ASIAN J. MATH. (© 2014 International Press
Vol. 18, No. 4, pp. 609-622, September 2014 003

SMALL FOUR-MANIFOLDS WITHOUT NON-SINGULAR
SOLUTIONS OF NORMALIZED RICCI FLOWS*

MASASHI ISHIDAT

Abstract. It is known [6] that connected sums X#K3#(Zy X Sp)#01 (ST x §3)#£2CP? satisfy
the Gromov-Hitchin-Thorpe type inequality, but can not admit non-singular solutions of the normal-
ized Ricci flow for any initial metric, where X4 x X, is the product of two Riemann surfaces of odd
genus, ¢1,¢2 > 0 are sufficiently large positive integers, g, h > 3 are also sufficiently large positive
odd integers, and X is a certain irreducible symplectic 4-manifold. These exmples are closely related
with a conjecture of Fang, Zhang and Zhang [10]. In the current article, we point out that there still
exist 4-manifolds with the same property even if /1 = ¢ = 0 and g = h = 3. The topology of these
new examples are smaller than that of previously known examples.
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1. Introduction. Let X be a closed oriented Riemannian manifold of dimension
n > 3. The normalized Ricci flow on X is the following evolution equation:

g . 2 fxsgdﬂg
(1) 59 = —2Ricg + E(i)g,

volg

where Ricg is the Ricci curvature of the evolving Riemannian metric g, s4 is the scalar
curvature of the evolving Riemannian metric g, voly := [ g and dpyg is the volume
measure with respect to g. In [19], Hamilton introduced a nice class of solutions of
(1), which is so called non-singular. Recall that a solution {g(¢)}, t € [0,T), to (1)
is called non-singular if 7' = oo and the Riemannian curvature tensor Rm ) of g(t)
satisfies sup x o, 7y [ R1my(r)| < oo. In particular, Hamilton [19] classified non-singular
solutions to the normalized Ricci flow on a closed 3-manifold. After this pioneering
work of Hamilton in dimension 3, Fang, Y.G. Zhang and Z.Z. Zhang [10] studied the
properties of non-singular solutions to the normalized Ricci flow in higher dimensions.
In the beautiful article [10], among other things, it was proved that the existence of
the non-singular solution of the normalized Ricci flow forces a constraint on the Euler
characteritic x(X) and signature 7(X) of a given 4-manifold X. Based on this result,
they proposed the following conjecture:

CONJECTURE 1 (Conjecture 1.8 in [10]). Let X be a closed oriented smooth
Riemannian j-manifold with || X|| # 0 and \(X) < 0, where || X|| is the Gromov’s
simplicial volume of X and N(X) is the Perelman’s \ invariant. If there is a non-
singular solution to the normalized Ricci flow on X, then the Gromov-Hitchin-Thorpe
type inequality holds:

) 2(X) = 3Ir(X)| > 550

[1X11-
Here, the Perelman’s A invariant [23, 24] of X is a differential topological invariant
defined by A(X) = sup,er Ay (vol,)?/™, where R is the space of all Riemmannian
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metrics on X, Ay is the lowest eigenvalue of the elliptic operator 4A, + s,, and
A = d*d = —V - V is the positive-spectrum Laplace-Beltrami operator associated
with g. See also [20].

To the best of our knowledge, Conjecture 1 still remains open. However, in a joint
work with Baykur [6], the present author has shown that the converse of Conjecture
1 dose not hold in general. In fact, for ¢1,¢s > 0 which are sufficiently large positive
integers, and for g, h > 3 which are also sufficiently large positive odd integers, it was
proved in [6] that a connected sum of type

M = X#K3#(8, x Bp)#L1(S* x §3)#(,CP?

has the following properties, where X is a certain irreducible symplectic 4-manifold,
K3 is the K3 surface, ¥, x ¥ is the product of two Riemann surfaces 34, X5, of odd
genus and CP? is the complex projective plane with the reversed orientation:

