ∈ ψB[WB] it holds that

gB
αβ(y) = ηαβ ,

where ((ηαβ)) := diag(1, 1, 1,−1) is the Minkowski matrix.

Proof. In what follows, for the sake of simplicity the argument (y) is omitted.

1. From axioms GK 3.4 and GK 5 it follows that gB
αβvα

Bvβ
B = −1.

By Lemma 5.2 we have vα
B = δα

4 so that gB
αβvα

Bvβ
B = gB

44 = η44.

2. From axioms GK 4.1 and 4.2 one concludes that for all (e1, e2, e3) the
relation

3∑

jk

gB
jke

jek + 2
3∑

j

gj4e
j − 1 = 0

holds. Now let e1 = ±1, e2 = 0, e3 = 0. Then gB
11 ± 2gB

14 = 1 Hence
gB
11 = 1 = η11, g

B
14 = gB

41 = 0 = η14.

Similarly we find that gB
22 = 1 = η22, gB

24 = gB
42 = η24, gB

33 = 1 = η33 and
gB
34 = gB

43 = η34.

Finally let e1 = 1√
2
, e2 = 1√

2
, e3 = 0. Then gB

12 = gB
21 = 0 = η12 = η21. By

analogous arguments one finds that gB
jk = 0 = ηjk, k = 1, 2, 3, j �= k. �

Remark 5.4. (1) Lemma 5.3 is remarkable in so far as it states that for
each observer B the metric in B–coordinates, i.e., gB

αβ is Minkowskian
not only for one point but for each point of the whole worldline WB.
Therefore, by axiom GK 2.1 the metric g as well as the velocity v is
completely determined on M once for all B ∈ P the worldlines WB are
known. These in turn are determined by the coordinate function Ψ̂
resp. Ψ.

(2) As already mentioned in Section 1.3, the proper radar coordinates are
also pre-radar coordinates, i.e., B-coordinates for some observer B.
Also the Fermi coordinates introduced by Synge in [13, p. 84] can be
used to define pre-radar coordinates. But there are pre-radar charts
which are neither radar charts nor Fermi charts.

(3) It is stated without proof that a pre-radar observer B is freely falling
exactly if

∂

∂yj
gB
44 = 0

for all y ∈ ψB[WB] and j = 1, 2, 3.
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5.2 Coordinate representations for metric and velocity

In this section we are looking for explicit expressions for gχ
αβ and vα

χ where
χ are arbitrary coordinates. First of all we have to fix some notation.

Definition 5.5. Let (W, χ) ∈ D and (VB, ψB) ∈ A. Then:

1. φχB := ψB ◦ χ−1, φBχ := φ−1
χB, φAB := ψB ◦ ψ−1

A .
2. Gχ := F (χ−1), where F is defined in Remark 3.6.
3. φχ := Ψ(χ−1, χ−1) (cf. Definition 3.7).

4. Λχ = ((Λχ
α
β)) with Λχ

α
β(x) := ∂φα

χ(x,z)
∂xβ

∣
∣
∣
z=x

where α denotes the rows
and β the columns.

Remark 5.6. Since Ψ(p, q) = ψF (q)(p) it follows that

φχ(x, z) = ψGχ(z)(χ
−1(x)) = φχGχ(z)(x).

Next the representation for the metric is deduced.

Proposition 5.7. If (W, χ) ∈ D then for all x ∈ ran χ we have

gχ
αβ(x) = Λχ

κ
α(x)Λχ

λ
β(x)ηκλ. (5.1)

Proof. Let x = χ(p) and y = ψB(p). Then y = φχB(x). The matrix elements
gχ
αβ(x) and gB

κλ(y) are related by

gχ
αβ(x) =

∂φκ
χB(x)
∂xα

∂φλ
χB(x)
∂xβ

gB
κλ(y).

Therefore, if B = Gχ(z) it follows from Remark 5.6 that

gχ
αβ(x) =

∂φκ
χ(x, z)
∂xα

∂φλ
χ(x, z)
∂xβ

gB
κλ(y).

Now let z = x. Then B = Gχ(x) = F (χ−1(x)) = F (p), so that p ∈ WB

and y ∈ ψB[WB]. Hence by Lemma 5.3 we have gB
κλ(y) = ηκλ for all y ∈

ψB[WB], so that by use of Definition 5.5 the proposition holds. �

Also the components of velocity v can be expressed by Λχ in the following
way.
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Proposition 5.8. If (W, χ) ∈ D then for all x ∈ ran χ we get

vα
χ(x) = Λ−1

χ α4(x). (5.2)

Proof. Let x = χ(p), y = ψB(p) and x = φBχ(y). Then

vα
χ(x) =

∂φα
Bχ(y)
∂yβ

vβ
B(y).

By Definition 5.5 we have ΦBχ = Φ−1
χB. Therefore

vα
χ(x) =

[(
∂φχB(x)

∂x

)−1
]α

β

vβ
B(y).

If B = Gχ(z) then from Remark 5.6 it follows that

vα
χ(x) =

[(
∂φχ(x, z)

∂x

)−1
]α

β

vβ
B(y).

Finally let x = z. Then B = Gχ(x) = F (p), hence p ∈ WB and y ∈ ψB[WB].
Therefore, from Lemma 5.2 we have vα

B(y) = δα
4 . Using Definition 5.5 the

proposition is proved. �

Corollary 5.9. For the covariant components of the velocity the relation

vχ
α(x) = −Λχ

4
α(x). (5.3)

holds. For, using the Propositions 5.7 and 5.8, we have

vχ
α = Λ−1

χ
β
4Λχ

κ
α Λχ

λ
β ηκλ = −Λχ

4
α

Similarly, the contravariant components of the metric are

gαβ
χ = Λ−1

χ
α
κΛ−1

χ
β
ληκλ. (5.4)

This follows directly from ((gαβ
χ )) = ((gχ

αβ))−1 and ηκλ = ηκλ.
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5.3 Global representations

In this section the results of Section 5.2 will be shaped in a form which is
independent of coordinates. These considerations show again the role the
function Ψ plays. We start with some notation.

Definition 5.10. Let Ψ be the function introduced in Definition 3.7. Then

eqα(p) := ∂Ψα(·, q)|p , (5.5)

Θβ
q (p) := dΨβ(·, q)

∣
∣
∣
p
. (5.6)

Remark 5.11. Since Ψ(·, q) is a coordinate function, (eq1(p), . . . , eq4(p)) is
a tetrad in TpM and (Θ1

q(p), . . . ,Θ4
q(p)) is the dual tetrad in T ∗

p M . Hence
for all p ∈ VF (q) we have

Θβ
q (p)(eqα(p)) = δβ

α = eqα(p)(Θβ
q (p)). (5.7)

In what follows, we need only a special form of these bases.

Notation 5.12. (1) For all p ∈ M we write

eα(p) := epα(p), Θβ(p) := Θβ
p (p). (5.8)

(2) To simplify notation, the arguments (p), (x), etc. and the index χ
indicating a coordinate system are mostly omitted in the sequel.

Proposition 5.13. Let (W, χ) ∈ D. Then for all p ∈ W, x = χ(p) and
Λ = Λχ:

Θβ(p) = Λβ
κ(x) dxκ, (5.9)

eα(p) = Λ−1λ
α(x)∂xλ . (5.10)

Proof. Let q be fixed and z = χ(q). Then y = Ψ(χ−1(x), q) = φ(x, z) is
the transformation between χ-coordinates x and pre-radar coordinates y.
Therefore

dyβ =
∂φβ

∂xκ
dxκ, ∂xα =

∂φλ

∂xα
∂yλ .

Hence

∂yλ =

[(
∂φ

∂x

)−1
]α

λ

∂xα .

With z = x and Definition 5.5 the proposition is seen to hold. �
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Remark 5.14. The matrix elements Λβ
κ, κ = 1, . . . , 4 are the χ-components

of Θβ and the Λ−1λ
α, λ = 1, . . . , 4 are the χ-components of eα, i.e., Λβ

κ =
Θβ(∂xκ) and Λ−1λ

α = eα(dxλ). Hence under transformation of coordinates
they transform like components of covectors and vectors.

Proposition 5.13 has an immediate consequence for g and v. Inserting
formulae (5.9) and (5.10) into formulae (5.1)–(5.4) we arrive at the following
result.

Proposition 5.15. Throughout M we have

g = ηαβΘα ⊗ Θβ, g� = ηκλeκ ⊗ eλ, v� = −Θ4, v = e4. (5.11)

Therefore, it is justified to say that Ψ generates g and v.

The result can be stated thus: with respect to (Θ1, . . . ,Θ4) the tetrad com-
ponents of g are ηαβ, and with respect to (e1, . . . , e4) the tetrad components
of v are δα

4 .

Remark 5.16. Using Proposition (5.15) and equation (5.7) we find the
orthogonality relations

g(eκ, eλ) = ηκλ, g�(Θα, Θβ) = ηαβ (5.12)

and
ηκλg(eλ, ·) = Θκ, ηαβg�(Θβ, ·) = eα. (5.13)

Roughly speaking, the result of Section 5 is this: the function Ψ is a
“potential” such that the metric g and the velocity v are determined by the
derivates of Ψ. Moreover, Ψ itself has a physical meaning, namely Ψ(·, q) is
a coordinate function for each q ∈ M .

The existence of the fields Θα, eβ, α, β = 1, . . . , 4, hence the existence of
the function Ψ which determines Θα and eβ, has a consequence concerning
time:

Remark 5.17. (1) From axioms GK 3.4 and GK 5 and from Proposition
5.15 one concludes that e4 = v is a timelike Cr-vector field, r ≥ 2 on
M so that it nowhere vanishes. Therefore, the space–time manifold
(M, A, g) is time orientable (cf., e.g. [11, p. 26]). Already from Def-
inition 3.4 where the clock UA of a particle A ∈ P is introduced we
conclude that (WA,UA) is a one-dimensional manifold with a global
chart for each A ∈ P . Therefore, WA cannot be a closed curve.



NEW FORMULATION OF GENERAL RELATIVITY 1731

(2) Following Geroch [12], in a noncompact space time the existence of
a smooth global field of tetrads is a necessary condition of a spinor
structure.

Remark 5.18. The function Ψ determines not only g and v but also a
worldfunction Ω (cf. [13]) by

Ω(p, q) = ηκλ(Ψκ(p, q) − Ψκ(q, q))(Ψλ(p, q) − Ψλ(q, q)).

Then it is easily seen that for Ω̄(x, z) := Ω(χ−1(x), χ−1(z)) the relation

∂

∂xα

∂

∂xβ
Ω̄(x, z)|z=x = gχ

αβ

holds. The same result is obtained if one takes the covariant derivatives.

6 Alternative axiomatics

In the investigation so far the set S of signals was introduced solely to
ensure that Lemma 5.3 is provable. Thus the question arises if it is possible
to avoid S by changing some axioms. This is indeed the case. To see this,
let us introduce some

Notation 6.1. Let Φ∗
R be the frame theory which has the base sets M, P, R

and the structural terms Ψ̂, g, v, η, ϑ which are subject to the following axioms:
GK 1.1–1.4, GK 2.1–2.3, EM, EE and AC together with GK*3 and 4 which
read:

GK∗3. For all p ∈ M :

g(p) = ηαβ dΨα(p, q)|q=p ⊗ dΨβ(p, q)|q=p.

GK∗4. For all p ∈ M : v(p) = ∂Ψ4(p,q)|q=p,

Then the following theorem holds.

