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Abstract

When a spacetime takes Bondi radiating metric and is vacuum and
asymptotically flat at spatial infinity which ensures the positive mass
theorem, we prove that the standard ADM energy—momentum is the
past limit of the Bondi energy—momentum. We also derive a formula
relating the ADM energy—momentum of any asymptotically flat spacelike
hypersurface to the Bondi energy-momentum of any null hypersurface.
The formula indicates that the Bondi mass is always less than the ADM
total energy if the system has news.

The assumed asymptotic flatness precludes gravitational radiation.
We therefore study further the relation between the ADM total energy
and the Bondi mass when gravitational radiation emits. We find that, in
this case, the ADM total energy is no longer the past limit of the Bondi
mass. They differ by certain quantity relating to the news of the system.

1 Introduction

It is well known that the ADM total energy and total linear momentum
can be defined on asymptotically flat spatial infinity in a spacetime [1].

e-print archive: http://lanl.arXiv.org/abs/gr-qc/0511036
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The fundamental positive mass conjecture in general relativity, which was
proved by Schoen—Yau, and later by Witten, asserts that the ADM energy—
momentum is always timelike for a non-trivial spacetime [18-20, 25]. In [26],
the positive mass theorem was extended to the case involving the total
angular momentum. This extension actually relates to the Einstein—Cartan
theory. On the other hand, in the pioneering work of Bondi and coworkers
[5, 17, 24] on the gravitational waves in vacuum spacetimes, the Bondi mass
associated to each null cone is defined and their main result asserts this
Bondi mass is always non-increasing with respect to the retarded time.

One main problem in general relativity is to understand what exactly
happens on the energy-momentum when an asymptotically flat spacelike
hypersurface goes to a null hypersurface. Physically, it is believed that
gravitational radiation occurs, and the energy of the system will be car-
ried away by gravitational waves. When a spacetime can be conformally
compactified, and asymptotically empty and flat at null and spatial infin-
ity in the sense of [2], Ashtekar and Magnon-Ashtekar demonstrated the
mass at spatial infinity is the past limit of the Bondi mass taken as the cut
approaches the “point” of spatial infinity [3]. This result was later verified,
in the framework of Penrose, by Hayward replacing the Penrose conformal
factor by a product of advanced and retarded conformal factors [11] and by
Valiente Kroon [10, 22, 23] using a representation of spatial infinity based on
the properties of conformal geodesics. In [6], Christodoulou and Klainerman
proved the global existence of globally hyperbolic, strongly asymptotically
flat, maximal foliated vacuum Einstein equations and proved rigorously that
the ADM mass at spatial infinity is the past limit of the Bondi mass. In
this paper, we assume that spacetime takes vacuum Bondi radiating metric.
We define the spatial infinity as the “real” time slice. Under the asymp-
totic flatness conditions at spatial infinity which ensures the positive mass
theorem, we use a complete and rigorous argument to demonstrate that
the standard ADM energy—momentum is the past limit of the “standard”
Bondi energy—momentum defined in [5, 17]. We derive a formula relating
the ADM energy—momentum for a spacelike hypersurface at time ¢y to the
Bondi energy—momentum for a null hypersurface at retarded time ug. As
a consequence, we prove that the Bondi mass is always less than the ADM
total energy if the system has news.

However, it is presumably believed that the assumptions of asymptotic
flatness at spatial infinity in all above works preclude gravitational radi-
ation, at least near spatial infinity. We therefore assume certain weaker
conditions on asymptotic flatness at spatial infinity which spacetimes may
include gravitational radiation. We also derive a formula relating the ADM
total energy to the Bondi mass. We find that, in this case, the ADM total
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energy is no longer the past limit of the Bondi mass and it differs by certain
quantity relating to the news of the system.

It should be pointed out that the “real” time t is assumed to be the
retarded time u plus the Euclidean distance r in the paper. This condition
is very restricted, which is not satisfied even in Schwartzschild spacetime.
In the forthcoming paper [12], we will study the more general case which ¢
approaches to u + r in certain sense.