1. M has ||M]| # 0 and satisfies the strict case of the inequality (2):

1

2x(M) = 3|r(M)] > WHMH-

2. M admits infinitely many distinct smooth structures for which Perelman’s A
invariant is negative and there is no non-singular solution to the normalized
Ricci flow for any initial metric.
In what follows, we call these properties 1 and 2 oo-property R for simplicity. Notice
that the existence of 4-manifolds with co-property R particularly implies that the con-
verse of Conjecture 1 does not hold in general. Namely, this tells us that the existence
and non-existence of non-singular solutions are not controled by the topological infor-
mation like (2). Moreover, these also provide us new examples of 4-manifold without
Einstein metrics because Einstein metric is an example of non-singular solution.
However, in the construction of these examples, we took sufficiently large integers
l1,02,g,h. Therefore, it is a natural question to ask whether there still exists a 4-
manifold with co-property R for small ¢1,¢5, g, h. The main purpose of the current
article is to give a positive answer to this question. Namely, we shall prove that there
still exist 4-manifolds with oco-property R even if /1 = o = 0 and g = h = 3. In
what follows, N, denotes a 4-manifold with fundamental group Z,, p odd, which is
obtained from the product L(p, 1) x S! of Lens space L(p, 1) and S! by performing a
O-surgery along {pt} x S'. The main result of the current article is as follows:

THEOREM A. For any positive integer 0 < n < 7, there exists an irreducible
symplectic 4-manifold X, which is homeomoprhic to
1. ACP?#(13 4+ n)CP2#(S* x S3) or
2. 3CP?*#(12 4+ n)CP%#N,, or
3. 3CP?4#(12 + n)CP?
and a connected sum X, #K3#(X3 x X3) has co-property R.

Acknowledgements. The author is grateful to the Max-Plank-Institut fiir
Mathematik in Bonn for its hospitality. This work is partially supported by the
Grant-in-Aid for Scientific Research (C), Japan Society for the Promotion of Science,
No. 20540090.

2. Preliminaries. In the following, for any closed 4-manifold X, b+ (X) (resp.
b= (X)) denotes the dimension of a maximal linear subspace of H?(X,R) on which
the cup product pairing is positive (resp. negative) definite. Notice that bo(X) =
b (X)+ b (X) and 7(X) = b7 (X) — b~ (X).
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2.1. Non-vanishing theorem of BFx. Let X be a closed smooth Riemannian
4-manifold X with b7(X) > 1. Recall that a spin®-structure s on X induces a pair
of spinor bundles S* which are Hermitian vector bundles of rank 2. A Riemannian
metric on X and a unitary connection A on the determinant line bundle £ induce
the twisted Dirac operator Dy : T'(ST) — T'(S7). The Seiberg-Witten monopole
equations [27] over X are the following non-linear partial differential equations for a
unitary connection A of £ and a spinor ¢ € T'(ST):

Dadp =0, Ff =iq(¢),

here FX is the self-dual part of the curvature of A and ¢ : ST — AT is a certain
natural real-quadratic map, where AT is the bundle of self-dual 2-forms. In what
follows, we denote the first Chern class of the complex line bundle £ associated with
S by C1 (5)

An element a € H%(X,Z)/torsion C H?(X,R) is called monopole class [21, 22] of
X if there exists a spin‘-structure s with ¢f(s) = a which has the property that the
corresponding Seiberg-Witten monopole equations have a solution for every Rieman-
nian metric on X. Here cf(s) is the image of ¢1(s) in H?(X,R). It is known [22, 16]
that the set of all monopole classes of X is finite.