Proposition 6.2. The theories ΦR and Φ∗
R are equivalent in the following

sense. The theory ΦR is stronger than Φ∗
R, i.e., all axioms of Φ∗

R are the-
orems in ΦR. Conversely, there is a term S∗ defined in Φ∗

R such that all
axioms of ΦR are theorems in Φ∗

R if the letter S is replaced by the term S∗.

Proof. From Proposition 5.15 one concludes that ΦR is stronger than Φ∗
R.

To see the converse, one has to show that axioms GK 3–GK 5 of ΦR are the-
orems in Φ∗

R. The term g in axiom GK∗ 3 is a
(0
2

)
-tensor field throughout M
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and g(p) acts on TpM × TpM for all p ∈ M . Moreover, g is of class Cr, r ≥ 2,
because Ψ is of class Ck, k ≥ 3. Finally g is symmetric, non-degenerate and
of signature 2 because η̂ = diag(1, 1, 1,−1) has these properties. Therefore,
axioms GK 3.1–3.3 are theorems in Φ∗

R.

Within Φ∗
R the function γA is defined like in ΦR. Consequently, by axiom

GK∗4 together with Definition 5.10 and Notation 5.12 one has v(p) = e4(p).
Moreover, from Definition 3.3 it follows that γ̇A(t) = e4(γA(t)). Therefore,

v(p) = γ̇F (p)(t), t = γ−1
F (p)(p) (6.1)

so that axiom GK 5 holds in Φ∗
R. Because of Θα(e4) = δα

4 also GK 3.4 is a
theorem in Φ∗

R.

In order to prove axioms GK 4.1 and 4.2 in Φ∗
R one has to define a term

S∗ so that these axioms can be verified in Φ∗
R if S is replaced by S∗. The

definition of S∗ runs as follows. For each A ∈ P let us consider the set of all
null geodesics σ which start at WA, and let ζ = ψA ◦ σ. Then σ obeys the
equations

∇σ̇σ̇ = rσ̇ (6.2)

and
g(σ̇, σ̇) = 0. (6.3)

Let the parameter of σ be denoted λ. Then in ψA-coordinates let ζ(λ0) =
x, where x = ψA(p), p ∈ WA. (Generally λ0 depends on p!) Now for each
p ∈ WA, (6.3) reads

ηαβ ζ̇α(λ0)ζ̇β(λ0) = 0. (6.4)

Hence ζ̇4(λ0) > 0 because only starting null geodesics are considered. This
means we can choose t = ζ4(λ) as a new parameter. Thus, using the same
symbol ζ, we have ζ̇4(t0) = 1. From (6.4) it follows that ζ̇(t0) = (e1, e2, e3, 1)
where (e1, e2, e3) ∈ S2(S2 being the two-sphere). Now we define ŜA to be
the set of all null geodesics σ, i.e., solutions of (6.2) and (6.3) which in
ψA-coordinates obey the initial conditions ζ(t0) = x0, t0 = x4

0 for any x0 =
ψA(p), p ∈ WA and ζ̇(t0) = (e1, e2, e3, 1) for any (e1, e2, e3) ∈ S2.

Finally, let Ŝ = ∪A∈P ŜA and let S∗ be any set of the same cardinality as
Ŝ which may serve as a set of indices for Ŝ.

Then it is easily seen that Axioms GK 4 are satisfied if S is replaced
by S∗. �

This axiomatics is the simplest one for the considered systems.
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7 Generating functions

7.1 General characteristics

7.1.1 Introductory remarks

In Section 3.2 a function Ψ generating charts was introduced within the
theory ΦR (or Φ∗

R) by Definition 3.7, and in Proposition 5.15 it was stated
that Ψ also generates g and v. In Sections 7 and 8 the question is to be
treated whether the concept of a generating function, i.e., a family of pre-
radar charts, is definable only with the help of some special axioms of the
theory ΦR (or Φ∗

R) or whether it can be introduced also for arbitrary space–
times. The conditions for a positive answer will be given in Section 8. In
Section 7 we do some necessary preliminary work.

7.1.2 Properties of generating functions

The goal of this section is summarizing all the properties Ψ has and to define
the concept of a generating function also within relativistic theories which
are different from ΦR and Φ∗

R. In order to do so, at first the conditions are
written down which later on will be seen to be satisfied by Ψ.

Let (M, A+) be a connected Hausdorff Ck-manifold, k ≥ 3. Moreover,
let g be a Lorentzian metric and v be a velocity field on (M, A+), i.e.,
g(v, v) = −1, and let g and v be of class Cr, r ≥ 2. Then conditions P1–P5
governing a term Ψ read as follows:

P1. Ψ is a Ck-function, k ≥ 3,

Ψ :
⋃

q∈M

Vq × {q} → R
4 (7.1)

with Vq an open subset of M and q ∈ Vq such that A = {(Vq, Ψ(·, q)) : q ∈
M} is a Ck-atlas, k ≥ 3 which is Ck-compatible with A+.

P2. Ψ generates g, i.e.,

g(p) = ηκλdpΨκ(p, q)|q=p ⊗ dp Ψλ(p, q)
∣
∣
∣
q=p

(7.2)

for all p ∈ M .
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P3. Ψ generates v , i.e.,

v(p) = ∂Ψ4(p,q)
∣
∣
q=p

. (7.3)

for all p ∈ M .

P4. For each q ∈ M let γq : Jq → M, Jq ⊂ R be a solution of γ̇q = v(γq)
such that there is a tq ∈ Jq for which γq(tq) = q. Then Jq is an interval and

γq(t) = Ψ(·, q)−1(0, 0, 0, t) (7.4)

for all t ∈ Jq. Moreover, Jq is also the domain of the right-hand side of (7.4).

P5. For all q′ ∈ Wq := ranγq the equation Ψ(·, q) = Ψ(·, q′) holds.

In other words, the function Ψ generates an atlas A of pre-radar charts, a
metric g, a velocity field v and the integral curves γq of v. Loosly speaking,
Ψ knows almost everything one is interested in GR.

Then the following proposition is true.

Proposition 7.1. The function Ψ introduced within the theory ΦR (or Φ∗
R)

by Definition 3.7 satisfies conditions P1–P5.

Proof. Since Ψ(p, q) = Ψ̂(F (q), p) = ψA(p) for each q ∈ WA Conditions P1,
P4 and P5 follow directly from axioms GK 1, 2 and 5. Conditions P2 and
P3 are satisfied because of Proposition 5.15. �

7.1.3 Definitions

These considerations suggest generalizing the concept of a generating func-
tion also to relativistic theories different from ΦR and Φ∗

R as follows.

Definition 7.2. (1) Let (M, A+) be a Ck-manifold, k ≥ 3, for which g is
a Lorentzian metric and v a velocity field. Then any term Ψ satisfying
conditions P1–P5 is called a (full) generating function. If Ψ satisfies P1
and perhaps some, but not all of conditions P2–P5 it is called a partial
generating function. If Ψ satisfies only P1 and P2 the coordinates
Ψ(·, q) are known as locally Minkowskian.

(2) If Ψ generates a Ck-atlas A, k ≥ 3, and if D is the differential structure
of class Ck containing A we say that D is generated by Ψ.

(3) The coordinates generated by a full generating function are called pre-
radar coordinates.
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Remark 7.3. If Ψ is a partial generating function which satisfies P1 and
P4 then it satisfies also P3. For from P4 we have the equations

Ψ(γq(t), q) = (0, 0, 0, t) (7.5)

and γ̇q(t) = v(γq(t)) for each t ∈ Jq. Furthermore, it follows from (7.5) that

γ̇q(t) =
d

dt
Ψα(γq(t), q)∂Ψα(·, q)

∣
∣
∣
∣
γq(t)

= ∂Ψ4(·,q)
∣
∣
γq(t)

. (7.6)

Therefore, for each q ∈ M we find

v(q) = v(γq(tq)) = γ̇q(tq) = ∂Ψ4(·,q)|q (7.7)

so that (7.3) holds.

Hence P3 in Definition 7.2 is superfluous, but there are practical reasons
to take P3 as a separate condition. This will be seen e.g., in Section 7.2.

Remark 7.4. (1) From condition P5 one concludes that γq = γq′ for
each q′ ∈ Wq := ran γq. Similarly we have Jq = Jq′ and Wq = Wq′

for q′ = Wq.
(2) It follows from condition P4 that for each q ∈ M the function

Ψ(·, q)−1(0, 0, 0, ·) is an integral curve of v.
(3) Condition P1 has the consequence that any two partial generating

functions have a common domain because q ∈ Vq, and that they gen-
erate the same differential structure D.

7.2 Relations between generating functions

In this section the problem is to be treated to which extent conditions P1–P5
determine the partial generating functions. In a first step two partial gen-
erating functions Ψ and Ψ′ are considered which satisfy conditions P1 and
P2. Then the following proposition holds.

Proposition 7.5. Let Ψ, Ψ′ satisfy P1. Moreover, let g be generated by Ψ.
Then Ψ′ generates g exactly if

Ψ′(p, q) = L(q) · Ψ(p, q) + R(p, q), (7.8)

where L(q) = ((Lα
β)(q))) is a Lorentz matrix and dpR(p, q) |q=p = 0. (Here

Ψ′, Ψ and R are column vectors.)
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Proof. Let Θ′κ = dΨ′κ |q=p and Θα = dΨα |q=p. Then by definition we have
g = ηαβΘα ⊗ Θβ. Moreover, let g′ := ηκλΘ′κ ⊗ Θ′λ. Now assume (7.8) to be
valid. Then Θ′κ = Lκ

αΘα and because of ηαβ = ηκλLκ
αLλ

β we have
g = g′. Conversely, let g and g′ be as above and assume g′ = g. Moreover,
let eβ denote the duals of Θα. Then g(eα, eβ) = ηαβ = ηκλΘ′κ(eα)Θ′λ(eβ).
Therefore, the matrix L = ((Lκ

α)) with Lκ
α = Θ′κ(eα) is a Lorentz matrix.

Since Lκ
α = Lκ

�Θ�(eα) one concludes that

Θ′κ = Lκ
�Θ�. (7.9)

This equation reads explicitly dΨ′κ(p, q)|q=p = Lκ
�(p)dΨ�(p, q)

∣
∣
q=p

.

Hence d(Ψ′κ(p, q) − Lκ
�(q)Ψ�(p, q)) |q=p= 0 so that (7.8) results. �

Remark 7.6. If (7.8) is true the elements Lκ
α of the Lorentz matrix L are

given by Lκ
α = Θ′κ(eα). Hence this equation holds if Ψ′ and Ψ both generate

the metric g. Therefore, in each case, Lκ
α is of class Cr, r ≥ 2. Consequently,

R(p, ·) is of class Cr, r ≥ 2, too. Mixed derivatives and derivatives with
respect to p alone exist up to third order.

In the next step we consider two partial generating functions which satisfy
conditions P1–P3. Clearly the result of Proposition 7.5 holds. But it turns
out that the Lorentzian matrix L has a more special form.

