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Abstract

We present a new conformal algebra. It is Z2 × Z2 graded and gener-
ated by three N = 1 superconformal algebras coupled to each other by
nontrivial relations of parafermionic type. The representation theory and
unitary models of the algebra are briefly discussed. We also conjecture
the existence of infinite series of parafermionic algebras containing many
N = 1 or N = 2 superconformal subalgebras.
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1 Introduction

Superconformal algebras are of great importance in theoretical physics.
Probably the best known ones are the N = 1 and the N = 2 superconfor-
mal algebras, which play an important role in superstring theory. Here
the N is the number of supersymmetry generators. The N = 1 algebra was
introduced in [1] and [2], the N = 2 algebra first appeared in [3]. The mathe-
matical meaning of the term “superalgebra” is that the algebra is Z2 graded.
There are even (bosonic) generators and odd (fermionic) generators. The
algebraic relations respect the Z2 grading.

In this paper we introduce a new algebra, the superconformal algebra
graded by the Z2 × Z2 group. The Z2 × Z2 group is a finite abelian group
containing four elements: the identity (0, 0), and three more elements (1,0),
(0,1), (1,1). The product of two different non-identity elements gives the
third one. The square of a non-identity element gives identity, hence there
are three different Z2 subgroups in Z2 × Z2.

We take one superconformal generator field of conformal dimension 3/2
for each non-identity element of Z2 × Z2: G(α), α = 1, 2, 3. Each one of them
generates the standard N = 1 superconformal algebra:

G(α)(z)G(α)(w) =
1

(z − w)3
+

3
c
T (α)(w)

z − w
+ O

(
(z − w)0

)
, (1.1)

T (α)(z)G(α)(w) =

3
2
G(α)(w)

(z − w)2
+

∂G(α)(w)
z − w

+ O
(
(z − w)0

)
, (1.2)
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T (α)(z)T (α)(w) =
c/2

(z − w)4
+

2T (α)(w)
(z − w)2

+
∂T (α)(w)

z − w
+O

(
(z − w)0

)
. (1.3)

The Virasoro fields T (α)(z), α = 1, 2, 3, belong to the (0, 0) grading. The
operator product expansion of two different superconformal generators
should give the third one:

G(α)(z)G(β)(w) ∼ G(γ)(w)
(z − w)3/2 , α �= β �= γ. (1.4)

The power of the singularity (3/2) is obtained by a simple dimensional anal-
ysis. The crucial point is that it is not integer. So our algebra is not a
standard chiral algebra (vertex algebra in mathematical literature), but a
parafermionic-type algebra (generalized vertex algebra). The full algebra
as we show in this paper is formed by 10 generating fields. In addition
to the six generating fields G(α)(z), T (α)(z), α = 1, 2, 3, mentioned above,
one has three dimension-5/2 fields U (α)(z), α = 1, 2, 3, and one dimension-3
field W (z). We call this algebra “the Z2 × Z2 graded N = 1 superconformal
algebra”.

The first example of parafermionic algebra was introduced by Fateev and
Zamolodchikov in [4]. This ZN graded algebra is generated by N − 1 fields
of conformal dimensions Δi = i(N − i)/N, i = 1, 2, . . . , N − 1. For a fixed
N the algebra has no free parameters. In their next paper [5] the same
authors presented another Z3 graded parafermionic algebra, generated by
the Virasoro field and two dimension-4/3 fields. This algebra has a con-
tinuous free parameter — the central charge. Later Gepner [6] introduced
new parafermionic theories through coset construction of the type gk/u(1)r,
where gk is the affine Lie algebra on level k and r is its rank. The mathe-
matical treatment of parafermionic algebras was developed in [7] (see also
the recent paper [8]).

In our previous work [9] we applied the algebraic approach to calcu-
late the structure constants of the sl(n)2/u(1)2 and the sl(2|1)2/u(1)2 coset
parafermions. We called the generators of the former theory the sl(n)
fermions. The sl(3)2/u(1)2 and the sl(2|1)2/u(1)2 parafermionic algebras
are also Z2 × Z2 graded.

The current paper is the direct continuation of [9], we use the same setting
and the same tools to derive the Z2 × Z2 graded N = 1 superconformal
algebra. This algebra resembles in many aspects the sl(3) fermion algebra
from [9]. But the new algebra is more complicated: it has more generating
fields and has one free continuous parameter.
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The paper is organized as following. First, in Section 2, we recall the main
points of the algebraic approach to conformal algebras of parafermionic type.
In Section 3, the Z2 × Z2 graded N = 1 superconformal algebra is derived.
The full set of lengthy operator product expansions defining the algebra
is listed in Appendix A. In Section 4 we convert the operator product
expansions to the generalized commutation relations between the modes
of the basic fields, preparing the ground to the study of representation
theory of the algebra (in Section 5). The unitarity restrictions are dis-
cussed in Section 6. Two explicit realizations of unitary models possessing
the Z2 × Z2 graded N = 1 superconformal symmetry are presented in Sec-
tion 7. The last Section (8) contains a brief summary and the ideas for
the further study. In particular, we announce the N = 2 superconformal
analogue of the algebra described in this paper and also announce the exis-
tence of two series of more complicated N = 1 and N = 2 superconformal
algebras of parafermionic type and speculate about their unitary minimal
models.

2 Parafermionic conformal algebras

In this section, we briefly recall the main points of the algebraic formalism
for parafermionic conformal algebras. We will follow here Ref. [9, Sections
2 and 3]. This algebraic approach in fact goes back to 1993 [7]. See also the
recent paper [8], where parafermionic algebras are defined using the notion
of polylocal fields.

An operator product expansion of parafermionic type has the following
form:

A(z)B(w) =
1

(z − w)α

([
A, B

]
α
(w) +

[
A, B

]
α−1(w)(z − w)

+
[
A, B

]
α−2(w)(z − w)2 + · · ·

)
, (2.1)

i.e., it is a general operator product expansion with one important restriction
that except the overall singularity (z − w)−α the integer powers of (z − w)
only are present on the right hand side of the equation. But the singularity
α does not have to be integer. Here we also introduced a notation

[
A, B

]
n
,

the n-product of fields A and B. It is the field, arising at the (z − w)−n

term of the operator product expansion of the fields A(z) and B(w) around
w as it appears in (2.1).

When α /∈ Z it is not clear a priori how to exchange the fields in the
operator product expansion, since some phases are involved. The following
axiom, which is the crucial point of the definition of parafermionic algebras,
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tells us how to exchange the fields in the operator product expansion (2.1):

A(z)B(w)(z − w)α = μABB(w)A(z)(w − z)α. (2.2)

Here μAB is a commutation factor which is a complex number different from
zero. The exponent α in (2.2) is usually chosen to be equal to the singularity
of the operator product expansion. However one can add to α an integer
number. If the integer is even, then the commutation factor is not changed,
if we shift α by odd integer, then the sign of the commutation factor is
flipped.