There are several ways to detect the existence of monopole classes. For any closed
oriented smooth 4-manifold X with b7 (X) > 1, one can define the Seiberg-Witten
invariant [27] for any spin®-structure s by integrating a cohomology class on the moduli
space of solutions of the Seiberg-Witten monopole equations associated with s:

SWx : Spin(X) — Z,

where Spin(X) is the set of all spin®-structures on X. We call the first Chern class
c1(s) Seiberg-Witten basic class of X if SWx (s) # 0 for a spin®-structure s. In par-
ticular, Seiberg-Witten basic classes are monopole classes. Moreover, there is a so-
phisticated refinement of the idea of the construction of the Seiberg-Witten invariant,
which is due to Bauer and Furuta [3, 4, 5]. The invariant is called the stable coho-
motopy Seiberg-Witten invariant and denote it by BFx. This invariant detects the
presence of a monopole class by element of a certain complicated stable cohomotopy
group w4, (Pic(X);ind 1), where see [5] for the definition of the stable cohomotopy

group:
BFx(s) € m ;(Pic(X);ind 1).
It is known [16] that the non-triviality of the stable cohomotopy Seiberg-Witten in-
variants implies the existence of monopole classes.
To state a non-vanishing theorem of the stable cohomotopy Seiberg-Witten in-

variants, we need to fix some notations. For any spin®-structure s on X, we introduce
the following quantity:

i 1
6”(5) = 5 < 01(5) Ue; Uey, [X] >,

where e1,¢2, -+ , ¢ is a set of generators of H(X,Z) and s = b1(X). Here [X] is the
fundamental class of X; and < -, - > is the pairing between cohomology and homology.

DEFINITION 2 ([6]). A closed oriented smooth 4-manifold X with b*(X) > 2 is
called BF-admissible if the following holds:
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1. There is a spin®-structure 5 with SWx (s) = 1 (mod 2) and c3(s) = 2x(X) +
37(X)

2. b (X) — b1 (X) =3 (mod 4).

3. &% (s) =0 (mod 2) for any i, j.

Then, we have

THEOREM 3 ([18]). For i = 1,2,3, let X; be BF-admissible, closed oriented
smooth 4-manifolds. Then a connected sum #!_, X; has a non-trivial stable cohomo-
topy Seiberg- Witten invariant, where j = 2,3.

We shall use Theorem 3 to prove Theorem A.

2.2. Irreducible BF-admissible 4-manifolds. We need to find BF-admissible
4-manifolds to prove Theorem A. For this purpose, let us recall the following nice
result on the existence of irreducible symplectic 4-manifolds, where notice that it is
known [12] that any simply connected minimal symplectic 4-manifold is irreducible.

THEOREM 4 (Theorem A in [1]). Let a and b integers satisfying 2a + 3b > 0,
and a + b = 0 (mod 4). If, in addtion, b < —2 is satisfied. Then there exists a
simply connected minimal symplectic 4-manifold X with (x(X),7(X)) = (a,b) and
odd intersection form, except possibly for (a,b) equal to (7,-3), (11,-3), (13, -5), or
(15, 7).

Consider a symplectic 4-manifold with (x(X),7(X)) = (a,b) in Theorem 4. Since
X(X) =2-201(X)+ba(X) =24+bT(X)+b (X)) =aand 7(X) = b (X)-b"(X) =0
hold, we have b*(X) = o — 1 and b (X) = 8 — 1, where « := (a + b)/2 and
B := (a—b)/2. Since X has odd intersection form, the celebrated result of Freedman
[11] tells us that X is homeomorphic to

(o — 1)CP?#(B8 — 1)CP2.

Suppose now that b7 (X) = « — 1 = 3 (mod 4), i.e., a+b = 0 (mod 8). Then X
satisfies the second condition in Definition 2, where notice that by (X) = 0. Since X is
a symplectic 4-manifold with b (X) > 1, a famous result of Taubes [25] tells us that
X satisfies the first condition in Definition 2. In fact, we can take a canonical spin®-
structure compatible with a symplectic structure. The third condition in Definition
2 is also satisfied since we have b1(X) = 0. Hence we obtain the following existence
result of BF-admissible 4-manifolds:

COROLLARY 5. Let (a,b) be a pair of integers satisfying 2a +3b > 0, a + b =
0 (mod 8), and b < —2 is satisfied, except possibly for (a,b) equal to (11,-3),
(13,-5), or (15,=7). Set as a = (a+b)/2 and B = (a—1)/2. Then, there ex-
ists a BF-admissible, irreducible symplectic 4-manifold which is homeomorphic to
(a — 1)CP*#(3 — 1)CP2.