The paper is organized as follows: In Section 2, we state some well-known
formulation and results of Bondi, van der Burg, Metzner and Sachs. In
Section 3, we give some asymptotically flat conditions on Bondi radiating
metric, which ensures the ADM total energy is well defined at spatial infinity.
In Section 4, we derive the second fundamental form of spatial infinity and
show that it is also asymptotically flat, which ensures the ADM total linear
momentum is well defined at spatial infinity. In Section 5, we prove that the
ADM total energy is the Bondi mass of negatively infinite retarded time.
In Section 6, we prove that the ADM total linear momentum is the Bondi
momentum of negatively infinite retarded time. In Section 7, we establish
a relation between the ADM total energy—momentum of spatial infinity at
any time and the Bondi energy-momentum at any retarded time. We also
prove that the Bondi mass is always less than the ADM total energy if the
system has news. In Section 8, we establish a relation between the ADM
total energy and the Bondi mass for Bondi radiating metric which includes
gravitational radiation.

2 The Bondi coordinates

Throughout the paper, we assume that (L3!,§) is a vacuum spacetime with
metric § = g;; dv' dz’ taking the following Bondi radiating metric

v
g=—- <— —e?? + 122U cosh 26 4 r2e~2YW? cosh 26
-

+ 272UW sinh 25) du? — 2e%8 du dr

— 2r? (e¥7U cosh 20 + W sinh 26) du df
— 2r” (e7*'W cosh 26 + U sinh 26) sin 6 du d)

42 (e27 cosh 26 d6? + e~2 cosh 26 sin® 6 dyp? + 2 sinh 26 sin 0 do dq,z))
(2.1)
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and satisfies the outgoing radiation condition, where 3,, d, U, V, W are func-
tions of

L=, zt=r 22=0, 23=4.
u is a retarded coordinate, r is Euclidean distance, # and v are spherical

coordinates, 0 < 6 <7, 0 < < 27. We assume the “real” time ¢ is defined
as

t=u+r.
In the forthcoming paper [12], we will study the more general relation
between the “real” time ¢ and the retarded time w. The metric (2.1) was

studied by Bondi and coworkers [5, 17, 24] in the theory of gravitational
waves in general relativity. They proved that the following asymptotic

behavior holds
0 1
LA e <3) 7
r

r
T r
2+ d? 1
f=- 4r2 O<r4>’

S
|
=
\'Q)
=
+
@)
~ 7 N 7 N
c.o"_‘
O ~— ~—

where
l=co+2ccotf +dszcsch,
I =dg+2dcotf —czesch.

(Throughout the paper, denote f; = % for i =0,1,2,3.) M is the mass
aspect and cp, do are the news functions and they satisfy the following
equation [24]:

1 _
Mg =— ((670)2 + (d70)2) + 5 (l,g +lcoth + [ 3csc 0) 0 (2.2)
To avoid the singularity, we assume

Condition A. Each of the six functions 3, v, d, U, V, W together with its
derivatives up to the second orders are equal at ) = 0 and 2.
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This implies

M’¢=o = M’¢=2w MvP’zp:o - vplwzzw
C‘w:o = C‘w:zw’ cvp‘w:o = Cvp‘zp:mr’
d‘w:o - d‘w:%, dm‘w:o - dm‘qb:%
for p,q=0,2,3. Denote S? the unit 2-sphere. The physical reason

requires [5]

Condition B. For all u,

27 27
| ewoias =0, [ ctum iy —o.
0 0

Let N, be a null hypersurface which is given by u = ug at null infinity.
The Bondi energy—momentum of N, is defined by [5, §]

1
my(up) = o . M (ug, 0,¢)n"dS

where v = 0,1,2,3, n® = 1, n? the restriction of the natural coordinate z to
the unit round sphere, i.e.,

n’ =1, n'=sinfcosy, n?=sinfsiny, n®=-cosdh.

my is referred as the Bondi mass. Under Condition A and Condition B,

T 2w
/ (l72+lcot9—|—l_73cs00)d5’:/ / (L2sin®+lcos + 1 3) di do
52 0 Jo

27 T ™
_ / (sin0)|"_dv +/ ((u, 0, 27)
0 =0 0
—1(u,6,0))dd
2
=2 [ (el m ) + cfu,0.4) v
0

=0,

then (2.2) gives rise to the famous Bondi mass loss formula
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Now we derive the Bondi momentum loss formula. It is easy to find