Proposition 7.7. Let Ψ, Ψ′ satisfy P1. Moreover let Ψ generate g and v,
and let v′ be a velocity field. Then Ψ′ generates g and v′ exactly if Ψ′ is
given by (7.8) where L satisfies the condition

v′� = −L4
αΘα. (7.10)

Proof. If Ψ′ generates g and v′ relation (7.8) is valid and v′� = −Θ′4. More-
over, equation (7.9) holds because Ψ′ generates g. Because of v′� = −Θ′4

equation (7.10) holds, too. Now suppose the converse to be true. If (7.8)
holds then Ψ′ generates g. Therefore there is a Lorentz matrix L for which
equation (7.9) is valid. If equation (7.10) is true we find that v′� = −Θ′4.
Hence Ψ′ generates g and v′. �
Corollary 7.8. The unique solution of (7.10) is

L4
α = −v′�(eα). (7.11)

Therefore (7.10) is equivalent to (7.11). Since v�′(eα) = v′
α at any point

q ∈ M are the covariant components of v′ in Ψ(·, q)-coordinates we have
ηαβv′

αv′
β = −1.
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This equation has the consequence that there is a Lorentz matrix L such
that (7.10) holds. The proof of this statement can be read off from steps 3
and 5 of the proof of Proposition 8.2, where a somewhat more general case
is treated.

Remark 7.9. Since the velocity fields v and v′ define time orientations,
they define the same orientation if g(v, v′) < 0. In this case L4

4 > 0 so that
finally L4

4 ≥ 1. For g(v′, v) = v′�(v) = −L4
4 because v = e4.

Corollary 7.10. Let the suppositions be as in Proposition (7.7). Then Ψ′

generates g and v exactly if Ψ′ is given by (7.8) with

L =
(

Q 0
0 1

)

, (7.12)

where Q(q) is an orthogonal 3 × 3 matrix for each q ∈ M .

Proof. Let (7.8) and (7.12) be valid. Then g = g′ and

Ψ′4 = Ψ4 + R4. (7.13)

Therefore, v′� = −Θ′4 = −Θ4 = v� so that v′ = v. Now let g = g′ and v = v′.
Since g′ and v′ are generated by Ψ′, equation (7.11) holds. It reads in this
case: L4

α = Θ4(eα) = δ4
α. Then it follows from general properties of Lorentz

matrices that L has the form (7.12). �

Now let Ψ and Ψ′ be partial generating functions satisfying P1–P3. What
can be said about Ψ′ if in addition Ψ satisfies P4? The answer is given by

Proposition 7.11. Assume that Ψ and Ψ′ satisfy condition P1. Moreover,
assume that Ψ generates g and v and that it satisfies P4 where γq is related
to Ψ by (7.4). Then Ψ′ generates g and v, and satisfies condition P4 exactly
if Ψ′ is given by (7.8) and (7.12) where the additional condition

R(γq(t), q) = 0 (7.14)

holds for all t ∈ Jq.

Proof. First assume that Ψ′ generates g and v, and satisfies P4. Hence, in
P4 the integral curves with respect to Ψ′ are the same as with respect to Ψ.
Then, because Ψ′ and Ψ are related by (7.8) together with (7.12), we find

(0, 0, 0, t)T = Ψ′(γq(t), q) =
(

Q(q) 0
0 1

)

· (0, 0, 0, t)T + R(γq(t), q),

so that equation (7.14) holds.
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Conversely, if Ψ′ is given by (7.8) and (7.12) it generates g and v so that
the integral curves in P4 with respect to Ψ′ and Ψ are the same. Therefore

Ψ′(γq(t), q) =
(

Q(q) 0
0 1

)

(0, 0, 0, t)T + R(γq(t), q)

so that condition P4 for Ψ′ is satisfied because of (7.14). �

A similar result holds if one takes condition P5 into account. At first
some suppositions are specified.

It is supposed that Ψ and Ψ′ satisfy condition P1. Moreover, it is assumed
that Ψ generates g and v, and that for each q ∈ M there is an integral curve
γq of v where Jq := dom γq is an interval and where there is a tq ∈ Jq with
γq(tq) = q. Finally it is supposed that Ψ satisfies P5 with Wq := ran γq.

Proposition 7.12. If these assumptions are true then Ψ′ generates g and v,
and satisfies P5 exactly if Ψ′ is given by (7.8) and (7.12) where the additional
conditions

Q(q′) = Q(q) and R(·, q′) = R(·, q) (7.15)

hold for all q′ ∈ Wq.

Proof. If Ψ′ is given by (7.8) and (7.12) then it generates g and v. In
addition, if (7.15) are true Ψ′ satisfies also P5. Conversely, if Ψ′ generates
g and v, it is given by (7.8) and (7.12). If in addition Ψ′ satisfies P5 the
equations

d

dt
Ψ(p, γq(t)) = 0,

d

dt
Ψ′(p, γq(t)) = 0

hold for all p ∈ Vq. Hence one concludes from (7.8) that

Ψβ(p, γq(t))
d

dt
Lα

β(γq(t)) +
d

dt
Rα(p, γq(t)) = 0.

Since R is a least of class C2 one can apply the d-operator with respect to
p at the point p = γq(t). Then we obtain

Θβ(γq(t))
d

dt
Lα

β(γq(t)) = 0. (7.16)

For α = 4 it is an identity, and for α = l = 1, 2, 3 it reads

Θj(γq(t))
d

dt
Ql

j(γq(t)) = 0. (7.17)
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Since Θj , j = 1, 2, 3 are linearly independent we find Q(q′) = Q(q) for all
q′ ∈ Wq. Inserting this result into (7.8) and (7.12) we obtain also the second
part of (7.15). �

8 Construction of generating functions

8.1 The inverse problem

In Sections 3 and 4 an axiomatic formulation of the frame theory ΦR is
given (and analogously for Φ∗

R in Section 6) which is based on the existence
of pre-radar charts. The set of all these charts forms a generating function
for the metric g and the velocity v. Since in the usual formulation of GR the
existence of pre-radar charts or of a generating function is not postulated,
the question arises whether it is possible to construct a generating function
in this case. I call this question the inverse problem.

In order to formulate the problem precisely let us first describe a relativis-
tic (frame) theory Φ+ which represents the usual account of GR. The base
sets of Φ+ are the set of (signs for) events M and the reals R (and possibly
other sets). The structural terms are an atlas A+, a metric g, a velocity v, a
mass density η and an empirical temperature ϑ (and possibly other fields).
In any case the axioms of Φ+ contain geometrical and kinematical axioms,
the equations of motion of matter, Einstein’s equation and additional condi-
tions. In vacuum theories the density of matter is zero so that the equations
of motion are empty and the right-hand side of Einstein’s equation is zero.
Then the inverse problem can be stated thus:

Problem 8.1. (1) If Φ+ is given, is there a (full) generating function Ψ
in Φ+ in the sense of Definition 7.2?

(2) If Φ+ is given, is there a local solution to the problem in the following
sense: there is a covering of M by open sets V so that a generating
function Ψ exists for each open submanifold with base set V ?

This problem can be solved in two ways: first, one shows that a solution
exists, and second, one constructs an explicit term which represents a gen-
erating function for each given theory Φ+. In what follows, I shall present
a general constructive solution of the local problem. But in addition, this
result allows to formulate sufficient conditions for solutions of the global
problem.
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8.2 Construction of a field of tetrads

8.2.1 Proof of a theorem

In this section, we assume that a theory of type Φ+ is given. More specific,
we consider a Ck-manifold (M, A+), k ≥ 3 with a Lorentz metric g and a
velocity v defined on M such that g(v, v) = −1 and such that g and v are
of class Cr, r ≥ 2. The construction of a local (full) generating function in
Section 8.3 is based on the existence of a tetrad field the components of
which determine the components of g and v in the sense of formulae (5.1)
and (5.2). For this purpose let us take a chart (V, χ) ∈ D where D is the
differential structure of class Ck, k ≥ 3 which contains A+, and let gαβ and
vκ be the χ-components of g and v. Then the following result holds.

Proposition 8.2. For each x ∈ χ[V ] there is a matrix Λ(x) = ((Λ�
σ(x)))

with det Λ(x) �= 0 and such that

gαβ(x) = Λκ
α(x)Λλ

β(x)ηκλ (8.1)

and

vκ(x) = Λ−1 κ
4 (x). (8.2)

Moreover, the covectors Θα(p) = Λα
β(x)dxβ, α = 1, . . . , 4 and the vectors

eκ(p) = Λ−1 λ
κ (x)∂xλ , κ = 1, . . . , 4 with x = χ(p), p ∈ V form orthogonal

tetrads in T ∗
p V resp. in TpV.

The proof is effected in five steps.

(1) Since the matrix ((gαp)) is nonsingular, symmetric and of signature 2
there is an orthogonal matrix ((Q�

σ)) such that gαβ = Q�
αQσ

βd�σ where

d�σ = diag(a2
1, a

2
2, a

2
3,−a2

4)�σ, aλ > 0, λ = 1, . . . , 4.

Now let fν
μ =

4∑

j
δν
j δj

μaj . Then d�σ = fκ
� fλ

σ ηκλ. Defining K := ((Kκ
α))

by Kκ
α = Q�

αfκ
� we obtain the relations det K �= 0 and

gαβ = Kκ
αKλ

βηκλ. (8.3)
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(2) From (8.1) and (8.3) it follows that K and the matrix Λ we are looking
for, can differ at most by a Lorentz matrix L, i.e.,

Λκ
α = Lκ

�K�
α. (8.4)

Since (8.2) is equivalent to

Λ4
α = −gακvκ (8.5)

the next task is to find a Lorentz matrix L such that

L4
�K

�
α = −gακvκ (8.6)

for the given terms K�
α, gακ and vκ. The unique solution of (8.6) reads

simply
L4

β = −K−1 α
β gακvκ =: hβ. (8.7)

But up to now it is not clear whether the four components hβ are
possible candidates for the fourth row of a Lorentz matrix. It is shown
in the next three steps that such Lorentz matrix exists.

(3) In this step a special Lorentz matrix is introduced. By simple calcu-
lations one can see that the following equations hold:

hβ = −ηβσKσ
κvκ, (8.8)

ηαβhαhβ = −1. (8.9)

From (8.9) we get |h4| ≥ 1. Since both K and −K satisfy equation
(8.3), because of (8.8) we can choose h4 ≥ 1. Now let r := −(h2

4 − 1)
1
2

and v̄ := (1 − h−2
4 )

1
2 . Because of h4 ≥ 1 we get v̄ ∈ [0, 1[. This means

that v̄ is a speed parameter. Moreover, by a simple calculation we find
that

h4 = (1 − v̄2)− 1
2 , r = −v̄(1 − v̄2)− 1

2 .

Thus, the matrix

S =

⎛

⎜
⎜
⎝

h4 0 0 r
0 1 0 0
0 0 1 0
r 0 0 h4

⎞

⎟
⎟
⎠ (8.10)

is a special Lorentz matrix.
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(4) In this step two orthogonal matrices are defined. Let

b1
l := −(h2

4 − 1)− 1
2 hl, l = 1, 2, 3, (8.11)

then
∑3

l (b
1
l )

2 = 1. Moreover, let B1 = (b1
1, b

1
2, b

1
3) and in addition let

B� = (b�
1, b

�
2, b

�
3), � = 2, 3 be vectors such that {B1, B2, B3} is an ortho-

normal basis in R
3. Then define the orthogonal matrix B by B =

(B1, B2, B3)T. Finally, let A be an arbitrary orthogonal 3 × 3 matrix
and define Â, B̂ by

Â =
(

A 0
0 1

)

, B̂ =
(

B 0
0 1

)

. (8.12)

(5) In the last step of the proof let us consider the matrix L = Â · S · B̂.
By definition, L is a Lorentz matrix and

L4
β = S4

1B̂1
β + S4

4B̂4
β . (8.13)

Inserting S4
1 = r, B̂1

β = r−1 ∑3
l hlδ

l
β, S4

4 = h4 and B̂4
β = δ4

β we obtain
L4

β = hβ. Hence a matrix Λ satisfying (8.1) and (8.2) is given by
Λ = L · K. Then it is easily seen that the dual tetrads Θα, α = 1, . . . , 4
and eκ, κ = 1, . . . , 4 are orthogonal.