In the case of non-simply connected, we have a similar result as follows:

THEOREM 6 (Theorem B in [6]). Let a and b are integers satisfying 2a + 3b >
0, a+b =0 (mod 8), and b < —2 is satisfied, except possibly for (a,b) equal to
(11,-3), (13,=5), or (15,—7). Set as « = (a+b)/2 and B = (a — b)/2. Then, there
exists a BF-admissible, irreducible symplectic 4-manifold with fundamental group 7Z
which is homeomorphic to aCP2#BCP2#(S* x S3) and a BF-admissible, irreducible
symplectic 4-manifold with fundamental group Z, which is homeomorphic to (o —

1)CP24#(8 — 1)CPZ#N,.
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2.3. Obstruction to the non-singular solutions. We also use the following
result on estimates on Perelman’s A invariant, which was proved in [6]:

THEOREM 7. Form = 1,2,3, let X,;, be BF-admissible 4-manifolds. And assume
that >7_ (2x(X;) 4+ 37(X;)) > 0, where j = 2,3. Then, Perelman’s X invariant of a
connected sum Z := #]_, X, satisfies

(3) NZ) < —4n

where C(X;) := 2x(X;) + 37(X;).

We should notice that the first non-trivial bound for Perelman’s A invariant of
4-manifold was proved in an interesting article [9] by using Seiberg-Witten monopole
equations.

We also have the following obstruction to the existence of non-singular solution
to the normalized Ricci flow, which was also proved in [6]:

THEOREM 8. Fori =1,2,3, let X; be BF-admissible 4-manifolds. Assume also
that >1_, (2x(X;) + 37(X;)) > 0 is satisfied, where j = 2,3. Then, on a connected
sum Z = #LIXZ-, there is no non-singular solution to the normalized Ricci flow for
any initial metric if

J

(4) 120/ - 1) > > (20(X0) +37(X0) ).

i=1

3. Proof of Theorem A.

3.1. Case 1.

LEMMA 9. For any pair (k,£) of positive integers satisfying
(5) —7<5k—-{¢<8, 5{—k>-103,

the following inequalities are satisfied simultaneously:

12
(6) 5£—k+88+8(2—m)>0,
k- 9 = _
(7) 5 €+8( 12967T2) > 8,
8) 5k — £ < 8.

Proof. The inequality (7) is equivalent to
12
9) 5k—£>—8(1—m).
Since m > 3 holds, we get

1 12 o1 12
129672 1296-32°
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Therefore,

12 12
1 —8(1- =) < —8(1- ) < -T.
(10) 8 129672 <8 129632 <1
This tells us that (9) always holds if —7 < 5k — £ is satisfied. Hence both (7) and (8)
are satisfied under —7 < 5k — ¢ < 8. Similarly, we also have

12 12
—88 — 8(2 — 7) — 96— 8(1 - 7) —103.
120672 129672) <

Therefore (6) holds if 5¢ — k > —103 is satisfied. O

Let Yy be a Kummer surface with an elliptic fibration Yy — CP!. Let Y,, be
obtained from Yy by performing a logarithmic transformation of order 2m+-1 on a non-
singular fiber of Y;. Then, Y,, are simply connected spin manifolds with b*(Y,,) = 3
and b~ (Y,,) = 19. By the Freedman classification [11], Y, must be homeomorphic
to a K3 surface. And Y,, is a Kéhler surface with b*(Y;,) > 1 and hence a result of
Witten [27] tells us that £c¢1(Y;,) are monopole classes of Y, for each m. We have
c1(Ym) = 2mf, where § is Poincaré dual to the multiple fiber which is introduced by
the logarithmic transformation. See also [2]. Notice also that Y, is a BF-admissible
4-manifold.