By exchanging the fields in (2.2) second time one shows that the commu-
tation factor should satisfy the following consistency conditions:

μABμBA = 1, (2.3)

and if we assume that the term
[
A, A

]
αAA

�= 0, then it follows that

μAA = 1. (2.4)

If the operator product expansion of two basic fields B(w) and C(v) gives
a third one D(v):

B(w)C(v) =
D(v)

(w − v)αBC
+ · · · , (2.5)

then exchanging another basic field A(z) with B(w) and then with C(v)
is essentially the same as exchanging A(z) with D(v). Therefore, μAD is
proportional to μABμAC :

μABμAC = μAD(−1)αAB+αAC−αAD (2.6)

It is also implicitly stated here that αAB + αAC − αAD ∈ Z.

The most important tool in the study of parafermionic conformal algebras
is the generalized Jacobi identities. This identities involve the operator
product expansions between three fields:

∑

j≥0

(−1)j

(
γAB

j

)
[
A,

[
B, C

]
γBC+1+j

]
γAB+γAC+1−j

− μAB(−1)αAB−γAB
∑

j≥0

(−1)j

(
γAB

j

)
[
B,

[
A, C

]
γAC+1+j

]
γAB+γBC+1−j

=
∑

j≥0

(
γAC

j

)
[[

A, B
]
γAB+1+j

, C
]
γBC+γAC+1−j

,

(2.7)

The sums are finite, the upper bound is given by the order of singularity of
the corresponding fields. The parameters γ differ from the corresponding
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singularity exponents α by an integer number: αAB − γAB, αAC − γAC , αBC

− γBC ∈ Z.

3 Derivation of the algebra

As we have already mentioned in the introduction, we start from three copies
of the N = 1 superconformal algebra, associated to the three non-identity
elements of the Z2 × Z2 abelian group. The generators are G(α)(z), T (α)(z),
α = 1, 2, 3. The algebraic relations inside the N = 1 superconformal algebra
are given by the operator product expansions (1.1) to (1.3). Note the unusual
normalization of superconformal generators G(α)(z). The parameter c is the
central charge of the three N = 1 superconformal algebras.

Now we want to couple the fields G(α)(z) to each other. The operator
product expansion of two superconformal generators G gives the third one:

G(α)(z)G(β)(w) =
κα,βG(γ)(w)
(z − w)3/2 + O

(
(z − w)−1/2), (3.1)

where κα,β are yet unknown structure constants and α, β, γ are all different.

The fields in these operator product expansions are exchanged as following:

G(α)(z)G(β)(w)(z − w)3/2 = μα,βG(β)(w)G(α)(z)(w − z)3/2, (3.2)

leading to the relations between the structure constants and the commuta-
tion factors:

κα,β = μα,βκβ,α. (3.3)

The commutation factors are easily determined using the relation (2.6)
between them. Taking A = G(1), B = G(1), C = G(2), we get

μ1,1μ1,2 = −μ1,3, (3.4)

since the singularities are equal to α1,1 = 3, α1,2 = α1,3 = 3/2, and so
(−1)α1,1+α1,2−α1,3 = −1. Substituting A = G(1), B = G(2), C = G(3) in (2.6)
we get

μ1,2μ1,3 = μ1,1. (3.5)

Taking into account that μ1,1 = 1, one obtains

μ1,2 = −μ1,3 = ±i. (3.6)

To resolve the formal ambiguity we fix μ1,2 = i. Using the cyclic permuta-
tions of indices we determine all the commutation factors:

μ1,2 = μ2,3 = μ3,1 = −μ2,1 = −μ3,2 = −μ1,3 = i. (3.7)
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To determine the structure constants we use the generalized Jacobi
identities (2.7). Take A = G(1), B = G(2), C = G(3) and two parameters from
the set of three γAB, γBC, γAC equal to 1/2 and the third one equal to 3/2.
Then the corresponding Jacobi identities require that the structure constants
are equal to each other:

κ1,2 = κ2,3 = κ3,1 = g eiπ/4, (3.8)

where we introduced the new phase shifted structure constant g in order to
avoid appearance of i in the formulas below.

We will assign the following Z2 × Z2 charges to the fields: G(1) has charge
(1, 0), G(2) — (0, 1), G(3) — (1, 1). Then the identity field and all the
Virasoro generators T (α) carry the charge (0, 0). The commutation factors
of the fields from the (0, 0) sector with all the fields are equal to 1, and the
commutation factors between other sectors are given by (3.7).

Now it is easy to derive the leading terms in the operator product expan-
sions of different generating fields using the dimensional and Z2 × Z2 charge
analysis:

T (α)(z)G(β)(w) = κ
(
T (α), G(β)

) G(β)(w)
(z − w)2

+ O
(
(z − w)−1), (3.9)

T (α)(z)T (β)(w) =
κ

(
T (α), T (β)

)

(z − w)4
+ O

(
(z − w)−2), (3.10)

where α �= β and κ
(
T (α), G(β)

)
, κ

(
T (α), T (β)

)
are structure constants to

be determined by the Jacobi identities in the following way. Insert A =
G(α), B = G(α), C = G(β) (α �= β) and γBC = γAC = 1/2, γAB = 0 to the
Jacobi identities (2.7) to get

κ
(
T (α), G(β)

)
=

(1 + 16g2) c

24
. (3.11)

Choose A = T (α), B = G(β), C = G(β) (α �= β) and γBC = 0, γAC = 2, γAB = 1,
the Jacobi identity then enforces

κ
(
T (α), T (β)

)
=

c

3
κ

(
T (α), G(β)

)
=

(1 + 16g2) c2

72
. (3.12)

All the Jacobi identities for the fields G(α), T (α), α = 1, 2, 3, taking into
account only the terms specified in the above operator product expansion
relations, are satisfied now. So this parafermionic algebra is selfconsistent,
there are two free parameters: c and g. However, we have not specified all the
singular terms in the operator product expansions, so the information con-
tained in the generalized commutation relations extracted from the above
operator product expansions is not sufficient to build the representation



166 BORIS NOYVERT

theory of the algebra. We have to specify all the singular terms in the
operator product expansions of generating fields in terms of the generating
fields, their derivatives and composite fields. By singular terms we under-
stand all the n-products

[
A, B

]
n
, n > 0, and by composite field we mean[

A, B
]
n
, n ≤ 0, where A and B are two generating fields.