Corollary 8.3. It is seen from the proof that there is not only one matrix
Λ, but there are infinitely many Λ which generate gαβ and vκ by (8.1) and
(8.2). Moreover, if there is a Lorentz matrix L such that Λ = L · K satisfies
(8.1) and (8.2) for a given K, then L = Â · S · B̂ where Â, S and B̂ are
the matrices introduced by (8.10) and (8.12). This can be seen quite easily
starting with a general ansatz L = Ã · S̃ · B̃ and showing that S̃ = S, B̃1

β =
B̂1

β and Ã is any matrix of the form Â in (8.12).

Remark 8.4. In what follows, we have to differentiate Λ. If, as usual, gαβ

and vκ are of class Cr, r ≥ 2 then the eigenvalues and eigenvectors at gαβ

are of class Cr, r ≥ 2 (cf. [14, p. 122]; due to a private communication of H.
Sohr, Paderborn the result of Kato can be generalized to the present case).
Hence the matrix K is of class Cr, r ≥ 2, and consequently hβ, β = 1 . . . , 4
and b1

l , l = 1, 2, 3, too. Then the vectors B�, � = 2, 3 can be adjusted to
form an orthonormal basis together with B1, so that the matrix B is of
class Cr, r ≥ 2. Finally, let A be any sufficiently smooth field of orthogonal
matrices. Then L and Λ are of class Cr, r ≥ 2.



NEW FORMULATION OF GENERAL RELATIVITY 1743

8.2.2 Special coordinates

In this section as well as in the subsequent ones the chart (V, χ) is specialized.
It is assumed that χ is a comoving coordinate system with respect to v. This
supposition has the following consequences.

Remark 8.5. By definition of χ we get for the components vα of the veloc-
ity: vα = δα

4 w. Since g44w
2 = −1, both g44 and w are unequal zero, and

by a special choice of χ4 we can attain the relation w > 0. Moreover, since
Λ−1 α

4 = vα = δα
4 w we obtain the equation Λ−1 4

4 = w whereas the other
elements of the fourth column of Λ are zero. Since Λ = (Λ−1)−1, a similar
result holds for Λ, i.e., Λα

4 = δα
4 w−1.

In a further step the integral curves of v are determined. First of all we
introduce

Notation 8.6. (1) Let, as above, Ṽ = χ[V ] = ranχ. Then define

V̄ := {(x1, x2, x3) : there is an x4 such that (x1, . . . , x4) ∈ Ṽ }. (8.14)

If x = (x1, . . . , x4) the abbreviations x̄ = (x1, x2, x3) and x = (x̄, x4)
are used.

(2) If z ∈ Ṽ and if w is as in Remark 8.5 then f is defined for a fixed
x4

0 by

f(z̄, x4) =
∫ x4

x4
0

dξ

w(z̄, ξ)
. (8.15)

(3) For each z̄ ∈ V̄ let

Tz̄ : = {x4 : (z̄, x4) ∈ Ṽ },

Jz̄ : = {τ : there is an x4 ∈ Tz̄ and τ = f(z̄, x4)}.

Remark 8.7. In what follows, it is assumed that there is an x4
0 such that

V̄ × {x4
0} ⊂ Ṽ . By restriction of V such x4

0 can always be found. Then f is
defined with exactly one of these numbers x4

0. For the same reason we may
assume that Tz̄ and Jz̄ are intervals. Because of w > 0 the function f(z̄, ·) is
strictly increasing and of class Cr+1, r ≥ 2. Therefore the inverse function
exists and is also of class Cr+1, r ≥ 2. We write ϕ(z̄, t) := f(z̄, ·)−1(t).

Then the following proposition holds.
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Lemma 8.8. The path γ is a solution of

γ̇α = vα(γ) = δα
4 w(γ) (8.16)

exactly if there is a z̄ ∈ V̄ such that

γl(t) = zl, l = 1, 2, 3, (8.17)

γ4(t) = ϕ(z̄, t) (8.18)

for all t ∈ Jz̄.

Proof. If γ is a solution of (8.16), then γl, l = 1, 2, 3 is constant, and by
separation of variables one gets (8.17). The converse holds because γ̇l(t) =
0, l = 1, 2, 3 and

γ̇4(t) =
∂

∂t
ϕ(z̄, t) = w(z̄, γ4(t)).

�

To complete the tools needed in the next section we introduce the

Notation 8.9. If γl(t) = zl, l = 1, 2, 3, we write γ = γz̄ and Wz̄ = ranγz̄.
Sometimes it is convenient to write also γz′ := γz̄ and Wz′ := Wz̄ for z′ ∈ Wz̄.

8.3 Solution of the local inverse problem

8.3.1 Suppositions

In what follows, we consider again a relativistic theory of type Φ+ which is
characterized by the base sets M and R, the structural terms A+, g and v
and possibly others, and the axioms ruling these terms (and possibly others).
(Cf. Sections 8.1 and 8.2.1.)

Let us assume that a comoving chart (V, χ) with respect to the velocity
v is given. Then Notations 8.6 and 8.9 are used as well as the results of
Remark 8.7 and Lemma 8.8.

Finally, it is assumed that the construction of the tetrad components Λα
β

determining g and v by (8.1) and (8.2) is carried through in the chart (V, χ).
But with respect to differentiability we assume a stronger condition to be
valid: the components Λα

β , α, β = 1, . . . , 4 are of class Ck, k ≥ 3.
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8.3.2 First step

At first a function Φ̃ is defined. Later on it turns out that a restriction of
it determines the generating function we are looking for. In the definition
Notation 8.6 is used.

Definition 8.10. The function

Φ̃ :
⋃

z∈χ[V ]

(R3 × Tz̄) × {z} → R
4 (8.19)

is defined by

Φ̃j(x, z) =
3∑

l

(xl − zl)Λj
l (z̄, x4), j = 1, 2, 3,

Φ̃4(x, z) =
3∑

l

(xl − zl)Λ4
l (z̄, x4) + f(z̄, x4).

(8.20)

Hence Φ̃ ∈ Ck, k ≥ 3 if Λα
β , α, β = 1, · · ·, 4 are of class Ck, k ≥ 3.

Before proofing that a restriction of Φ̃ is a generating function two lemmas
have to be proved.

Lemma 8.11. For each z ∈ χ[V ] there is an open set Vz̄ ⊂ R
3 × Tz̄ such

that Φ̃(·, z) restricted to Vz̄ is bijective and {z̄} × Tz̄ ⊂ Vz̄.

Proof. (1) Let y = Φ̃(x, z) and X = (x1 − z1, . . . , x3 − z3, w(z̄, x4)f(z̄, x4)).
Then (8.20) is equivalent to Λ−1(z̄, x4) · yT = XT, i.e.,

3∑

l

Λ−1 j
l (z̄, x4)yl + zj = xj , j = 1, 2, 3, (8.21)

Λ−1 4
α (z̄, x4)yα = w(z̄, x4)f(z̄, x4). (8.22)

Now assume that equation (8.22) is solvable for x4. This means there
is a function F (z̄, ·) defined on a set Uz̄ ⊂ ran Φ̃(·, z) such that x4 =
F (z̄, y) satisfies (8.22) if y ∈ Uz̄. Then Φ̃(·, z)−1 exists. It is defined
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for all y ∈ Uz̄ by

3∑

l

Λ−1 i
l (z̄, F (z̄, y))yl + zi = xi, i = 1, 2, 3, (8.23)

F (z̄, y) = x4. (8.24)

Hence, the only thing we need to prove is that equation (8.22) is solv-
able for x4 if y is an element of a certain set Uz̄.

(2) It is helpful to simplify the notation. In this and the next steps of
the proof the fixed vector z̄ is omitted. Since Λ−1 4

4 = w > 0, equa-
tion (8.22) reads

3∑

l

σl(x4)yl + y4 = f(x4), (8.25)

where σl = w−1Λ−1 4
l . Since f is bijective by Remark 8.7 one defines

�l(t) = σl(f−1(t)), so that equation (8.25) becomes

3∑

l

�l(t)yl + y4 = t, (8.26)

and we arrive at the result, that (8.25) has a unique solution x4 ∈ Tz̄

exactly if (8.26) has a unique solution t ∈ Jz̄.
Let Nz̄ := {(0, 0, 0, τ) : τ ∈ Jz̄} then (8.26) is solvable if y ∈ Nz̄, namely

t = y4. In the next steps of the proof the solvability of (8.26) is
extended to a neighborhood Uz̄ of Nz̄.

(3) Since each open interval is the union of a countable family of increasing
closed finite intervals we need to prove the solvability of (8.26) only
for closed finite intervals. Thus let Ji ⊂ Jz̄ be such an interval, then
�l and �̇l are bounded in Ji because �l is of class Cr, r ≥ 2, i.e., there
is a number mi such that

3∑

l

�2
l (t) < mi and

3∑

l

|�̇l(t)| < mi (8.27)

for all t ∈ Ji. If Ji = [ai, bi] and 0 < ζ < 1 define

δi(y4) = min{|y4 − ai|, |y4 − bi|, ζ} (8.28)

and

Ui = {y : ai < y4 < bi,

3∑

l

(yl)2 <
1

mi
δi(y4)}. (8.29)
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Then δi is continuous in Ji, and therefore Ui is open. Now let us
consider the function H defined by

H(y, t) =
3∑

l

�l(t)yl + y4 (8.30)

for y ∈ Ui and t ∈ Ji.
(4) It is shown that for each y ∈ Ui the function H(y, ·) maps Ji into Ji

and is contracting. Let t ∈ Ji and t′ = H(y, t) then

|t′ − y4| ≤
3∑

l

�l(t)2 ·
3∑

r

(yr)2 < δi(y4). (8.31)

From (8.31) one concludes that t′ ∈ Ji. Moreover let t, t′ ∈ Ji, t < t′

and H(y, t) = τ, H(y, t′) = τ ′. Then there is a t̃ ∈ Ji with t ≤ t̃ ≤ t′

such that

τ − τ ′ =
3∑

l

�̇l(t̃)yl(t − t′). (8.32)

Hence for all y ∈ Ui

|τ − τ ′| < δi(y4)|t − t′| ≤ ζ|t − t′|, (8.33)

where 0 < ζ < 1, so that H(y, ·) is contracting. Then by Banach’s
fixed-point theorem (cf., e.g., [15, p. 251; 16, p. 151]) we get that for
each y ∈ Ui there is exactly one t ∈ Ji so that the equation H(y, t) = t
holds. Consequently, there is a function Gi such that Gi(y) = t for
each y ∈ Ui and Gi is uniquely determined.