/ (l,g +lc0t9+i,3cs09) ntdS
52

2
:// (lygsin9+lcos0+l73)sinGcos¢d¢d6’
o Jo

27 - T
:/ <(lsin 9)‘9 O—/ lsin@cos@d@) cos ¥ dyp
= 0
271'7
(( +/ lsinwd¢>sin9d9
0

2m
/ (ccost + dcosBsin)) dy db
0

c\o\c\

2
/ (ccost + dcosBsin) di do
0

and

/ (Lo +lcot +1zcsch) n®dS
S2

2
:/ / (l2sin@ + lcosd + 1 3) sin b sine dyp df
0

2T T s
:/ ((lsin20)‘ —/ lsin0c059d9> sin v dip
0 0=0 Jo
2 2m _
— / lcos¢d1/1> sin 6 df
0

2
/ (csiny — dcosf cosp) diyp df
0

2w
/ (csiny — dcosf cosp) dip db
0

and

/(l72+lcot9+l,3(:sc€)n3ds

SQ
2 B

:// (l7gsin9+lc0s9+l,3)cos&dwdH
0

T 27 2m -
= / / (Isin®0) dip d6 + / (Isinfcosf) |  dy
0o Jo 0 =0
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27
— 2/0 (c(u,m,%) — e(u,0,1)) dyp
=0.

We obtain, for k=1, 2, 3,

d 1
—my, =

Tu c0)? + (d)?) n* ds. (2.4)

o ) (e

In general, the spatial infinity in vacuum spacetimes which the metric
satisfies (2.1) may not be asymptotically flat in the sense of [14, 18-20, 25,
26]. Using (t,r,0,1) coordinates, the metric (2.1) can be written as

v
Jg=— (— —e2P 4 122U cosh 26
,

+ r2e W2 cosh 26 + 2r2UW sinh 25) dt?

-2 ( (1 + V) e2? — 122702 cosh 26
T

— 26" 2YW? cosh 26 — 2r°UW sinh 25) dtdr

— 2r? (e%’U cosh 26 + W sinh 25) dt do
— 2r? (e_QVW cosh 26 + U sinh 2(5) sin 6 dt dvy

+ <<2 + V) e2P — 1262702 cosh 26
r

— 26" 2YW?2 cosh 26 — 2r2UW sinh 26) dr?

+ 72 (e27 cosh 28 d6? + =27 cosh 26 sin? 0 di)?

+ 2 sinh 26 sin 6 d6 dv))

+ 2r2 (eQVU cosh 2§ + W sinh 25) dr df

+ 212 (6_27W cosh 26 + U sinh 26) sin 6 dr dy. (2.5)
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3 The spatial infinity

Let (Nto,g, h) be a spacelike hypersurface in L3! which is given by {t = to},
where ¢ is the induced metric of § and h is the second fundamental form.

g= < <2 + V> e?8 — r2e®U? cosh 26
T

— 2" 2YW?2 cosh 26 — 2r2UW sinh 25) dr?

+ 72 (e27 cosh 28 d6? + =27 cosh 26 sin? 0 di)?

+ 2sinh 26 sin 6 df dv))

+ 2r? (e%’U cosh 2§ + W sinh 25) dr df

+ 2r? (e_QVW cosh 26 + U sinh 26) sin 0 dr d. (3.1)
(Nt0 , h) is usually refereed to an initial data set. We will study when

(Nty, g, h) is asymptotically flat. Let {¢'} (i = 1,2,3) be the coframe of the
standard flat metric gg on R3,

el =dr, &=rdf, & =rsnfdy.

Let {é&;} (i =1,2,3) be the dual frame. The connection 1-form {w@;;} is
given by dé' = —@;; A&, or Vé; = —w;; ® € (i,j = 1,2,3), where V is Levi—
Civita connection of gg. It is easy to find that

1., o 1 cot 6

v

23 23
Wiz = ——€7, w13 = ——€", Wiy = — €.
r r

Throughout the paper, we denote V; = ﬁéi for:=1,2,3.