We have to make the additional assumptions about the missing singular
terms in the operator product expansions. The first assumption is that
there are no other dimension-2 fields in the algebra. It means that the field
in

[
T (α), T (β)

]
2 is a linear combination of T (1), T (2) and T (3). The second

consequence of this assumption is that the total energy—momentum field
T (z) is proportional to the sum of T (1)(z), T (2)(z) and T (3)(z). The factor
is easily calculated from the requirement that the weight of the fields G(α)

under the action of T (z) is equal to their conformal dimension 3/2. So we
get that the total energy–momentum field is

T =
1

1 +
c

18
(1 + 16g2)

(
T (1) + T (2) + T (3)

)
. (3.13)

The requirement
[
T, T (α)

]
2 = 2T (α) leads to fixing the coefficients in the

second-order term in the operator product expansion of T (α) and T (β):
[
T (1), T (2)]

2 =
c

18
(
1 + 16g2)

(
T (1) + T (2) − T (3)

)
, (3.14)

and the same for cyclic permutations of the indices.

Now it is easy to verify that the energy–momentum field T (z) indeed
satisfies the Virasoro algebra, the central charge of which is

C =
3c

1 +
c

18
(1 + 16g2)

. (3.15)

Now we look at the next to leading term
[
G(α), G(β)

]
1/2 in the expansion of

two superconformal generators. This is a dimension-5/2 field. The simplest
assumption that it is just proportional to ∂G(γ) does not work. We have to
introduce three new basic fields U (1), U (2), U (3) of dimension 5/2:

G(α)(z)G(β)(w) = eiπ/4g

⎛

⎜
⎝

G(γ)(w)
(z − w)3/2 +

1
2
∂G(γ)(w) + U (γ)(w)

(z − w)1/2

⎞

⎟
⎠

+ O
(
(z − w)1/2), (3.16)
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where α, β, γ are cyclically ordered. The coefficient 1
2 before ∂G(γ)(w) is

chosen so to make the field U (γ)(w) primary with respect to the total energy–
momentum Virasoro field. The field U (γ) has the same Z2 × Z2 grading as
G(γ). Consequently U (γ) has the same commutation factors with other fields
as G(γ), if defined appropriately:

μ
A,U(γ) = μ

A,G(γ) , (3.17)

if α
A,U(γ) = α

A,G(γ) + 2 Z in (2.2). Here A stands for any field.

The first-order singular term in the expansion of T (α) and G(β) is also of
dimension 5/2 and a priori is not expressed in terms of U (γ) and ∂G(γ) only.
But we would like to make the life easy assuming that no new dimension-
5/2 basic fields have to be introduced. This assumption will cost us one free
parameter in the algebra: c becomes a function of g. First note that with
respect to the N = 1 superconformal algebra generated by T (1) and G(1), the
two other dimension-3/2 fields G(2) and G(3) are the highest weight primary
fields of Ramond type of weight (1 + 16g2) c/24:

G
(1)
0 |G(2)> = g eiπ/4|G(3)>, G

(1)
n |G(2,3)> = 0, n > 0,

T
(1)
0 |G(2,3)> = c

24(1 + 16g2)|G(2,3)>, T
(1)
n |G(2,3)> = 0, n > 0.

(3.18)

Then the field U (2) is expressed in terms of G
(1)
−1G

(1)
0 |G(2)> and

[
T (1), G(2)

]
1

is expressed in terms of T
(1)
−1 |G(2)>. G

(1)
−1G

(1)
0 |G(2)> and T

(1)
−1 |G(2)> are in

general two independent states in the highest weight representation. How-
ever, if there is a null state on level 1 in the highest weight representation,
then G

(1)
−1G

(1)
0 |G(2)> ∼ T

(1)
−1 |G(2)> and

[
T (1), G(2)

]
1 is expressed through

U (2). The null state appears on level 1 when the highest weight h and the
central charge c are connected by the following equation: 3c − 72h + 16ch +
128h2 = 0. Upon substitution h = (1 + 16g2)c/24 the relation is translated
to

c =
54g2

(1 + 4g2)(1 + 16g2)
. (3.19)

So at last we can fix the following operator product expansions:

T (α)(z)G(β)(w) =
c(1 + 16g2)

24

⎛

⎜
⎝

G(β)(w)
(z − w)2

+

2
3
∂G(β)(w) − σαβ

4
3
U (β)(w)

z − w

⎞

⎟
⎠

+ O
(
(z − w)0

)
, (3.20)
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where α �= β and we introduced the following two-index symbol:

σαβ =
{

0, α = β,
εαβγ , α �= β �= γ,

α, β, γ = 1, 2, 3, (3.21)

i.e., σ12 = σ23 = σ31 = 1 and σ21 = σ32 = σ13 = −1.

Another new basic generator field W of dimension 3 appears in the first-
order pole

[
T (α), T (β)

]
1, α �= β:

[
T (α), T (β)]

1 =
c
(
1 + 16g2

)

36

(
∂T (α) + ∂T (β) − ∂T (γ)

)
+ σαβW. (3.22)

(A priori there are three such fields but since
[
T, T (β)

]
1 = ∂T (β) for β =

1, 2, 3 all the three dimension-3 primary fields are proportional to W .) The
field W has the Z2 × Z2 charge equal to (0, 0). So its operator product
expansions with all the other fields contain only integer powers of (z − w),
and it has the following exchange properties:

A(z)W (w) = W (w)A(z) (3.23)

for any generator field A(z).

It comes out that no other new fields are needed to close the algebra. The
operator product expansions of the fields U (α) and W with all the other basic
fields are constructed using the dimensional and Z2 × Z2 charge analysis,
taking into account the basic fields (G(α), T (α), U (α), α = 1, 2, 3, and W ),
their derivatives and the composite fields (e.g.,

[
G(1), G(2)

]
−1/2,

[
T (2), G(3)

]
0,

. . .). The structure constants are fixed by a routine check of the Jacobi
identities. In the end, we obtain the operator product expansions listed
in Appendix A. All the Jacobi identities are satisfied modulo a null field
condition:

∂W +
(1 + 16g2)c2

27

([
G(1), U (1)]

0 +
[
G(2), U (2)]

0 +
[
G(3), U (3)]

0

)
= 0.