(5) If y ∈ Ui ∩ Uj , i �= j then Gi(y) = Gj(y) because Gi and Gj are the
solutions to the same equation, i.e., equation (8.26). Now we can
define the function F we are looking for (cf. (8.24)) as follows: Define
Uz̄ by Uz̄ =

⋃
i Ui and G by G(z̄, y) = Gi(y) for y ∈ Ui. Then let F be

defined by
F (z̄, y) = f−1(z̄, G(z̄, y)) (8.34)

for all y ∈ Uz̄. By construction x4 = F (z̄, y) is a solution of (8.22).
(6) Therefore, by the considerations of step one we conclude that Φ̃(·, z)

restricted to
Vz̄ := {x : Φ̃(x, z) ∈ Uz̄} (8.35)

is bijective. The set Vz̄ is open because Φ̃(·, z) is continuous and
because Uz̄ is open. �
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8.3.3 Second step

This lemma now enables us to define a function which later on turns out to be
the coordinate representation of the generating function we are looking for.

Definition 8.12. The function Φ is defined by Φ(x, z) = Φ̃(x, z) for all

(x, z) ∈
⋃

z′∈χ[V ]

Vz̄′ × {z′} =: dom Φ. (8.36)

The second lemma we need concerns the differentiability of Φ(·, z)−1.

Lemma 8.13. If Λ ∈ Ck, k ≥ 3 (cf. Section 8.3.1) then Φ(·, z)−1 ∈ Ck,
k ≥ 3.

Proof. To simplify notation the fixed vector z̄ is omitted. From (8.23) and
(8.24) we see that Φ(·, z)−1 ∈ Ck, if F := F (z̄, ·) is of class Ck. Let us write
(8.25) in the form

Z(y, x4) :=
3∑

l

σl(x4)yl + y4 − f(x4), (8.37)

where y ∈ Uz̄ and x4 ∈ Tz̄. Then Z(y, F (y)) = 0 by definition of F . Since
σl = w−1Λ−1 4

l , w = Λ−1 4
4 , w > 0 the functions σl, l = 1, 2, 3 and f are of

class Ck, so that Z is also of class Ck.
Now using the notation of (8.26) we obtain σl(x4) = �l(f(x4)) and therefore

∂σl

∂x4 =
∂�l

∂t

∂f

∂x4 = �̇l
1
w

.

Hence
∂Z

∂x4 =
1
w

∑
(�̇ly

l − 1). (8.38)

For each t ∈ Jz̄ and each y ∈ Uz̄ there is an i ∈ N such that t = f(x4) ∈ Ji

and y ∈ Ui. Therefore

∣
∣
∣
∣
∣

3∑

l

�̇ly
l

∣
∣
∣
∣
∣
< δi(y4),≤ ζ < 1,

so that | ∂Z
∂x4 | > 0. Applying the Implicite Function Theorem (cf., e.g., [17, p. 117])
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we conclude that F = F (z̄, ·) is also of class Ck, k ≥ 3. Thus the proof is
complete. �

8.3.4 Final results

With the help of Lemmas 8.11 and 8.13 we are now able to prove the main
result of Section 8.3.

Proposition 8.14. If the suppositions of Section 8.3.1 are fulfilled and if
Φ is given by Definition 8.12 then Ψ = Φ(χ, χ) is a generating function in
the submanifold V with the global coordinate system χ.

Proof. (1) The function Ψ is of class Ck, k ≥ 3, because Φ is of class
Ck, k ≥ 3, by the Definitions 8.10 and 8.12. It follows from Lem-
mas 8.11 and 8.13 that for each z ∈ χ[V ] the function Φ(·, z) is a diffeo-
morphism of class Ck, k ≥ 3, i.e., it is a transformation of coordinates.
Hence for each q ∈ V the function Ψ(·, q) is a coordinate function, and
the set of all these functions is an atlas on V which is compatible with
the (global) chart (V, χ). Thus condition P1 is satisfied.

(2) By a simple calculation one can see that

∂Φα

∂xβ
(x, z) |z=x= Λα

β(x).

Since by construction of Λ equations (5.1) and (5.2) hold, and because
of formulae (5.9) and (5.10) one can see quite easily that Ψ generates
g and v. Hence conditions P2 and P3 are fulfilled.

(3) The integral curves γ̂q of v are determined by formulae (8.17) and
(8.18) and by γ̂q(t) = χ−1(γz(t)) where z = χ(q). Then for each z =
χ(q), q ∈ V and t ∈ Jz̄ we have Ψ(γ̂q(t), q) = Φ(γz(t), z) = (0, 0, 0, t).
Hence P4 is fulfilled.

(4) Let Ŵq := ran γ̂q. Then Ŵq = χ−1[Wz] where z = χ(q). Moreover,
Ψ(·, q′) = Ψ(·, q) for q′ ∈ Ŵq exactly if Φ(·, z′) = Φ(·, z) for z′ ∈ Wz.
But the latter equation is true because Φ depends only on z̄. Therefore
condition P5 is satisfied, too. �

Corollary 8.15. For a given theory Φ+ of the type described in Section
8.2.1 the velocity field v is defined on M . Hence, for each q ∈ M there
is a neighborhood V such that a comoving coordinate system χ exists on V .
Therefore, by Proposition 8.14 the second part of Problem 8.1, the local form
of the inverse problem, is solved. If V = M one has obtained a solution of
the global Problem 8.1.
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8.4 Examples

(i) The simplest case for which the inverse problem can be solved explicitly
is the following: let (M, A) be a space-time manifold with metric g and
velocity v, and let (V, χ) be a chart such that

gαβ(x) = ηαβa2
α(x), vα(x) = −δ4

αa4(x),

where x ∈ χ[V ]. Then aβ(x) �= 0 for all x ∈ χ[V ], so that

Λκ
α(x) = δκ

αaα(x), Λ−1 μ
β (x) = δμ

βa−1
β (x).

Therefore
gαβ = Λκ

αΛκ
βηκλ, vα = −Λ4

α

and

Φj(x, z) = aj(z̄, x4)(xj − zj), j = 1, 2, 3, (8.39)

Φ4(x, z) = f(z̄, x4), (8.40)

where f is defined by Notation 8.6.
(ii) These considerations can be applied to the Robertson–Walker space-

time (M, A) with k = 0. Here the same notation is used as in Section
8.4.1. In this case M = R

3 × T with T =]0,∞[ and A = {(M, idM )}.
For the global chart (M, idM ) we have

gαβ(x) = K2(x4)
3∑

i

δi
αδi

β − δ4
αδ4

β,

where K(x4) �= 0 for all x4 ∈ T , and vα(x) = −δ4
α. Therefore

Φ(x, z) = (K(x4)(x1 − z1), . . . , K(x4)(x3 − z3), x4).

The covariant velocity v = −dx4 is solely owing to massive particles.
(iii) A similarly simple case is the outer Schwarzschild space-time (M, A)

where M = {y ∈ R
3 : ‖y‖ > r0} × R and A = {(M, idM )}. Using the

(nonglobal) Schwarzschild coordinates x = (r, ϑ, ϕ, t) we have

a2
1(x) =

(
1 − r0

r

)−1
, a2

2(x) = r2,

a2
3(x) = r2 sin2 ϑ, a2

4(x) = 1 − r0

r
.

Since the outer Schwarzschild solution is a vacuum solution the velocity
field can be chosen such that the set of testparticles is comoving. This
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means

vα(x) = −δ4
α

(
1 − r0

r

) 1
2
.

Now let z = (r′, ϑ′, ϕ′, t′). Then the result is

Φ1(x, z) = (1 − r0

r′ )
− 1

2 (r − r′),

Φ2(x, z) = r′(ϑ − ϑ′),

Φ3(x, z) = r′ sin ϑ′(ϕ − ϕ′),

Φ4(x, z) = (1 − r0

r′ )
1
2 t.

(iv) The last result can be generalized. For each vacuum solution g which
is diagonal in a chart χ a generating function Ψ is given by (8.39) and
(8.40). Especially if χ is a global chart then Ψ is a global solution of
Problem 8.1.

9 GR as a scalar field theory

9.1 Formulation of a problem

In Section 5 (cf., e.g., Remark 5.4, Proposition 5.15) we have seen that the
function Ψ (cf. Definition 3.7) within the frame theory ΦR (or Φ∗

R) (cf.
Notation 2.1 and Section 6,) generates the metric g and the velocity v. It
turned out (cf. Proposition 7.1) that Ψ is a generating function in the sense
of Definition 7.2.

In Sections 9 and 10 I want to establish a frame theory Φsc which has only
two base sets, the set of events M and the reals R, and three scalar structural
terms Ψ, η̃ and ϑ̃, where the two latter terms are generalizations of the
density and the temperature. Hence, the class of systems to be considered
is the same as in Section 1.

The problem to be solved in this section is this: find axioms governing
the base sets and the structural terms such that there are reasonable models
of the theory Φsc.

The method applied for this purpose is a heuristic argumentation. Clearly,
such reasoning is not logically compelling, i.e., the axioms can not be deduced
in the strict sense.
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9.2 Possible axioms for generating functions

In a first step the geometrical and kinematical axioms of Φsc are considered,
i.e., all those axioms which solely refer to Ψ. Since Ψ is intended to be a
generating function it should have properties P1–P5 of Section 7.1.2. But in
our case these conditions cannot serve as axioms for Ψ because they contain
a metric g and a velocity v besides Ψ.

Nevertheless, let us consider that part of P1–P5 which refers only to Ψ.
The result are the following three conditions Q1–Q3:

Q1. Ψ is a function, Ψ : ∪q∈MVq × {q} → R
4, where Vq is a subset of M

and q ∈ Vq, such that A = {(Vq, Ψ(·, q)) : q ∈ M} is a Ck-atlas, k ≥ 3, on M
and such that (M, A) is a connected Hausdorff manifold; the function Ψ is
of class Ck, k ≥ 3.

Q2. For each q ∈ M define γq by

γq(t) = Ψ(·, q)−1(0, 0, 0, t) (9.1)

for all (0, 0, 0, t) ∈ ran Ψ(·, q). Then dom γq =: Jq, is an interval and there
is a tq ∈ Jq such that γq(tq) = q.

Q3. For all q′ ∈ Wq := ran γq the equation Ψ(·, q′) = Ψ(·, q) holds.

Now these conditions determine Ψ to the following extent:

Proposition 9.1. If Ψ satisfies condition Q1 then there is exactly one met-
ric g and one velocity field v such that Ψ is a generating function satisfying
the conditions P1–P3. If, in addition, Ψ satisfies Q2 and Q3 then Ψ fulfills
also P4 and P5.

Proof. First of all, because of Q1 condition P1 is satisfied for A+ = A. Next
define

Θα(p) := dpΨα(p, q)|q=p and eβ(p) := ∂Ψβ(p,q)|q=p. (9.2)

Then, in order that Ψ is a generating function, the metric g and the velocity
v have to be given uniquely by

g = ηαβΘα ⊗ Θβ and v = e4. (9.3)

Hence conditions P2 and P3 are fulfilled. From Q2 it follows that Ψα(·, q) ◦
γq(t) = tδα

4 . Hence γ̇q(t) = ∂Ψ4(·,q)|γq(t). Using Q3 we have Ψ(·, q) = Ψ(·, γq(t))
so that γ̇q(t) = e4(γq(t)). Hence, for each q the path γq is a solution of the
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differential equation γ̇q = v(γq) which has unique solutions because v is of
class Cr, r ≥ 2. Since for each q ∈ M we have γq(tq) = q all integral curves
are of the form 9.1. This means that also P4 and P5 are satisfied. �

This result suggests that the axioms governing Ψ we are looking for are
conditions Q1–Q3 or some equivalents of them.