The initial data set (Nto, g, h) is asymptotically flat in the current case if
the metric g satisfies

1 v 1
9(&.,&;) =6;; +0 <T> , Vig(éi,é) =0 <> ;

r2
VR oL 1
Vlvkg(ei,ej) =0 (7“3) (3.2)
as r — 0o. Furthermore, 2-tensor h satisfies
h(é,¢;) =0 BRI ¢j) =0 S (3.3)
€, €5) = 72 ) k (elaej = 3 .

as r — oQ.
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Denote Ciq; 45,05} the functions in spacetime which satisfy the following
asymptotic behavior at spatial infinity

lim lim r%f = O(l),
r—00 U——00 o
C{al,az,as} =4/ TIEEOUE@OJ *Vif = 0(1)7 . (3.4)

lim lim rV,V;f = O(1)

—00 U—r—00
We employ the following assumptions:
Condition C. Y E C{1’273}, XS C{17273}, 6 S C{27374}, Ue C{2’374}, W e C{2’374},
V+re C{O,1,2}’
Condition C implies, for r sufficiently large,

lim M=0(), lim ¢=0(), lim d=0(),
——00

U——00 u U——00

1 1 1
lim My=0 () , lim co=0 () , lim do=0 <> ,
U—>—00 r U—>—00 r U—>—00 r
lim M4=0(1), lim c4=0(), lim da=0(1),

U—r—0o0 uU—r—00 U—r—00
where A, B = 2, 3.

Proposition 3.1. Under Condition A, Condition B, and Condition C, the
metric g of Ny, satisfies (3.2).

Proof. The components of the metric g are
Vv
g(é1,61) = [(2 + —)ew —r2e?U? cosh 26
r

— 12 2YW? cosh 26 — 2r2UW sinh 25]
t=to

t=to

Note that for fixed t = ¢y, r — oo is equivalent to u — —o0, a straightforward
computation yields the proposition. O
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4 The second fundamental form

The lapse N and the shift X; (i = 1,2,3) of the spacelike hypersurface Ny,
are

N
X;

)

Il
K=}
o~

t=ty

The second fundamental form is then given by

1 ~
hij = 557 (ViX; + ViXi = i),

where

ViX; = 0:X; - T} X,
and

k _

1 Kl <8glz' i Ogi; agz‘j)
t=to

2 oxi ' Oxt Oz

are Christoffel symbols of the metric g. Now we compute the inverse g of
metric tensor g;; of Ny,. Denote g = (gan), 2 < A, B < 3, ie.,

_ 5 (e*cosh26 sinh 26 sin 0
9=7 \sinh26sinf e 27 cosh20sin26 )"

Then, the inverse g~ = (gAB)

inh 26
1 e 2 cosh25 — s11'1
=1 _ * sin ¢
r2 sinh 26 5. COsh 20
_ o2y 27
sin 0 sin? 6

Using the formulae [7]

1 _

gT =g11 — QABngglm
1A

9 ~AB

11 - 9 91Bs

gt

AB _ gAB + 91;11911137

Q
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we obtain

1 1%
— = <2 + > e28 — 2126272 cosh 26
r

g

—2r2e W2 cosh 26 — 4rUW sinh 26,
g2 = _Ug",

w
13 _ 11
97 Tsne?
=27 cosh 26

e 7 cos

g2 = 5 + U2

93 sinh26 UW
9 T T 250 " sind

5 = e®cosh2s  W?

Y

r2sin? 6 sin? 6

Proposition 4.1. Under Condition A, Condition B and Condition C, the
second fundamental form h of Ny, satisfies (3.3).

Proof. With the help of asymptotic behavior of 3,~,6,U, V, W, we obtain
the asymptotic expansion of the Christoffel symbols of (3.1) (see Appendix).
And a straightforward computation yields

N? = —Gu + G1idi;g”
ERRERE

2M 1
B Lo(h)
r =t r
VN 28 | 2.9v72
Xi=—(14+—)e*” +r°e®"U” cosh26
r

+ r2e W2 cosh 26 + 2r2UW sinh 26

2M 1
2| o(2)
r lt=tg T

Xy = —p? (eQVU cosh 26 + W sinh 25)

- l‘t:to +0 <71“> ’

Xg=—12 (e_QWW cosh 26 + U sinh 25) sin 6

_ 1
:lsiDH‘t ) + O (r)
=l0
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We obtain the second fundamental forms