(3.24)

We want also to discuss here the subalgebras of the Z2 × Z2 graded N = 1
superconformal algebra. Obviously it has the three N = 1 superconformal
subalgebras generated by G(α), T (α). Their bosonic parts generated by T (α)

only are also subalgebras. Another Virasoro subalgebra is generated by
T − T (α). It is commutative with both T (α) and G(α), so its central charge
is equal to C − c. The Z2 × Z2 graded N = 1 superconformal algebra has
no other proper subalgebras.
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4 Generalized commutation relations

The mode expansions of the fields are introduced as

A(z) =
∑

n

Anz−n−Δ(A). (4.1)

The generalized commutation relations between the field modes are obtained
using the formula

∞∑

j=0

(
α−k

j

)
(−1)j

(
Am+α−k−jBn−α+k+j − μAB(−1)kBn−jAm+j

)

=
k−1∑

l=0

(
m+ΔA−1

k−1−l

)
C

(l)
m+n. (4.2)

For the derivation see Section 4 in [9]. Am and Bn are the modes of the fields
A(z) and B(z), and C(l)(z) are the terms in the operator product expansion
of A(z)B(w):

A(z)B(w) =
1

(z − w)α

(
C(0)(w)+ C(1)(w)(z − w)+ C(2)(w)(z − w)2 + · · ·

)
.

(4.3)
The commutation factor μAB in (4.2) is chosen with respect to the α in the
same formula. The integer number k in (4.2) is equal to the number of
terms in the operator product expansion which are taken into account. The
generalized commutation relation with smaller k can be obtained from that
with larger k. Taking into account all the singular terms in the operator
product expansion is sufficient to build the representation theory. However,
in some calculations one can use the generalized commutation relation for
the smaller number of terms, which is usually a more simple formula.

The singularities α in the operator product expansions of the fields in the
(0, 0) charge Z2 × Z2 sector (T (β), β = 1, 2, 3, and W ) with all the fields in
the algebra are integer. Therefore the corresponding generalized commuta-
tion relations are just usual commutators. The operator product expansions
inside the same Z2 × Z2 sector are also of standard type, so the relations
between G

(β)
n , U

(β)
m (for the same β) are anticommutation relations. The

only relations which are of parafermionic type are those between the G, U
fields from different Z2 × Z2 sectors. For example:

∞∑

j=0

(
j−1/2

j

)(
e−iπ/4G

(1)
m−1/2−jG

(2)
n+1/2+j − eiπ/4G

(2)
n−jG

(1)
m+j

)

= g

(
m − n − 1/2

2
G

(3)
n+m + U

(3)
n+m

)
,

(4.4)
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and the same for the cyclic permutation of the indices. Because of the
space limitations we will not list all the generalized commutation relations
here. The one which is important for the discussion below is the following
commutation relation:

[T (1)
m , T (2)

n ] =
(1 + 16g2)c2m(m2 − 1)

432
δ0,m+n

+
3g2(m − n)
2 (1 + 4g2)

(
T

(1)
m+n + T

(2)
m+n − T

(3)
m+n

)
+ Wm+n,

(4.5)

and the same for the cyclic permutation of the indices.

We should also draw your attention that some operator product expan-
sions include composite operators, therefore the generalized commutation
relations will include infinite sums of terms quadratic in modes also on the
right hand side of (4.2). This happens for example in the case of the rela-
tion obtained from the operator product expansion G(α)(z)U (β)(w), α �= β
(A.13). The mode expansions of composite operators are derived in Appen-
dix E of [10]. But here we can just extract the mode expansions for the
composite operators from the same formula (4.2). One should choose k in
such a way that the last term in the operator product expansion taken into
account is the composite operator we are interested in. Then the “reversed”
formula is

([
A, B

]
β

)

m+n
= −

α∑

γ=β+1

(
m+ΔA−1

γ−β

) ([
A, B

]
γ

)

m+n
+

∞∑

j=0

(
β−1

j

)
(−1)j

×
(
Am+β−1−jBn−β+1+j + μAB(−1)α−βBn−jAm+j

)
.

(4.6)

There is some freedom in the choice of n and m (as long as n + m is not
affected). If m ∈ −ΔA + Z, then the freedom can be used to simplify the
formula: choose m = −ΔA + 1, then the first sum in (4.6) vanishes.

We should stress that all the infinite sums in the formulae above are
nicely ordered in the sense that large positive modes are always from the
right, so when applied to a state in a highest weight module the sum is
truncated and becomes finite. Due to this fact we can use the generalized
commutation relations in the computations on highest weight modules. The
relation obtained from the operator product expansion A(z)B(w) (even if
includes formally infinite sums from both sides of the relation) should be
used for exchanging the modes An and Bm. Although the calculations could
be very complicated, they are very formal and can be held by a computer
using the software for symbolic computations, like Mathematica (the one we
have used). By exchanging the modes it should be possible to order them,
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i.e., a kind of Poincare–Birkhoff–Witt theorem should hold, but we do not
know even how to choose the Poincare–Birkhoff–Witt basis.

5 Representation theory

Highest weight states are the states which are annihilated by positive modes
of all the basic fields. Highest weight representations are obtained from
the highest weight state by application of nonpositive field modes to it.
The modes of the fields which belong to the (0, 0) charge Z2 × Z2 sector
(T (β), β = 1, 2, 3, and W ) are always integer. The modes of the G(β), U (β)

generators can be integer or half-integer depending on which state they are
applied to. One can deduce from the generalized commutation relation (4.4)
that the states in the highest weight module can be of four types. One is
of the “NS-NS-NS” type, which means that all the G

(β)
n , U

(β)
m (β = 1, 2, 3)

modes applied to it are half-integer: n, m ∈ Z + 1/2. And three other are
of “NS-Ramond-Ramond” type, which means that the modes of G, U fields
from one sector should be half-integer, when applied to this state, and the
modes of G, U fields from two other sectors should be integer. These four
types of states correspond to the four elements of the Z2 × Z2 group, and
the Z2 × Z2 grading can be extended from the algebra to its representa-
tions in the following way. There will be highest weight states of four types:
|(0, 0)>, |(1, 0)>, |(0, 1)>, |(1, 1)>, according to their Z2 × Z2 charge. Then
the charge of the state in the highest weight module is the sum (modulo
2) of charges of the highest weight state and the field modes applied to
it. The states of (0, 0) charge are of course of “NS-NS-NS” type. And
the states of (1, 0), (0, 1), (1, 1) charge are of “NS-Ramond-Ramond” type,
if the G, U fields are in the same sector as the state then their modes are
half-integer, if they are from the different sector then their modes are inte-
ger. To illustrate the above rule, we give an example of a valid state:
G

(3)
−3G

(1)
−5/2T

(3)
−5 G

(3)
−3/2T

(2)
−2 T

(1)
−3 G

(1)
−1W−2G

(2)
−1/2G

(1)
−1/2|(1, 0)>, this state has the

Z2 × Z2 charge (0, 1).