9.3 Heuristic steps for further axioms

In order to complete the axioms of the theory Φsc one has to set up equa-
tions that determine the fields Ψ, η̃ and ϑ̃ where up to now we only know
that η̃ and ϑ̃ must have something to do with density and temperature.
Clearly, the starting point for our heuristic search are the axioms EM and
EE of Sections 4 and 6 . At the same time it is clear that the equations
of motion and Einstein’s equation written in terms of g, v, η and ϑ are not
suitable to determine Ψ directly. But, since g and v are generated by Ψ or,
more precisely, since they can be expressed in terms of the tetrads Θα and
eβ, α, β = 1, . . . , 4, the equations of motion and the Einstein equation are
also expressible in these terms. Thus, the problem of determining Ψ can be
split up into two parts: first solve these equations for Θα, η and ϑ, and then
determine Ψ from the equations dpΨα(·, q)|p=q = Θα(p), e.g., via the meth-
ods developed in Section 8. Such procedure is possible. But the theory Φvs
thus obtained is not a scalar theory, rather it is a mixed one having vector
fields and scalar fields as basic structural terms. Moreover the generating
function Ψ is not a basic structural term, it is a derived quantity.

Since we want to establish a theory which has no other structural terms
than Ψ, η̃ and ϑ̃ the following heuristic idea is helpful: write down the equa-
tions of motion and the Einstein equation in terms of the tetrad components
Λα

β for arbitrary coordinates χ, and in terms of density η and temperature
ϑ. For this purpose the abbreviation Φ(x, z) = Ψ(χ−1(x), χ−1(z)) is used.

Then remove in Λα
β(x) = ∂φα

∂xβ (x, z)|z=x the restriction x = z, i.e., substi-
tute

Λα
β(x) by Πα

β(x, z) :=
∂Φα

∂xβ
(x, z),

and generalize η(x) by η̃(x, z) and ϑ(x) by ϑ̃(x, z).

The equations thus gained are taken for the remaining axioms of the
theory Φsc. This program is carried through more detailed in the next
section.
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10 Generalized field equations

10.1 The tetrad form of the field equations

In this section the field equations, i.e., the equation of continuity, the balance
of energy and momentum and Einstein’s equation are formulated in terms
of the components Λα

κ , Λ−1λ
β of Θα and eβ, α, β = 1, . . . , 4 with respect to

an arbitrary coordinate system χ (cf. Remark 5.14). These equations are
obtained from the usual formulation in terms of the χ-components gαβ and
vα by inserting (cf. formulae (5.1) and (5.2))

gαβ = Λκ
αΛλ

βηκλ and vα = −Λ4
α. (10.1)

In what follows, for the sake of convenience the abbreviations

Λ := ((Λα
β)), Λ̄α

β := Λ−1α
β and Λ̄ = ((Λ̄κ

λ)) = Λ−1 (10.2)

are used. Then the following proposition holds.

Proposition 10.1. The equation of continuity, div(ηv) = 0, reads

Λ̄β
4

∂η

∂xβ
+ η(Λ̄β

4 Λ̄α
σ − Λ̄β

σΛ̄α
4 )

∂

∂xβ
Λσ

α = 0. (10.3)

The proof is based on the formula:

Γα
βγ =

[
α κλ
βγ σ

]
∂

∂xκ
Λσ

λ, (10.4)

where

2
[

α κλ
βγ σ

]

= Λ̄α
σ

(
δκ
βδλ

γ + δλ
βδκ

γ

)
− Λ̄α

ν Λ̄κ
�ην�ησμ

(
Λμ

γδλ
β + Λμ

βδλ
γ

)

+ Λ̄α
ν Λ̄λ

�ην�ησμ

(
Λμ

γδκ
β + Λμ

βδκ
γ

)
.

It can be derived by a straightforward but lengthy calculation.

Since the balance of energy and momentum depends strongly on the con-
stitutive equation

T = T (g, v, η, ϑ) (10.5)
it cannot be written down explicitly for all the different functionals T . One
case of major interest is that of a Eulerian or ideal fluid. In this case T is
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given by its components:

Tαβ = p gαβ + h vαvβ, (10.6)

where p = p̂(η, ϑ) and h = ĥ(η, ϑ).

Proposition 10.2. The balance of energy and momentum, div(T ) = 0,
reads in terms of Λ for a Eulerian fluid:

Λ̄β
j

∂p

∂xβ
+ h(Λ̄κ

4 Λ̄β
j − Λ̄β

4 Λ̄κ
j )

∂

∂xβ
Λ4

κ = 0, j = 1, 2, 3,

Λ̄β
4

∂p

∂xβ
− Λ̄β

4
∂h

∂xβ
− h(Λ̄β

4 Λ̄κ
σ − Λ̄κ

4 Λ̄β
σ)

∂

∂xβ
Λσ

κ = 0.

(10.7)

Again, the proof is based on (10.4) together with some lengthy calcula-
tions.

Since the right-hand side of Einstein’s equation (in its usual form!)
depends on the constitutive equation (10.5) one can write down only the
left-hand side in an explicite way.

Proposition 10.3. The Einstein equation G + Λ0g = κ0T reads

Eκλσ
jkμ

(
∂

∂xλ

∂

∂xκ
Λμ

σ

)

+ Dκ�λσ
jkμν

(
∂

∂xκ
Λμ

�

) (
∂

∂xλ
Λν

σ

)

+ Λ0ηκλΛκ
j Λλ

k = κ0Tjk,

(10.8)

where all indices run from 1 to 4. Here Λ0 is an (unspecified) cosmological
constant and κ0 is Einstein’s gravitational constant as usual. The coeffi-
cients E:: and D:: are explicitly given. They are polynomials in Λ: and its
inverse Λ̄:.

The proof is extremely lengthy, but also straightforward.

For later purposes it be noticed that the components of the Ricci tensor
have a similar form as (10.8). They read

Rjk = Sκλσ
jkμ

(
∂

∂xλ

∂

∂xκ
Λμ

σ

)

+ T κ�λσ
jkμν

(
∂

∂xκ
Λμ

�

) (
∂

∂xλ
Λν

σ

)

. (10.9)
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Hence

Eκλσ
jkμ = Sκλσ

j�μ − 1
2
ηαβΛα

j Λβ
kηιγΛn

ι Λm
γ Sκλσ

nmμ (10.10)

and similarly for D:: and T ::.

10.2 The generalizing procedure

In this section the heuristic ideas presented at the end of Section 9.3 are
to be worked out in detail. For this purpose let us again consider a chart
(V, χ), and let the terms Λα

β , η, ϑ be functions of x = χ(p), p ∈ V . Moreover,
let Φ(x, z) := Ψ(χ−1(x), χ−1(z)) for all x, z ∈ χ[V ] for which the right-hand
side is defined. Finally it is assumed that the constitutive equation (10.5) is
given in the form

Tαβ = T ′
αβ(Λ, η, ϑ). (10.11)

Especially for a Eulerian fluid it follows from (10.6) that

Tαβ = pΛκ
αΛλ

βηκλ + hΛ4
αΛ4

β. (10.12)

Then the generalized field equations are obtained from (10.3), (10.8) and
from div(T ) = 0, e.g., from (10.7), by omitting the restriction z = x in
Λ(x) = ∂

∂xΦ(x, z)
∣
∣
z=x

. More precisely, this means we have to carry out
in (10.3), (10.8) and (10.7) (or more general in div(T ) = 0) the following

Substitution 10.4.

1.

Λ(x) =
∂

∂x
Φ(x, z)

∣
∣
∣
∣
z=x

−→ Π(x, z) :=
∂

∂x
Φ(x, z), (10.13)

Λ̄(x) := Λ−1(x) −→ Π̄(x, z) := Π−1(x, z). (10.14)

2.

η(x) −→ η̃(x, z) and ϑ(x) −→ ϑ̃(x, z), (10.15)

where

η̃(x, x) = η(x) and ϑ̃(x, x) = ϑ(x). (10.16)
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3. For the derivatives of Λ it is natural to set

∂

∂x�
Λκ

α −→ ∂

∂x�
Πκ

α +
∂

∂z�
Πκ

α =
∂

∂x�

∂

∂xα
Φκ +

∂

∂z�

∂

∂xα
Φκ, (10.17)

∂

∂xσ

∂

∂x�
Λκ

α −→ ∂

∂xσ

∂

∂x�
Πκ

α +
∂

∂zσ

∂

∂x�
Πκ

α +
∂

∂xσ

∂

∂z�
Πκ

α +
∂

∂zσ

∂

∂z�
Πκ

α

=
∂

∂xσ

∂

∂x�

∂

∂xα
Φκ + · · · +

∂

∂zσ

∂

∂z�

∂

∂xα
Φκ. (10.18)

4. Likewise the derivatives of η and ϑ are replaced by

∂

∂xα
η −→ ∂

∂xα
η̃ +

∂

∂zα
η̃,

∂

∂xα
ϑ −→ ∂

∂xα
ϑ̃ +

∂

∂zα
ϑ̃. (10.19)

Remark 10.5. By definition we have Π(x, x) = Λ(x), η̃(x, x) = η(x) and
ϑ̃(x, x) = ϑ(x). The same holds for (10.17)–(10.19). This means, if z = x
on the right-hand side the arrow → can be replaced by =.

10.3 Results

10.3.1 First step

Applying the rules of substitution (10.4) to equation (10.3) we arrive at the
following

Proposition 10.6. The generalization of the equation of continuity yields

C(Φ, η̃) = 0,

where

C(Φ, η̃) = Π̄β
4

(
∂η̃

∂xβ
+

∂η̃

∂zβ

)

+ η̃
(
Π̄β

4 Π̄κ
λ − Π̄κ

4Π̄β
λ

) ∂

∂zβ

∂

∂xκ
Φλ. (10.20)

The proof is trivial.

Since the generalizing procedure cannot be carried through for arbitrary
constitutive equations (10.11) we confine again to the case of a Eulerian
fluid.
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Proposition 10.7. The generalization of the balance of energy and momen-
tum yields for a Eulerian fluid

E�(Φ, η̃, ϑ̃) = 0, � = 1, . . . , 4,

where

En(Φ, η̃, ϑ̃) = Π̄β
n

(
∂p̃

∂xβ
+

∂p̃

∂zβ

)

− h̃
(
Π̄β

4 Π̄κ
n − Π̄κ

4Π̄β
n

) ∂

∂zβ

∂

∂xκ
Φ4 (10.21)

for n = 1, 2, 3 and

E4(Φ, η̃, ϑ̃) = Π̄β
4

(
∂h̃

∂xβ
− ∂p̃

∂xβ
+

∂h̃

∂zβ
− ∂p̃

∂zβ

)

+ h̃
(
Π̄β

4 Π̄κ
λ − Π̄κ

4Π̄β
λ

) ∂

∂zβ

∂

∂xκ
Φλ; (10.22)

moreover, using equation (10.6) we have

p̃ = p̂ (η̃, ϑ̃) and h̃ = ĥ(η̃, ϑ̃). (10.23)

The proof is again simple.

Finally the replacement rules are applied to equation (10.8).

Proposition 10.8. If the replacement rules applied to the constitutive equa-
tion (10.11) make sense, the generalization of the Einstein equation yields

Gjk + Λ0Πλ
j Πκ

kηλκ = κ0T̃jk, (10.24)

where
T̃jk = T ′

jk(Π, η̃, ϑ̃) (10.25)
and

Gjk(Φ) =
1

M
λκσ

jkμ

∂3Φμ

∂zλ∂zκ∂xσ
+

2
M

λκσ

jkμ

∂3Φμ

∂zλ∂xκ∂xσ

+
1
K

λκ�σ

jkμν

(
∂2Φμ

∂zλ∂xκ

) (
∂2Φν

∂z�∂xσ

)

+
2
K

λκ�σ

jkμν

(
∂2Φμ

∂zλ∂xκ

) (
∂2Φν

∂x�∂xσ

)

. (10.26)

(All indices run from 1 to 4.)
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Again the proof is simple but very lengthy.