2M +rM 1
hi1 = 720‘ +0 (3) )
r t=to r

1
hog = (l72 —2M — cho)t:to +0 <T‘> ,

has = (Lzsing — 2M sin® 0 + Isinf cos 6 + regsin®6), _, + O <) ,

Mo +1 1
h12=—L‘ +O( >7
T t=to

2
M [sin 6 1
h13=—w’ +O<2),
r t=to r
losing —lcosf +1 1
hos = ,2 510 cosv+ ’3—rdosin9 +01(-]).
2 ' t=to T

Note that for fixed t = tg, r — o0 is equivalent to u — —o0, a straightforward
computation yields the proposition. O

The trace of the second fundamental form is

1 - 1
trg(h) =3 (rM70 —2M +lcotO+12+13 (:S(:H)t:tO + O <7°3> .

5 The ADM total energy

In this section, we compute the ADM total energy of Ny,. In polar coordi-
nates, the ADM total energy E is
1 . N
B = g i (Vig(é1, ;) = Vitrgg (9) ) & A &,

This can be seen by changing Euclidean coordinates to the polar coordinates
or by writing Witten’s mass formula [14, 25, 26] in asymptotically polar
coordinates and using the comparison of two spin connections [28]. The
polar coordinate expression of the ADM total energy is equivalent to the
Euclidean coordinate expression of [1] even if the metric is not the standard
asymptotically flat in the sense of [14, 18-20, 25, 26]. This is because the
coordinate transformation relates to only the ground metric, which is the
standard metric, of R3.

Theorem 5.1. Under Condition A, Condition B, and Condition C, the
ADM total energy of Ny, is

E(fo) = mo(—oo).
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Proof. By (3.1), we obtain

Vig(é1,65) — Vitrg, () = &; (9(61,¢5)) — Extrgy (9)

AM 1o lcotf I3

r2 r2 r2

‘o)

r2sin 6

Thus,

E(ty) = — lim M}

T r—00 t= to

2
—hm// l281n9+l0059+l3) —t, diy db

167 r—oo
1
= — lim MdS
47T U——00 S2
1 s

——— lim (I(u,8,2m) — I(u,6,0)) do
1 2 -
- — 1 [sinf di.
im (Isin )‘6:0 Y

_ 1 lim M(u,0,v)dS

+ 1 lim (c(u, 0,v) + c(u, W,¢))d¢

6 The ADM total linear momentum
In this section, we compute the ADM total linear momentum of Ny,. Let
Euclidean coordinates

y' =rsinfcost, y?=rsinfsiney, y> =rcosb.

Then, the ADM total linear momentum

1y 9 9N _ (9 9 2 5 B
]P’,—&”lggo s, (h <8yi’8r> g(@y“@r) trg(h)>e ne
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A simple computation yields

g 0 1+gcos900s¢} O siny

(‘Tyl_gn 00 r Oy rsind’
0 0 5 0Ocoslsinyg 0 cosy
a2 o T ¢+ ogrsme

99 5 sing

oy3 o'’ 90 r

Therefore, under Condition A, Condition B, and Condition C,

o 0 cos 0 cos 9 sin 1)
h{—=—,=— ) =hun' + hgy——F-— —h
<8y1’87’> e r o sing

L ((2M + ’I“M70)TLI — (Myg + l) cos 6 cosp

-5
Pty 1snn)) +0 (1),
— %2 ((QM + er,O)n2 — (M2 +1)cosfsiny
_ ‘;’i? (M3 + lsin@)) +0 (;) :
h (8‘33, ;) — hyn® — hmstle

= %2((21\4 +7rMo)n® + (M +1) sinf) + O (1) ,

3
g 0\ _ 1 cos 0 cos i sin
g oo | =9gun + g1 —— —— ~ 931

Ayl or rsin @
_ <1+ 2]\4) ol _lcosecosw +l—sinw L0 <12> ,
r r r r
o 0\ 9 cos 0 sin cos
g <8yQa 8r> = gun” + g2 . +931rsin9

r r 72

_ <1+2]\4> 2 _lCOSGSiH¢ _Zcosz/J L0 <1> 7
.
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0 g B 3 sin 6
g 783/3’ or )~ giuin- — ga21 .
2M in 0 1
= (1+> 31222 10 (2)
r T T

Theorem 6.1. Under Condition A, Condition B and Condition C, the
ADM total linear momentum of Ny, is