Next we should discuss the zero modes. First we have to choose Car-
tan generators, a commuting set of zero modes. The eigenvalues of these
operators on a highest weight state will be taken as weights labelling the
highest weight state. It would be desirable to have the zero modes of the
three Virasoro fields as Cartan generators, but unfortunately they do not
commute, since according to (4.5)

[T (1)
0 , T

(2)
0 ] = W0. (5.1)
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The maximal commuting set consists of two operators only: e.g., T
(3)
0 and

T
(1)
0 + T

(2)
0 . We will label the highest weight representations by the total

conformal weight, the eigenvalue of the total energy–momentum field (3.13),
and the eigenvalue of one of the three Virasoro fields, say T

(3)
0 :

An|h, a, q> = 0, n > 0,

T0|h, a, q> = h|h, a, q>,

T
(3)
0 |h, a, q> = a|h, a, q>,

(5.2)

where q denotes the Z2 × Z2 charge of the highest weight state and A repre-
sents any basic field. There are two more zero modes coming from the (0, 0)
sector generators. In the case q = (0, 0) there are no other zero modes, in the
case q = (1, 0), (0, 1), or (1, 1) there are four more zero modes coming from
the G, U generators. Some linear combinations of zero modes (with h, a, q
dependent coefficients) will also annihilate the highest weight state in (5.2).

6 Unitary models

All the generalized commutation relations are invariant under the following
conjugation:

(G(α)
n )† = G

(α)
−n, (U (α)

n )† = −U
(α)
−n ,

(T (α)
n )† = T

(α)
−n , (Wn)† = −W−n,

(6.1)

if the algebra parameter g is real. This conjugation is compatible with the
standard conjugation on the three N = 1 superconformal subalgebras. We
know that the N = 1 superconformal algebra has unitary representations
either when the central charge c ≥ 3/2, or when c < 3/2 at the following
discrete set of values of the central charge:

cp =
3
2

− 12
(p − 1)(p + 1)

, p = 3, 4, 5, . . . , (6.2)

which correspond to the unitary minimal models of the N = 1 superconfor-
mal algebra. From this we can immediately deduce the restrictions on possi-
ble unitary models of the whole algebra. In our case, the N = 1 subalgebra
central charge is connected to the coupling g by the formula (3.19). For real
g we have c ≤ 3/2. If c = 3/2, then g2 = 1/8 and the total central charge
(calculated from (3.15)) is C = 18/5. If c = cp, then there are two solutions
for g2 (and consequently for C). Both solutions can be parametrized by the
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same formula but with different ranges for the parameter p:

g2
p =

p + 3
8 (p − 3)

,

Cp =
18
5

(
1 − 4 (p + 11)

(p + 1) (5p − 1)

)
,

(6.3)

where p = 3, 4, 5, . . . or p = −3,−4,−5, . . . . In the case p = 3, the coupling
g becomes formally infinite, but the algebra still makes sense, one has just
to redefine the generators G(α). The N = 1 subalgebra central charge c and
the total central charge C both vanish in this case.

In fact the p = 4 model (g2 = 7/8,C = 126/95) is also excluded from the
candidates for the unitary models, since the central charge of the Virasoro
algebra generated by the field T − T (3) is equal to 126/95 − 7/10 = 119/190,
it is less than 1, but does not belong to the series of values of the central
charge for the Virasoro algebra minimal models.

We should stress that we have no proof that the algebra indeed has uni-
tary representations except two models for which we know explicit realiza-
tion in terms of unitary fields. These realizations are described in the next
section.

7 Explicit realizations

7.1 sl(3) fermions × affine so(3) on level 4

Here we present the construction of the Z2 × Z2 superconformal algebra at
the central charge C = 18/5 in terms of sl(3) fermions and the so(3) affine
Kac–Moody algebra on level 4. This construction is in a sense a Z2 × Z2
analogue of the realization of the standard N = 1 superconformal algebra at
the central charge c = 3/2 in terms of one free boson and one free fermion.

The sl(3) fermion system is described in detail in [9]. We will briefly recall
its definition here. It is also a Z2 × Z2 graded algebra of parafermionic type,
but the conformal dimensions of the main generating fields are equal to 1/2
and not to 3/2 like in the case of Z2 × Z2 graded N = 1 superconformal
algebra. The algebra is generated by three fermion fields ψ(α), α = 1, 2, 3.
The operator product expansion of each field with itself is the standard free
fermion relation:

ψ(α)(z)ψ(α)(w) =
1

z − w
+ O(z − w). (7.1)
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The operator product expansion of two different fields gives the third one:

ψ(α)(z)ψ(β)(w) =
cα,βψ(γ)(w)
(z − w)1/2 + O((z − w)1/2), α �= β �= γ. (7.2)

The fields in the operator product expansion are exchanged using our general
prescription:

ψ(α)(z)ψ(α)(w) = −ψ(α)(w)ψ(α)(z),

ψ(α)(z)ψ(β)(w)(z − w)1/2 = μα,βψ
(β)(w)ψ(α)(z)(w − z)1/2, α �= β.

(7.3)

The commutation factors can be obtained exactly in the same way as the
commutation factors of the Z2 × Z2 graded N = 1 superconformal algebra
(see section 3), the result is:

μ1,2 = μ2,3 = μ3,1 = −i = −μ2,1 = −μ3,2 = −μ1,3. (7.4)

The structure constants are determined in [9] using Jacobi identities:

c1,2 = c2,3 = c3,1 =
e−iπ/4
√

2
, c2,1 = c3,2 = c1,3 =

eiπ/4
√

2
. (7.5)

The sl(3) fermion model is given by the following coset construction [6]:

sl(3)2
u(1)2

. (7.6)

The second part of our construction is the so(3) affine vertex algebra. It
is also generated by three fields, and the algebra is also Z2 × Z2 graded. The
fields J (α)(z) are of conformal dimension 1, the defining operator product
expansion is:

J (α)(z)J (β)(w) =
k δα,β

(z − w)2
+

iεαβγJ (γ)(w)
z − w

+ O
(
(z − w)0

)
. (7.7)

The sl(3) fermions and the affine currents commute:

ψ(α)(z)J (β)(w) = J (β)(w)ψ(α)(z) = O
(
(z − w)0

)
. (7.8)

The superconformal generators G(α) of the Z2 × Z2 graded N = 1 super-
conformal algebra are expressed as products of corresponding sl(3) fermions
and affine currents:

G(α)(z) =
1√
k

ψ(α)(z)J (α)(z). (7.9)

Then the g-coupling of the Z2 × Z2 graded N = 1 superconformal algebra
is equal g = 1/

√
2k.
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The Virasoro field associated with G(α)(z) is

T (α) =
1
2k

[
J (α), J (α)]

0 +
1
2

[
ψ(α), ψ(α)]

−1 =
1
2k

:J (α)J (α): − 1
2

:ψ(α)∂ψ(α):.