The properties of the substituted terms mentioned in Remark 10.5 have
some consequences which are important later on.

Remark 10.9. It follows from the construction of the terms C, E� and Gjk,
�, j, k = 1, . . . , 4 that

C(Φ, η̃)(x, x) = div(ηv)(x), (10.27)

where div(ηv)(x) is the left-hand side of (10.3), and that

Gjk(Φ)(x, x) = Gjk(x) = Rjk(x) − 1
2
gjk(x)R̄(x), (10.28)

where Rjk is given by (10.9) and Gjk by the first and the second term of the
left-hand side of (10.8).

Moreover, E�(Φ, η̃, ϑ̃)(x, x) is equal to the left-hand side of (10.7)

10.3.2 Final form of the basic equations

In this section the results of Propositions 10.6–10.8 are generalized further.
In order to do this let us introduce the following

Notation 10.10. For a given chart (V, χ) let V ⊂ χ[V ] × χ[V ] be the domain
of Φ = Ψ(χ−1, χ−1). Then a real function O defined on V such that O(x, x) =
0, is called quasi-zero.

Now the following proposition holds:

Proposition 10.11. Let the functions Φ, η̃, ϑ̃ be defined on V, and let C, E�,

Gjk be given by formulae (10.20)–(10.22) and (10.26). If Φ, η̃, ϑ̃ satisfy any
subset of the equations

C(Φ, η̃) = O, (10.29)

E�(Φ, η̃, ϑ̃) = O� (10.30)

Gjk(Φ) + ΛoΠλ
j Πκ

kηλk = κ0T ′
jk(Π, η̃, ϑ̃) + Ojk, (10.31)

where O,O� and Ojk, �, j, k = 1, . . . , 4 are quasi-zeros, then the terms Λ, η, ϑ

defined by Λ(x) = Π(x, x), η(x) = η̃(x, x), ϑ(x) = ϑ̃(x, x) satisfy the corre-
sponding subset of equations (10.3), (10.7) and (10.8).

The proof results immediately from Remark 10.9.



1760 JOACHIM SCHRÖTER

Notation 10.12. Equations (10.29)–(10.31) are called the generalized equa-
tion of continuity, the generalized balance of energy and momentum and the
generalized Einstein equation.

Remark 10.13. If one has a solution Φ, η̃, ϑ̃ of the generalized Einstein
equation such that η̃ is a quasi-zero, then Λ is a vacuum solution of Einstein’s
equation.

To a certain extent also the converse of Proposition 10.11 holds:

Proposition 10.14. Let be given a solution Λ, η, ϑ of equations (10.3) and
(10.8), i.e., of the equation of continuity and of Einstein’s equation in tetrad
form. Moreover, let Φ be given by Definition 8.12 and define η̃, ϑ̃ by

η̃(x, z) = η(z1, z2, z3, x4), ϑ̃(x, z) = ϑ(z1, z2, z3, x4). (10.32)

Finally, let the energy–momentum tensor T be defined by a functional
T ′ such that for the generalization T̃ of T the following relations hold for
j, k = 1, . . ., 4:

T̃jk(x, z) = T ′
jk(Π, η̃, ϑ̃)(x, z) = T ′

jk(Λ, η, ϑ)(z̄, x4) + Ojk (10.33)

with Ojk being quasi-zeros and z̄ = (z1, z2, z3). Then the triple Φ, η̃, ϑ̃ is a
(local) solution of the generalized equations (10.29) and (10.31).

The proof is again very lengthy but straightforward.

11 The theory Φsc

11.1 Geometry and kinematics

In this section the theory Φsc is formulated in the sense of Section 1.2(i),
i.e., the terminology of Section 2.2 is used. Since the inductive procedure
for setting up Φsc is described extensively in Sections 9 and 10 it suffices to
write down the elements of Φsc without any further comment.

The base sets of Φsc are M and R, and Ψ, η̃, ϑ̃ are its structural terms.

The physical interpretation of these terms is this:

M is the set of signs for events;
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Ψ determines an atlas of pre-radar charts;
η̃ is a generalized density which determines the density η by η̃(p, p) =

η(p);
ϑ̃ is a generalized temperature which determines the (empirical) temper-

ature ϑ by ϑ̃(p, p) = ϑ(p).

At first the axioms for geometry and kinematics are formulated:

GKsc1. Ψ is a function, Ψ : M −→ R
4 where M := ∪q∈MVq × {q} with Vq ⊂

M, Vq �= ∅ and q ∈ Vq.

GKsc2. The term A := {(Vq, Ψ(·, q)) : q ∈ M} is a Ck-atlas, k ≥ 3 on M so
that (M, A) is a connected Hausdorff manifold.

GKsc3. Ψ is of class Ck, k ≥ 3.

GKsc4. For each q ∈ M there is a maximal open interval Jq such that
(0, 0, 0, τ) ∈ ran Ψ(·, q) for each τ ∈ Jq.

It is useful to introduce the following

Notation 11.1. (1) For each q ∈ M the function γq : Jq −→ M is defined
by γq(t) = Ψ(·, q)−1(0, 0, 0, t). Moreover, we write Wq := ran γq.

(2) D is the differential structure which contains all charts (V, χ) which
are Ck-compatible, k ≥ 3, with A.

GKsc5. For each q ∈ M there is a tq ∈ Jq such that γq(tq) = q.

GKsc6. For all q′ ∈ Wq it holds that Ψ(·, q′) = Ψ(·, q).

11.2 Field equations

In the next step the axioms of the motion of matter are formulated. For
this purpose a notation is used which depends on coordinates. Moreover,
for any function F depending on p, q ∈ M and its coordinate form the same
symbol is used, i.e., we write F (p, q) = F (x, z) for x = χ(p) and z = χ(q).

EMsc1. The terms η̃ and ϑ̃ are functions, η̃ : M → R, ϑ̃ : M → R which are
of class Cr, r ≥ 2 and where M is the set introduced in GKsc1.

EMsc2. Let (V, χ) ∈ D be any chart and let (x, y) ∈ V := (χ × χ)[M ∩ (V ×
V )]. Then the χ-components of the generalized energy-momentum tensor
T̃jk are given by

T̃jk(x, z) = T ′
jk(Π, η̃, ϑ̃)(x, z), (11.1)
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where T ′
jk is the same functional as in formula (10.11) for which substitution

(10.4) makes sense.

EMsc3. For each chart (V, χ) ∈ D there is a quasi-zero O such that the
equation C(Φ, η̃) = O holds.

EMsc4. For each chart (V, χ) ∈ D there are quasi-zeros Oα, α = 1, . . . , 4 so
that the generalization of the balance of energy and momentum holds for
T̃αβ and with Oα at the right-hand side. Especially, for Euler fluids the
resulting equation reads E�(Φ, η̃, ϑ̃) = O�, � = 1, . . . , 4. where O� are quasi-
zeros and where E� is defined in Proposition 10.7.

Likewise, the generalized Einstein equation is introduced by an axiom:

EEsc. For each chart (V, χ) ∈ D there are quasi-zeros Ojk, j, k = 1, · · · , 4 so
that the equations

Gjk(Φ) + Λ0Πλ
j Πκ

kηλκ = κ0T ′
jk(Π, η̃, ϑ̃) + Ojk (11.2)

hold where Λ0 is an unspecified cosmological constant and where κ0 is Ein-
stein’s gravitational constant.

11.3 Additional conditions

Finally, in order to complete the axioms of Φsc the additional conditions
(AC) have to be formulated. As in Section 4.3 we only illustrate the subject
by three examples:

(i) initial conditions;
(ii) boundary conditions;
(iii) symmetry conditions.

In Section 12.2 we come back to the formulation of symmetry conditions
for the function Ψ.

11.4 Some consequences of Φsc

(i) If one defines the tetrads Θα and eβ, α, β = 1, . . . , 4 by

Θα(p) = dΨα(·, p)|p and eβ(p) = ∂Ψβ(·,p)|p (11.3)
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and the metric g and the velocity v by

g = ηαβΘα ⊗ Θβ and v = e4, (11.4)

then Ψ is a full generating function in the sense of Definition 7.2, i.e., Ψ
satisfies conditions P1–P5 of Section 7.1.2. This follows directly from
axioms GKsc 1–6 and from Proposition 9.1. If one is interested only in
a partial generating function Ψ satisfying conditions P1–P3 then Φsc
can be weakened by omitting axioms GKsc 4–6.

(ii) Let γq be defined by Notation 11.1. Then γq is bijective and of class
Ck, k ≥ 3. This follows directly from Ψ(·, q) ◦ γq(t) = (0, 0, 0, t).

(iii) From axiom GKsc5 and from Notation 11.1 it follows that q ∈ Wq

for each q ∈ M , and therefore ∪q∈MWq = M . Moreover, from axiom
GKsc6 we conclude that γq′ = γq for q′ = Wq. Hence Jq′ = Jq and
Wq′ = Wq for q′ ∈ Wq.

(iv) If q′ /∈ Wq then Wq ∩ Wq′ = ∅. For assume that q̄ ∈ Wq ∩ Wq′ , then
q̄ ∈ Wq and q̄ ∈ Wq′ , so that Wq = Wq̄ = Wq′ .

(v) For each q ∈ M let us select exactly one element q̂ from Wq so that
q̂ is also selected from Wq′ for q′ ∈ Wq, and let N ⊂ M be the set of
all these selected q̂. Now, let P be any set of the same cardinality as
N . Then, identifying a particle in Φsc with a worldline Wq the set P
is a set of indices for particles as is used in the theories ΦR and Φ∗

R
(cf. Notation 2.1 and 6.1). Let A ∈ P denote a particle and let A ↔ q̂.
Then by ψA := Ψ(·, q̂), γA := γq̂ and WA := Wq̂ the notation used in
ΦR and Φ∗

R is regained. Also the function F (cf. Remark 3.6) is defined
in Φsc by F (q) = A for all q ∈ WA.

11.5 Remarks concerning models of Φsc

By Notation 4.1 the concept of a model was explicitly introduced for the
theory ΦR. It can be transferred quite easily to each theory Φ̃ which is
formulated according to scheme (i) in Sections 1.2 and 2.2 as follows:

Notation 11.2. If one replaces the base sets and the structural terms of
Φ̃ by explicit terms of mathematical analysis (or of the theory of sets) such
that these terms satisfy the axioms of Φ̃ within mathematical analysis (or
the theory of sets), then we say that these terms define an analytical (or a
set theoretical) model of Φ̃.

In the usual formulations of GR the AC are chosen such that the models
are unique (or unique up to some diffeomorphisms). In case of the theory Φsc
the situation is different. Uniqueness is not needed for the models. Rather



1764 JOACHIM SCHRÖTER

the generalized density η̃ and the generalised temperature ϑ̃ only have to be
unique up to quasi-zeros. Then different η̃ and ϑ̃ define the same physically
interpretable fields η and ϑ by η̃(p, p) = η(p) and ϑ̃(p, p) = ϑ(p). Likewise,
the function Ψ need not be unique. Any two model functions Ψ and Ψ′

describe the same physical situation if they generate the same differential
structure D, the same metric g and the same velocity v. This suggests the
following

Definition 11.3. Any two arrays of terms M, Ψ, η̃, ϑ̃ and M, Ψ′, η̃′, ϑ̃′ form-
ing models of the theory Φsc are called physically equivalent if Ψ and Ψ′

generate the same D, g and v and if η̃, ϑ̃ and η̃′, ϑ̃′ differ only by a quasi-
zero.