On the other hand, let Xj, be any 4-manifold which is homeomorphic to
kKCP2#(CP24(S* x S3). Then, we have 2x(Xp¢) + 37(Xge) = 5k — £ and
2X(Xk,e) — 37(Xk,¢) = 5¢ — k. Consider the following connected sum

(11) M (m) = Xy oY #(Sg x Sn).

Then we also have

(12) 2x (M, (m)) + 3r(Myy (m)) = 5k — £+ 4(g — 1)(h — 1) =8,

(13) 2 (M (m)) = 3r(MYi(m)) = 50 — k + 88+ 4(g — 1)(h — 1).

LEMMA 10. Consider the connected sum (11) in the case where g = h =3, i.e.,
Mécf(m) Then the following inequality holds if both (6) and (7) are satisfied:

1
(14) 20(My5(m)) = 37 (M5 (m)] > 155l My (m)]| £ 0.
Similarly, the following holds if (8) is satisfied:
(15) C(Xp,e) + C(Ym) + C(83 x E3) < 24,

where C(X) := 2x(X) + 37(X) for any closed 4-manifold X .

Proof. Notice that we have C(Xy ) = 5k — £, C(K3) = 0 and C(X3 x X3) =
4-2-2 = 16. Therefore, (15) is equivalent to 5k — ¢ + 16 < 24. This is nothing
but (8). On the other hand, the simplicial volume of any connected sum M;# Mo
satisfies ||[M1#Ms|| = ||My|| + ||Mz||. See [7, 13]. Tt is known that [7, 13] that any
simply connected manifold has vanishing simplicial volume. In particular, we have
[|Yin|| = 0. Tt is also [13] known that the simplicial volume vanishes for any closed
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manifold whose fundamental group is amenable. Since it is known that any abelian
group is amenable, we have || X}, || = 0 because the fundamental group of Xy ¢ is Z.
Moreover, the following result is proved in [8]:

13 x By = 24(g = 1)(h = 1).

Hence, we have ||M}2 (m)|] = || Xp.|| + [[Von]| + ||S5 x Ts]| = 24-2- 2. Tn particular,
||M§§(m)|| # 0. This implies

24 12
S * = 4= 8.
12967r2|| 31( m)ll = 129672 129672

By (12), we also have 2y (M (m))+37(My’s (m)) = 5k—+4-2.2—8 = 5k—(+8-2—8.
Therefore,

1
2(MEL () + 37 (M (m) > o [ MEE ()

is equaivalent to

12
Bk—(+8:2-8> 038

namely,

5k-é+8(2—$§w2) > 8

Notice that this is the inequality (7). Similarly, by (13), we also have 2y/(Mj; k, e(m)) -
37(My5(m)) =50~k +88+4-2-2=>5k—(+88+8-2. Hence,

DM () — Br(MES (m)) > | [ME ()]
is equivalent to
50— k488482 —2
120672°
namely,
5€—k+88+8(2—m) >0

This is nothing but the inequality (6). Therefore, (14) holds if both (6) and (7) are
satisfied. O

Theorem 6, Lemma 9 and Lemma 10 imply
PROPOSITION 11. Let (a,b) be any pair of integers satisfying

(16) a+b=0 (mod 8), b< -2, 0<2a+3b<8.

Let k = (a+b)/2 and £ = (a —b)/2. Then there exits a BF-admissible, irreducible
symplectic 4-manifold Xy, with fundamental group 7Z which is homeomorphic to
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kCP2#(CP?#(S" x S%). And the connected sum My (m) := Xp, (#Ym# (D3 x T3)
satisfies both (14) and (15) for each k, £, m.

Proof. First of all, notice that

b -b —-b b
Y Gl ) Cleek) NP SR VAV R Y ) e ) NP R
2 2 2 2
Therefore, the condition (5) is equivalent to
(17) —7<2 +3b<8, 2a—3b>—103.

Then, Lemma 9 and Lemma 10 tell us that, if (17) holds, then, for any closed 4-
manifold X}, o which is homeomorphic to k(CPQ#fm#(S 1% §3), the connected sum
szzf(m) satisfies both (14) and (15).