(7.10)
So we see that it is the (free boson) × (free fermion) realization of the N = 1
superconformal algebra, the central charge of which is c = 3/2. From the
relation (3.19) we obtain the coupling g2 = 1/8, which means that we have
to fix the level of the so(3) affine algebra to k = 4.

The total energy–momentum field is the sum of energy–momentum fields
of the sl(3) fermion system and the so(3) affine algebra on level 4:

T =
1
10

3∑

α=1

:J (α)J (α): − 2
5

3∑

α=1

:ψ(α)∂ψ(α):. (7.11)

The central charge is the sum of the central charge of the sl(3) fermion
system (6/5) and the central charge of the so(3) affine vertex algebra on
level 4 (12/5):

C =
6
5

+
12
5

=
18
5

, (7.12)

as one would expect.

The U (α)and the W fields of the Z2 × Z2 graded N = 1 superconformal
algebra can be expressed in terms of sl(n) fermions and affine currents using
the operator product expansion relations (3.16) and (3.22), respectively.

7.2 Two free bosons

This is a realization of the p = 5 unitary model in the series (6.3). The
coupling is g2 = 1/2, the central charge of the N = 1 superconformal sub-
algebras is c = 1 and the total central charge is C = 2. We take two free
bosons φ1 and φ2:

φi(z)φj(w) = −δi,j log(z − w), (7.13)

and built from them the vertex operators

Γα(z) = cα:ei(α,φ)(z):. (7.14)

α is a vector in 2-dimensional Euclidean space, and (· , ·) is the standard
scalar product in this space. The factors cα are the so-called cocycles, sat-
isfying a 2-cocycle algebra, the exact definition of which is not important
here.
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The three superconformal generators are given by

G(α)(z) =
Γα(z) + Γ−α(z)√

2
, (7.15)

where α is the root of the sl(3) algebra normalized to (α, α) = 3.

The fields T (α)(z) are obtained from the operator product expansion (A.6)
and coincide with the well known energy–momentum field for the free boson
system:

T (α)(z) = − :(α, ∂φ)(α, ∂φ):(z)
2(α, α)

. (7.16)

The total energy–momentum field is also the standard energy–momentum
field of the system of two free bosons:

T (z) = −1
2

(
:∂φ1∂φ1:(z) + :∂φ2∂φ2:(z)

)
. (7.17)

The fields U (α)(z) are obtained as

U (α) ∼ :(γ, ∂φ)
(
Γα − Γ−α

)
:, (7.18)

where γ is a vector, which is orthogonal to the root α.

The field W is given by

W =
√

3
8

(
∂φ1∂

2φ2 − ∂φ2∂
2φ1

)
. (7.19)

8 Discussion and speculations

We constructed a new chiral algebra of parafermionic type: the Z2 × Z2
graded N = 1 superconformal algebra. The full set of operator product
expansions is presented in Appendix A. The algebra has one continuous
parameter: the coupling g, and contains three N = 1 superconformal subal-
gebras of the same central charge. We also discussed briefly the representa-
tion theory of the Z2 × Z2 graded N = 1 superconformal algebra. However
the full description of the representation theory remains an open problem,
in particular it would be important to understand what is the Poincare–
Birkhoff–Witt basis for the highest weight modules of the algebra. We also
obtained restrictions on the possible unitary models of the algebra, and
provided two examples of explicit unitary realizations of the algebra.

The Z2 × Z2 graded N = 1 superconformal algebra is a generalization
of the Z2 graded N = 1 superconformal algebra. Higher generalizations to
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the case of Z2
n grading are possible. However in the case n > 2, there

are less dimension-3/2 generating fields than 2n − 1, i.e., not every element
(different from identity) of the Z2

n group has an N = 1 superconformal
generator associated with it. The natural structure in this case is the An-
type root system. One should associate with every pair of opposite roots
(the root direction) the standard Z2 graded N = 1 superconformal algebra,
generated by G(α)(z) and T (α)(z), where α is the root direction. There are
n(n + 1)/2 such root directions, which is much less than 2n − 1 for greater n.
Then the standard Z2 graded N = 1 superconformal algebra corresponds to
the A1 root system and the Z2 × Z2 graded N = 1 superconformal algebra,
described in this paper, corresponds to the A2 root system. Moreover this
approach can be extended to any root system of A-D-E type. In fact the
structure of relations between the G(α) fields is the same as that of the
operator product expansions of the so-called simply laced fermions defined
in our previous work (Section 7 of [9]). The most singular term in the
operator product expansions will be

G(α)(z)G(β)(w)

=

⎧
⎨

⎩

O((z − w)0), α and β are orthogonal,

cα,βG(α+β)(w)
(z − w)3/2 + O((z − w)−1/2), α and β are not orthogonal.

(8.1)

Again we need many more fields to close the algebra: of conformal dimen-
sions 5/2, 3 and maybe of higher dimensions. But this is a subject for a
separate publication. We want just to make a few predictions here. Since
the root system has many A2 root subsystems, the algebra has many sub-
algebras, which are the Z2 × Z2 graded N = 1 superconformal algebras. So
we expect that there will be only one free parameter, the coupling g, which
is connected to the central charge of the N = 1 superconformal subalgebras
by the same relation (3.19). The total energy–momentum field is

T (z) =
1 + 4g2

1 + (3h∨ − 2)g2

∑

α

T (α)(z), (8.2)

where h∨ is the dual Coxeter number of the simply laced algebra g, the root
system of which is used in the construction of our parafermionic algebra.
The total central charge is

C =
54g2Rg

(1 + (3h∨ − 2)g2)(1 + 16g2)
, (8.3)

where Rg is the number of root directions of the g root system. Substitut-
ing the values of g corresponding to the unitary models from (6.3) (like in
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Section 6), we get two series of central charge:

Cp =
6Rg(p2 − 9)

(p + 1) ((h∨ + 2)p + 3h∨ − 10)
,

p = 3, 4, 5, 6, . . .

or
p = −3,−4,−5,−6, . . .

(8.4)

Unitary representations can appear only at these values of central charge or
at the limit p → ±∞ of these two series:

C =
6Rg

h∨ + 2
. (8.5)

In the case g = sl(n) this “limit” model is realized by the (sl(n) fermions) ×
(so(n) affine vertex algebra on level 4), exactly in the same way as described
in Section 7.1.