P (to) = my(—o0)
fork=1,2, 3.
Proof. 1t is straightforward that

1
Pi(to) = 5 lim Mn'ds

T Uu——0o0 SQ

1 T 2w
— — lim / / (M 2sinf cosfcosp — M 3sin) dyp df
8T u——o0
2
— — lim / / lgsm 0008¢—|—l381n9005¢)d1/1d0
87T u——o0
2
— — lim / / 2lsmt9€os€cos¢—l sm@smz/)) dvy df
87T u——o0
1 1 T 27
= — lim Mn'dS — — lim (l sin 0 cos w) do
47'(' U——00 [qg2 8T u——o0 0 —
1 2 -
g dm [ (tsin? geosy) v

= — lim Mnt'dsS

and

1
PQ(tO) — lim Mn dsS

27'[' U—r—00 S2

1 2m
— — lim // (M 2 sin @ cosOsiny + M 3 cosp) dip df

8T u——o00

2
— — lim // l251n 051n1/1+l381n9s1n¢)d¢d9

877 U——00

1 2w _
— — lim / / (2lsin9c0s98inw+lsinﬂcosw)dzde

8T u——o0 Jq
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1 1 T _ 2m
=— lim Mn®dS — — lim (I'sin@sine)|  df
47 u——o0 52 T u—=—00 0 h=0
1 2w T
- UEIPOO i ¥ (Isin® O sinp) o di
1
=— lim Mn?dS
4T u—=—o0 Jg2
= mQ(_OO)7
and
Pylto) = — i Mt ds
3( 0/ = 27 u~1>moo n
2
—|—— lim / / Mgsm 0 dde
8T u—>—0
1 2m _
— — lim / / (l,g sin 0 cos 0 + [ 3 cos 9) di df
8T u—>—0
2w
—|—— lim / / lsm 0 — [ cos® G)dde
8T u—>—0
1 1 7r
= — lim Mn3dS — — lim (l sin f cos 6) ’ dip
4 u—=—o0 Jg2 8T u——o0 Jg =
1
= — lim Mn?dsS
T AT u——o0 52
1 27
- E ukriﬂoo 0 (C(uv T, 1/)) - C(“? 07 w))d¢
= mg(—0o0)
O

7 ADM and Bondi energy-momenta

In this section, we derive a formula relating the ADM total energy
and total linear momentum for a spacelike hypersurface at time ¢y to the
Bondi energy—momentum for a null hypersurface at retarded time wug in
non-radiative fields.

Theorem 7.1. Under Condition A, Condition B, and Condition C, the
ADM total energy, the ADM total linear momentum of Ny, and the Bondi
energy-momentum of null hypersurface Ny, satisfy

Pu(to) = m o) + 1 /_ " /S (o) + (o)) n” dS du
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forv=0,1, 2,3, and E(tg) is denoted as Py(to). In particular, if there is
news, then the ADM total energy is always greater than the Bondi mass.

Proof. By (2.2), we obtain

M(up) = lim M(u)+ Mo du

U——00 o
ug
— UEIE]OO M(u) + / ((070)2 + (d70)2) du

1 _ U
+ 3 (l,g +lcot0 +13 csc@)

U=—00

Then the theorem is a direct consequence of (2.3), (2.4), Theorem 5.1 and
Theorem 6.1. O

Remark 7.1. If we do not further assume Condition B, then

E(to) = mo(ug) / /52 co)?+ (do)?) dSdu

L b ( (10,0, %) + c(ug, 7)) d.

a7
1 27r
- 8771' (C(—O0,0,QZJ) +C(—OO,7T,1/J)) d¢;
]P’l(t()) ma UQ 4i / / C() )2) nl ds du,
S2
1 [uo
]PQ(tO) TI”LQ UO - / / C 0 )2) ’I’L2 dsS du,
e 52

Ps(to) = ma(ug) + I /_uo /52 ((QO)Q + (d70)2) n3dS du

1

2T
+ E (c(uo,0,v) — c(ug, 1)) dip.