On the other hand, Theorem 6 tells us that, except possibly for (a,b) equal to
(11,-3), (13,-5), or (15, —T7), for any pair (a,b) of integers satisfying

(18) 2a4+3b>0, a+b=0 (mod 8),b < -2,

there exists a BF-admissible, irreducible symplectic 4-manifold X}, which is home-
omorphic to kCP?#(CP2#(S! x S3). Notice that, under 2a +3b > 0 and b < —2,
2a — 3b > —103 always holds because 2a — 3b > 2a + 3b > 0. Therefore, both
(17) and (18) hold if (16) is satisfied. Notice also that 2a + 3b > 9 holds for
(a,b) = (11,-3), (13, —5), (15, —=7). The desired result now follows. O

We are now in a position to prove the Case 1 in Theorem A. First of all, for any
integer 0 < n <7, we set

(19) a=17+n, b=-9—n.

In particular, we have a+b = 8 and 2a+3b = 7—n. Hence we have a+b =0 (mod 8),
0<2a+3b=7—n < 8 and b < —2. Notice also that

(a+D) (a —b)
5 , 5 3+n

I{;:

Then, Proposition 11 tells us that there exists a BF-admissible, irreducible symplec-
tic 4-manifold X4 13+, which is homeomorphic to 4CP?#(13 + n)CP2#(S* x S3)
and M;’;H"(m) = Xa134n#Ym#(X3 x X3) satisfies both (14) and (15). Notice
that M;P} 3+"(m) satisfies the strict Gromov-Hitchin-Thorpe type inequality by (14).
Moreover, Theorem 8 in the case where j = 3 tells us that there is no non-singular
solution to the normalized Ricci flow on M;}lgl 37 for any initial metric under (15),
here notice that X4,13+n, Y and (X3 x X3) are all BF-admissible.

On the other hand, we have C'(X4,134n)+C (V) +C (X3 x X3) =5k —(+0+16 =
2a 4+ 3b+ 16 = 23 —n > 0. Therefore, we obtain the following bound on Perelman’s
A invariant by (3):

MMER+(m)) < —4m/2(23 — 1) < 0.

Finally, for each n, we shall show that the following sequence

(20) {M5577 (M) }men
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contains infinitely many diffeo types. First of all, notice that the connected sum
X4,13+n has non-trivial stable cohomotopy Seiberg-Witten invariants by Theorem 3.
In particular, Mgé 2Jr"(m) has monopole classes which are given by

(21) :tCl(X4713+n) + C1 (Ym) + C1 (23 X 23),

where ¢1(X) denotes the first Chern class of the canonical line bundle of a closed
symplectic 4-manifold X and we have ¢;(Y;,) = 2mf. Suppose now that the sequence
(20) contains only finitely many diffeomorphism types. Namely, suppose that there
exists a positve integer mg such that M;’;Hn(mo) is diffemorphic to M;’;H"(m) for
any integer m > mg. Then, by taking m — oo, we see that the set of monopole
classes of the 4-manifold M;:;Hn(mo) is unbounded by (21). However, this is a
contradiction because the set of monopole classes of any given smooth 4-manifold
with b+ > 1 must be finite. Therefore, the sequence (20) must contain infinitely many
diffeomorphism types. For any m, since Mglgl 3+n(m) is homeomorphic to M(n) :=
ACP?#(13 + n)CP2# (St x S?)#K3# (X3 x X3), we are able to conclude that M (n)
has oco-property R as desired. Case 1 in Theorem A now follows.

3.2. Case 2. In this subsection, we shall prove Case 2 in Theorem A. The
strategy of the proof in this case is similar to that of Case 1.

LEMMA 12. For any pair (k,0) of positive integers satisfying
(22) —11<5k—-¥¢ <4, 5{—k > —107,

the following conditions are satisfied simultaneously:

12

(23) 5£—k+92+8(2—m)>0,
12

24 k- 25— )4

(24) g “8( 12967r2>>’

(25) 5k — € < 4.