We would like also to announce here the N = 2 superconformal algebras
of parafermionic type. These are also associated with the root systems of a
simple Lie algebra g of the A-D-E type. But now there is a dimension-3/2
superconformal generator G(α)(z) for every root α. The fields G(α)(z) and
G(−α)(z) together with dimension-1 and dimension-2 fields J (α)(z), T (α)(z)
form the standard N = 2 superconformal algebra. If α + β is a root, then
the operator product expansion of G(α)(z) and G(β)(w) is

G(α)(z)G(β)(w) =
cα,βG(α+β)(w)

(z − w)3/2 + O
(
(z − w)−1/2), (8.6)

and it is not singular if α + β is not a root. The full field content and
the operator product expansions defining the algebras are not known yet
even in the sl(3) case, they are under investigation and will be reported
in [11]. However we already know the minimal models of these simply laced
N = 2 superconformal algebras. They are constructed using the idea from
[12], where the minimal models of the sl(2) N = 2 superconformal algebra
are constructed from ZN parafermions and one free boson. Our minimal
models are given by

gk

u(1)r
× u(1)r, (8.7)

there k is the level of the affine vertex algebra g of A-D-E type, and r is its
rank. The first part is generated by the Gepner parafermions [6], and the
u(1)r part is just r free bosons. The main generators are obtained as

G(α)(z) = ψα(z)Γα
√

2+k/
√

2k(z), (8.8)

ψα is the parafermion corresponding to the root α, the root is normalized
to (α, α) = 2, the vertex operators Γ are defined in Section 7.2.
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The formula for the total central charge of these unitary minimal models
coincide with the formula for the central charge of the affine vertex algebra g:

Ck(g) =
k dimg

k + h∨ . (8.9)

The algebras described in this paper may have interesting applications to
string theory.
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A List of operator product expansions

We list here all the algebraic relations between the basic fields of the Z2 × Z2
graded N = 1 superconformal algebra. There are 10 basic fields: G(α), T (α),
U (α), W, α = 1, 2, 3, of conformal dimensions 3/2, 2, 5/2 and 3, respectively.
They are primary fields with respect to the total energy–momentum field

T =
1 + 4g2

1 + 7g2

(
T (1) + T (2) + T (3)

)
. (A.1)

This field T (z) satisfies the Virasoro algebra with central charge

C =
162g2

(1 + 7g2) (1 + 16g2)
. (A.2)

The central charge of the three N = 1 superconformal subalgebras is
expressed in terms of the coupling g as

c =
54g2

(1 + 4g2)(1 + 16g2)
. (A.3)

In the formulae below we use some convenient notation, the following
two-index symbol:

σαβ =

{
0, α = β,

εαβγ , α �= β �= γ,
α, β, γ = 1, 2, 3, (A.4)

(i.e., σ12 = σ23 = σ31 = 1 and σ21 = σ32 = σ13 = −1) and the following com-
bination of the Virasoro fields:

Θ(α)(w) =
3∑

γ=1

σαγT (γ)(w). (A.5)
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In all the operator product expansions below the fields on the right hand
side of the equations are taken at point w. The indices α, β, γ inside one
equation are all different. There is no summation on repeated indices, unless
the sum is explicitly written.

The operator product expansions defining the Z2 × Z2 graded N = 1
superconformal algebra read

G(α)(z)G(α)(w) =
1

(z − w)3
+

3
cT

(α)

z − w
+ O

(
(z − w)0

)
, (A.6)

T (α)(z)G(α)(w) =
3
2G(α)

(z − w)2
+

∂G(α)

z − w
+ O

(
(z − w)0

)
, (A.7)

T (α)(z)T (α)(w) =
c/2

(z − w)4
+

2T (α)

(z − w)2
+

∂T (α)

z − w
+ O

(
(z − w)0

)
, (A.8)

G(α)(z)G(β)(w) = e
iπ
4 σαβg

(
G(γ)

(z − w)3/2 +
1
2∂G(γ) + εαβγU (γ)

(z − w)1/2

)

+ O
(
(z − w)1/2), (A.9)

T (α)(z)G(β)(w) =
9g2

4 (1 + 4g2)

(
G(β)

(z − w)2
+

2
3∂G(β) − σαβ

4
3U (β)

z − w

)

+ O
(
(z − w)0

)
, (A.10)

T (α)(z)T (β)(w) =
c2(1+16g2)

72
(z − w)4

+
3g2

2(1+4g2)

(
2T (α) + 2T (β) − 2T (γ)

)

(z − w)2
+

+
3g2

2(1+4g2)

(
∂T (α) + ∂T (β) − ∂T (γ)

)
+ σαβW

z − w

+ O
(
(z − w)0

)
, (A.11)

G(α)(z)U (α)(w) =
−3

c

(∑3
γ=1 σαγT (γ)

)

(z − w)2

+
− 3

4c

(∑3
γ=1 σαγ∂T (γ)

)
− 27

c2(1+16g2)W

z − w
+ O

(
(z − w)0

)
,

(A.12)

G(α)(z)U (β)(w) =
e

iπ
4 σαβ

4g

(
−(2 + 5g2)σαβG(γ)

(z − w)5/2

+
− (2+5g2)

6 σαβ∂G(γ) − 2+17g2

3 U (γ)

(z − w)3/2
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+
g2σαβ∂2G(γ) + 2g2∂U (γ) − 6

cσαβ

[
T (α), G(γ)

]
0

(z − w)1/2

)

+
−1

4σαβ

[
G(α), G(β)

]
−1/2

(z − w)1/2 + O
(
(z − w)1/2), (A.13)

T (α)(z)U (α)(w) =
1+16g2

2(1+4g2)U
(α)

(z − w)2
+

+
1+16g2

2(1+4g2)∂U (α) − 1+16g2

12g2

∑3
γ=1 σαγ

[
T (γ), G(α)

]
0

z − w

+ O
(
(z − w)0

)
, (A.14)

T (α)(z)U (β)(w) =
1

4(1 + 4g2)

(
−3(2 + 5g2)σαβG(β)

(z − w)3

+
−(2 + 5g2)σαβ∂G(β) + (4 + 19g2)U (β)

(z − w)2

+
3g2σαβ∂2G(β) − 6g2∂U (β) − 18

c σαβ

[
T (α), G(β)

]
0

z − w

)

+
− e

iπ
4 σαβ

2g σαβ

[
G(α), G(γ)

]
−1/2

z − w
+ O

(
(z − w)0

)
, (A.15)

U (α)(z)U (α)(w) =
−2+5g2

4g2

(z − w)5
+

−(1+g2)(1+7g2)
c g2(1+4g2) T + 2−13g2

4c g2 T (α)