Remark 7.2. If the spacetime L' satisfies the dominant energy condition,
then the positive mass theorem [18-20, 25]

E> (P} +P)+p3)"*

and Theorem 7.1 give rise to an inequality involving the Bondi energy—
momentum.
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8 Radiative fields

It is a fundamental problem to find appropriate conditions of asymptotically
flatness at spatial infinity to include gravitational radiation. Suggested by
the Sommerfeld electromagnetic boundary conditions, Trautman [21] speci-
fied a class of (non-covariant) boundary conditions for a spatially confined
gravitational source. The covariant formulation of the Trautman boundary
conditions was given by Papadopoulos and Witten [15].

The Bondi metric (2.1) gives rise to a class of asymptotic flatness also.
Instead of Condition C, we assume the metric has the following asymptotic
behavior at spatial infinity.

Condition D. A C{lylvl}’ 0 € C{l,l,l}? ﬂ S C{Q?QQ}, U e C{272’2}, W e
C{Q?QQ}, V4+re C{07070}.

Condition D implies, for r sufficiently large,

lim M =0(1), lim ¢=0(1), lim d=0(1),
U——00 uU——00

U——00
lim M70 = 0(1), Er_n co = 0O(1), ll)r_n do=0(1),
lim M 4 = O(1), EIEI c.a=0(1), EIP da=0(1),

U——00

where A, B = 2,3. Physically, Condition D might be an interpretation of
Sommerfeld’s radiation condition at spatial infinity: In [5], the authors
found, in axi-symmetric spacetime, this condition imply that v = @ +

fz(t T) +--- as 7 — 00. As the metric (2.1) behaves as a “wave”, we may

think that f1, fa, ... involve sin(t — ), cos(t — r), etc. This is essential for
our motivation to introduce Condition D.

Now we derive a formula between the ADM total energy and the Bondi
mass. This may be thought as the relation between them in radiative fields.
The relation between the ADM total linear momentum P and the Bondi
momentum my, in radiative fields requires much more dedicated computa-
tion. This question will be addressed elsewhere.

Theorem 8.1. Let E(ty) be the ADM total energy of spacelike hypersurface
Ny, whose metric satisfies (3.1). Under Condition A, Condition B, and
Condition D, we have

47 u——o0

27r
E(ty) = mo(—o0 +— lim / / c —{—d2 oSinddy do.
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Proof. Note that (3.1) gives
g(é2,82) + g(&s,3) = 2cosh 2y cosh 2§

:2+4(72+62)+O<

4(c? + d?
:2+(C;)+O<

)
)

| = -

Hence, as r — oo (or u — —00),
Vg(e1,5) = Vitrgy (9) = &5 (9(61,¢5)) = értrgy (9)
—9(&5, &)@ (€) — g(er, €:)wi; (é5)
AM 1y lcotf L3
r2 2 r2 r2sin6

(P +d? 1
_4el< s >+o<r3>

AM 1y lcotf L3

r2 r? r? r2 sin 6
4(e2 + d?) .
0
D o (1Y,
This gives rise to Theorem 8.1. O

Appendix

The asymptotic expansion of the Christoffel symbols of (3.1) under Condi-
tion A, Condition B, and Condition C:

M M 1
Fh:——i_r’o—l-O( >’

r2 3
I+ Mo 1
I}, = O3
12 + (7’2>,
[sinf + M3 1
Fl — ) O _
13 r + (r2)7

]._‘%2 = —T + O(].),
1, - - 1
I, = 3 (—l2sin@ +lcos®+ 13— 2dsinb + 2rdgsinf) + O () ;
,

Iy = —rsin®0 + O(1),
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rd ré
1 1
F%Qz—i_o(z)v
r r
9 —l3+ (Isinf) , —2(d +rdy) sind 1
Iy = — ) +O<T3>,
[ — 1
T3y =~ C’2+O(2>,
T r
2d cos O — 1
T r
1
F§3:—sin9c059+0(>,
,
Mg—r[o 1
1 r3sin? 0 * <r4>’
—l3+([sin9) + 2rd g 1
F3 - _ ) ,2 > o~
12 2r2 gin? 0 + (7"3)’

1 1
M,=-+0(=
13 ,r_+ (7"2)7

[sinf — 2d 9 sinf — 2d cos @ 1
_ lsin 2sin cos +C’3+O< )7

rsin?6

0 1
3. _ o8 ol
23 sin9+ r)’
T3, — _l_sinﬁ—i—c,i— 2d cos 6 40 <12> .
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