Clearly, physical equivalence is an equivalence relation within the mod-
els of Φsc. Consequently, axioms AC should be such that they determine
uniquely a class of physically equivalent models of Φsc. But up to now,
the mathematical question is still open how to formulate a well-posed ini-
tial value problem for the generalized Einstein equation and the generalized
equation of continuity so that an equivalence class is uniquely determined.

Remark 11.4. (1) If Ψ and Ψ′ belong to two physically equivalent models
they both satisfy conditions P1–P5 of Section 7.1.2 and are related by
formula (7.8) where the Lorentz matrix L and the function R obey the
relations (7.12), (7.14), (7.15) and dpR(p, q)|q=p = 0.

This follows directly from Propositions 9.1 and Propositions 7.5,
(7.11) and (7.12) together with Corollary 7.10. Especially from formula
(7.14) one concludes that R is a quasi-zero because there is a tq ∈ Jq

such that γq(tq) = q for each q ∈ M .
(2) Since one is only interested in a class of physically equivalent models

the theory Φsc is a gauge theory.

12 Further properties of generating functions

12.1 Orientation and time orientation

In this section a connected Hausdorff manifold (M, A+) is considered where
A+ is of class Ck, k ≥ 3. Moreover, it is assumed that a partial generating
function Ψ in the sense of Definition 7.2 is defined on M . This implies that
Ψ satisfies condition P1 of Section 7.1.2, i.e., that the atlas A generated
by Ψ is Ck-compatible with A+. In other words, Ψ generates a differen-
tial structure D which contains A+. These assumptions are satisfied by the
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theories ΦR and Φ∗
R treated in Sections 3, 4, 6 and the theory Φsc intro-

duced in Section 11. Later on some additional assumptions are needed. The
above assumptions allow to introduce the tetrads Θα, eβ, α, β = 1, . . . , 4 in
the usual way by

Θα(p) = dΨα(·, p)|p and eβ(p) = ∂Ψβ(·,p)|p (12.1)

as well as the fields g and v by (9.3). Then the following simple result holds:

Proposition 12.1. The four-form ω defined by

ω = Θ1 ∧ Θ2 ∧ Θ3 ∧ Θ4 (12.2)

determines an orientation on M .

For the proof one has to show that ω nowhere vanishes. This follows
directly from ω(e1, . . . , e4) = 1 throughout M .

For the next step we need the assumption that a Lorentz metric g and a
velocity v is defined on M and that g(v, v) = −1.

Then the manifold (M, A+, g) is time orientable (cf., e.g., [11, p. 26]).
In a further step it is assumed that Ψ in addition satisfies conditions P2 and
P3. This means that the differential structure D defined by A is generated
by Ψ and that Ψ also generates g and v. In this case a time orientation is
given by

Definition 12.2. Let u ∈ TpM be timelike or lightlike. Then u is called
future pointing if Θ4(u) = −g(v, u) > 0 and past-pointing if Θ4(u) =
−g(v, u) < 0.

Remark 12.3. Independently of the fact that (M, A+, g) is time orientable
if a velocity field v exists on M it can be seen that Definition 12.2 makes
sense. For, it can be shown that a future-pointing vector can not be trans-
ferred into a past-pointing only by parallel transport, and vice versa.

12.2 Isometries

The aim of this section is defining the concept of isometry solely in terms of
a generating function Ψ, i.e., without using explicitly a metric g. For this
purpose we use again the notation and the suppositions introduced at the
beginning of Section 12.1.
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Moreover, throughout this section it is assumed that a bijective function
f : M → M is given. Then let Ψ′ := Ψ(f, f). Finally, let the term A′ be
defined by

A′ = {(V ′
q′ , Ψ′(·, q′)) : q′ ∈ M, V ′

q′ = f−1[Vq], Vq = dom Ψ(·, q), q = f(q′)}.

(12.3)

Then we obtain the following result:

Remark 12.4. If f is a homeomorphism then A′ is a Ck-atlas, k ≥ 3 on M .
For, V ′

q′ is open because Vq is open and f is continuous. Moreover, Ψ′(·, q′) =
Ψ(·, f(q′)) ◦ f is a homeomorphism. Hence (V ′

q′ , Ψ′(·, q′)) is a chart. Each
two charts are Ck-compatible because

Ψ′(·, q′
1) ◦ Ψ

′−1(·, q′
2) = Ψ(·, f(q′

1)) ◦ Ψ−1(·, f(q′
2)). (12.4)

In the next step it is assumed that f is differentiable.

Proposition 12.5. The function f is a Ck-diffeomorphism, k ≥ 3 exactly
if A and A′ are Ck-compatible atlases, k ≥ 3.

Proof. (1) If f is diffeomorphic then A′ is an atlas. Let Ψ′(·, q′), Ψ(·, q) be
arbitrary coordinate functions from A′ resp. from A. Then the function

Ψ′(·, q′) ◦ Ψ−1(·, q) = Ψ(·, f(q′)) ◦ f ◦ Ψ−1(·, q) (12.5)

is of class Ck, k ≥ 3, and likewise its inverse, so that A and A′ are Ck-
compatible.

(2) If A and A′ are Ck-compatible atlases the left-hand side of (12.5)
and its inverse are of class Ck, so that f is a Ck-diffeomorphism. �

In a last step the main result of this section is formulated. For this purpose
it is assumed that a metric g is defined on the manifold (M, A+). Then a
diffeomorphism f is called an isometry if g(p′) = f∗

p′g(p) where p = f(p′) and
f∗

p′ is the pull back of f at p′.

Proposition 12.6. Let Ψ satisfy conditions P1 and P2 of Section 7.1.2,
i.e., Ψ generates the differential structure D of class Ck, k ≥ 3 containing
A+, and the metric g. Then the (bijective) function f is a Ck-isometry,
k ≥ 3 exactly if Ψ′ satisfies also P1 and P2, i.e., if Ψ′ generates D and g.
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Proof. (1) First of all some auxiliary formulae are proved. Let f be a dif-
feomorphism, and let p = f(p′) and q = f(q′). Then

dΨ′(·, q′)|p′ = dΨ(f, q)|p′ = f∗
p′dΨ(·, q)|p. (12.6)

This equation is seen to be true by the following short calculation. Let
w′ ∈ Tp′M , then

dp′Ψ
′α(·, q′)(w′) = w′(Ψ

′α(·, q′))

= w′(Ψα(·, q) ◦ f) = f∗p′w′(Ψα(·, q))
= dpΨα(·, q)(f∗p′w′) = f∗

p′dpΨα(·, q)(w′). (12.7)

Now let g′ be the metric which is generated by Ψ′:

g′(p′) := ηαβdΨ
′α(·, p′)|p′ ⊗ dΨ

′β(·, p′)|p′ . (12.8)

Then from (12.6) it follows that

g′(p′) = f∗
p′g(p). (12.9)

(2) If f is a Ck-isometry then by Proposition 12.1 the atlases A and A′

are Ck-compatible. Hence Ψ and Ψ′ satisfy P1. Moreover, the isometry f
satisfies the relation

g(p′) = f∗
p′g(p). (12.10)

Hence from (12.9) it follows that g′ = g. This means that condition P2 is
satisfied by Ψ and Ψ′ for the same metric g.

(3) If Ψ and Ψ′ satisfy P1 generating the same D then f is a diffeo-
morphism by Proposition 12.1 so that (12.9) is true. If Ψ and Ψ′ satisfy P2
with g′ = g we find that (12.10) holds. Hence f is an isometry. �

Corollary 12.7. Let Ψ be a partial generating function which satisfies con-
ditions P1 and P2 of Section 7.1.2, i.e., Ψ generates the metric g and the
differential structure D, and let f be a Ck-diffeomorphism, k ≥ 3. Then f
is an isometry exactly if

Ψ(f(p), f(q)) = L(q) · Ψ(p, q) + R(p, q), (12.11)

where L is a field of Lorentz matrices and where dR(·, q)|p=q = 0.
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This follows directly from Propositions 12.6 and 7.5.

Equation (12.11) is the symmetry condition of Ψ for a given isometry
f which we are looking for in this section. It can be helpful to derive a
special form for Ψ which reduces the very complicated generalized Einstein
equation. Similar results hold for conformal mappings, too.

13 Final Remarks

13.1 Results

The main point of this treatise is the existence of a function Ψ which gen-
erates an atlas A of pre-radar charts, a metric g, a velocity field v and the
integral curves of v. It is shown that also an orientation and a time orien-
tation is defined by Ψ. Finally, the concept of isometry can be formulated
directly with the help of Ψ, i.e., without using the metric g.

This illustrates the significance Ψ has: it determines like a “potential”
almost all of the fundamental concepts considered in GR and it is itself
physically interpretable as a set of coordinate functions.

Since the existence of Ψ guarantees the existence of a smooth field of
tetrads, it imposes restrictions on space–times. On the other hand, by space–
time theory the existence of pre-radar or even radar charts is indispensiable
for space–times so that the restrictions imposed on them by Ψ are physically
motivated and natural.

Finally, in Section 11 it is shown that GR can be formulated as a scalar
field theory. But the price is doubling the independent variables and a
generalized Einstein equation which is of third order.

13.2 Open problems

(i) The main problem of any axiomatic formulation of GR, e.g., of the
theories ΦR, Φ∗

R and Φsc, is how to get models. For this purpose the
additional conditions have to be concreted. This can be done for ΦR

and Φ∗
R in the usual way, but for Φsc it is not known up to now how

to formulate a well-posed Cauchy problem for the generalized Einstein
equation together with the generalized equation of continuity. In both
cases solving Einstein’s equation is the most difficult step in obtaining
models, but it is not all one has to do. The other axioms must be
satisfied, too.
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(ii) An open practical problem is the exploitation of equation (12.11), the
definition of isometry in terms of Ψ. The aim is obtaining a restricted
form of Ψ for a given symmetry f . For this purpose one needs a
sufficiently large set of representation theorems. But, little is known
in this field.

(iii) A solution of the inverse problem described in Section 8.1 is of physi-
cal significance because the existence of a generating function imposes
restrictions on a space–time. Therefore, it would be of great inter-
est to find necessary and sufficient conditions for the solution of the
(nonlocal) inverse problem.

(iv) A more principal problem is the formulation of the equations EMsc 3, 4
and EEsc in geometrical terms without use of coordinates. It seems to
me that for this goal the product manifold M × M must be considered.
Up to now the problem is unsolved.

(v) The generalized equation of continuity and the generalized Einstein
equation form a system of 11 equations for the six unknown functions
Ψ, η̃, ϑ̃. This fact seems to be a hint that there are internal depen-
dencies between these equations which are not known up to now. It
could also be the case that the generalized equations of continuity and
of motion together with a reduced version of the generalized Einstein
equation, e.g., its trace, suffice to determine Ψ, η̃, ϑ̃.

(vi) It is a hard task to calculate the coefficients M and K that occur in
equation (10.26) for a given special ansatz of Ψ based on symmetries.
A well adapted computer algebra could be helpful in this field. I think
that this problem is solvable, though it is not yet solved.
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