(z − w)3

+
−(1+g2)(1+7g2)

2c g2(1+4g2) ∂T + 2−13g2

8c g2 ∂T (α)

(z − w)2

+
(1+7g2)(8g2−1)

16c g2(1+4g2) ∂2T − 9
8c∂

2T (α)

z − w

+
− 9

4c2g2

([
T (β), T (γ)

]
0 +

[
T (γ), T (β)

]
0

)

z − w

+

−1+4g2

6g2

([
G(β), G(β)

]
−1+

[
G(γ), G(γ)

]
−1

)

−1
4

[
G(α), G(α)

]
−1

z − w

+
−(1+10g2)

6g2

∑3
δ=1 σαδ

[
G(δ), U (δ)

]
0

z − w
+ O

(
(z − w)0

)
,

(A.16)
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U (α)(z)U (β)(w) =
e

iπ
4 σαβ

12g

( (2+5g2)(2+17g2)
4g2 G(γ)

(z − w)7/2

+
(2+5g2)(2+17g2)

8g2 ∂G(γ) + 251g4+4g2−4
12g2 σαβU (γ)

(z − w)5/2

+
−4+19g2

4 ∂2G(γ) + 71g4+7g2−1
6g2 σαβ∂U (γ)

(z − w)3/2

+

9(1+g2)
2C g2

[
T, G(γ)

]
0 +

3(11g2−1)
2 c g2

[
T (γ), G(γ)

]
0

(z − w)3/2

+

(
−1+10g2

2 ∂3G(γ) +
3(1+4g2)

2 σαβ∂2U (γ)

+ 324
c2(1+16g2)σαβ

[
G(γ), W

]
0

)

(z − w)1/2

+

(
81

c2(1+16g2)∂
[
(T (α) + T (β)), G(γ)

]
0

+9
c∂

[
(T (β) + T (γ)), G(γ)

]
0

)

(z − w)1/2

+
9
c

[
(T (α) − T (β)), G(γ)

]
−1 + 18

c σαβ

[
T (γ), U (γ)

]
0

(z − w)1/2

)

+
−8+11g2

48g2

[
G(α), G(β)

]
−1/2

(z − w)3/2

+
2+5g2

16g2

[
G(α), G(β)

]
−3/2 − 1

8g2 ∂
[
G(α), G(β)

]
−1/2

(z − w)1/2

+
1+13g2

12g2 σαβ

([
G(α), U (β)

]
−1/2 +

[
U (α), G(β)

]
−1/2

)

(z − w)1/2

+ O
(
(z − w)1/2), (A.17)

G(α)(z)W (w) =
2
(
1 + 4g2

)2

3g2

(
−2

(
1 + g2

)
U (α)

(z − w)2

+
−

(
1 + 10g2

)
∂U (α) + 9

c

∑3
γ=1 σαγ

[
T (γ), G(α)

]
0

z − w

)

+ O
(
(z − w)0

)
, (A.18)

T (α)(z)W (w) =

6g2(1+g2)
(1+4g2)2

Θ(α)

(z − w)3
+

3g2(1+g2)
2(1+4g2)2

∂Θ(α) + 3c
CW

(z − w)2
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+
1+16g2

2(1+4g2)

[
T (α), Θ(α)

]
0 + 54g4

(1+4g2)3
[
G(α), U (α)

]
0

z − w

+
− 9g4

2(1+4g2)2
∂2Θ(α) − 3g2

1+4g2 ∂W

z − w
+ O

(
(z − w)0

)
, (A.19)

U (α)(z)W (w)

=
1

(1 + 4g2)2

( 3(1+g2)(2+5g2)
4 G(α)

(z − w)4
+

(1+g2)(2+5g2)
4 ∂G(α)

(z − w)3

+
−15g2(1+g2)

8 ∂2G(α) +
81(1−2g2)

8C

[
T, G(α)

]
0 +

27(6g2−1)
8c

[
T (α), G(α)

]
0

(z − w)2

+

−(1+4g2)(1+10g2)
8g(

e−(iπ/4)σβγ
[
G(β), G(γ)

]
−1/2 + e(iπ/4)σβγ

[
G(γ), G(β)

]
−1/2

)

(z − w)2

+
−2+49g2+128g4

32 ∂3G(α) +
27(1−2g2)

8C ∂
[
T, G(α)

]
0 + 81g2

4C

[
T, G(α)

]
−1

z − w

+
9(14g2−1)

8c ∂
[
T (α), G(α)

]
0 − 81g2

4c

[
T (α), G(α)

]
−1 − 27g2

2c

[
Θ(α), U (α)

]
0

z − w

+
−σβγ

3g(1+4g2)
2

(
e− iπ

4 σβγ
[
G(β), U (γ)

]
−1/2−e(iπ/4)σβγ

[
G(γ), U (β)

]
−1/2

)

z − w

+

3g(1+4g2)
16

(
e−(iπ/4)σβγ∂

[
G(β), G(γ)

]
−1/2+e(iπ/4)σβγ∂

[
G(γ), G(β)

]
−1/2

)

z − w

)

+ O
(
(z − w)0

)
, (A.20)

W (z)W (w)

=
−3g2

(1 + 4g2)3

( c(1+g2)(2+5g2)
2

(z − w)6
+

3c(1+g2)(2+5g2)
C T

(z − w)4
+

3c(1+g2)(2+5g2)
2C ∂T

(z − w)3

+
9c(2g2−1)2

16C ∂2T +
81c(1−8g2)

4C2

[
T, T

]
0 +

9(20g2−1)
4c

∑3
α=1

[
T (α), T (α)

]
0

(z − w)2

+
−9g2 ∑3

α=1
[
G(α), G(α)

]
−1

(z − w)2

)

+

[
W, W

]
1

z − w
+ O

(
(z − w)0

)
, (A.21)

where
[
W, W

]
1 = 1

2∂
[
W, W

]
2 − 1

24∂3
[
W, W

]
4.
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The order of fields in the operator product expansions above is exchanged
using the following rule:

B(z)A(w) = A(w)B(z),

R(α)(z)S(α)(w) = −S(α)(w)R(α)(z),

R(α)(z)S(β)(w)(z − w)3/2 = iσα,βS(β)(w)R(α)(z)(w − z)3/2, α �= β,
(A.22)

where B denotes any field from the set {T (1), T (2), T (3), W}, R and S stand
for any field from the set {G, U} and A is any of the 10 basic fields.

The generalized Jacobi identities (2.7) are satisfied modulo the following
null field condition:

27∂W + (1 + 16g2)c2
3∑

α=1

[
G(α), U (α)]

0 = 0. (A.23)
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