Proof. One can check that

12
129672

Hence, if 5¢ — k > —107 holds, (23) is also satisfied. Similarly, we have

92— 8(2 ) < —107.

12
129672

Hence, (24) holds if 5k — ¢ > —11. This tells us that both (24) and (25) are satisfied
under —11 <5k -/ < 4.0

Let Zy ¢ be any 4-manifold which is homeomorphic to kCP?#(CP2?#N,,. Then,
we have

4—8(2 )<—11.

(26) 2X(Zk7g) + 3T(Zk7g) =bk—{(+4, 2X(Zk,l) — 3T(Zkﬁz) =5/ —k+4.
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Consider the following connected sum
(27) Lgn(m) = Zi#Ym##(Sn x Sy),
where Y;, is the homotopy K3 surface used in Section 3.1. Then we also have

(28) (LY, (m)) + 37(Lby (m)) = 5k — £+ 4(g — 1)(h — 1) — 4,

(29) 2x (LY (m)) = 37(Lby (m)) =50 — k +4(g — 1)(h — 1) + 92.

LEMMA 13. Consider the connected sum (27) in the case wher g = h = 3, i.e.,
Lg:g (m). Then the following inequality holds if both (28) and (24) are satisfied:

1
(30) 2x(Lya(m) = 3|7(Lyzs(m))| > oo |Lya(m)]| # 0.
Similarly, the following holds if (25) is satisfied:

(31) C(Zig) + C(Yi) + C(D3 x T3) < 24.

Proof. We have C(Zy¢) =5k —£¢+4, C(Y,,) =0and C(X3 x X3) =4-2-2 = 16.
Therefore, (31) is equivalent to 5k — ¢+ 4+ 16 < 24. This is (25). On the other hand,
as the proof of Lemma 10, we have ||L§§(m)|| = | Zk o) |+ Y| +||X3 x X3|| = 24-2-2,
where notice that || Zy ¢|| = 0 holds because the fundamental group of Z 4 is Z, and
hence this is amenable. From the above, we get

1 "y 24 12
Lk - 4= 8.
2062 sl = 155524 = To96,2

In particular, ||L§§(m)|| # 0. By (28), we also have 2x(L§:i(m)) + 3T(L§:i(m)) =
5k—0+4-2-2—4=5k—/{¢+8-2— 4. Therefore, ‘ ‘

1

o (LK Ikt Ikt
X(L33(m)) + 37(Ly5(m)) > 712967#“ 3.5(m)|
is equivalent to
12
bk—0+8-2—4>—-8
+ ~ 129672

namely,

12
eers(z- 12 Yoy
5 {+8 12962 >

This is the inequality (24). Similarly, by (29), we also have 2)((L§:§(m)) -
37(Ly5(m)) =50 —k+4-2-2+92="5(—k+92+8-2. Hence,

) ) 1 ket
2)((L3)3(m)) - 3T(L3,3(m)) > m||l/33(m)||
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is equivalent to

12
namely,
Chroes(a- 12 )
54 +92+8 12962 >0

This is nothing but (23). Therefore, (30) holds if both (23) and (24) are satisfied. O
By Theorem 6, Lemma 12 and Lemma 13, we obtain

PROPOSITION 14. Let (a,b) be any pair of integers satisfying
(32) a+b=0 (mod 8), b< -2, 0<2a+3b<8.

And let

a+b a—>b
-1, /=

’ 2

Then there exits a BF-admissible, irreducible symplectic 4-manifold Zy, o with funda-
mental group Z,, which is homeomorphic to kCP*#LCP?#N,, and the connected sum
L;’g(m) = Zp o #Ym# (X3 x X3) satisfies (30) and (31) for each k, ¢, m.

Proof. First of all, notice that

5k—e=5(@—1)—((a;b)—1)=2a+3b—4,

k= —1.

5e—k=5((“;b)—1)—( — -1 =2a-3b—4.

Therefore, the condition (22) is equivalent to
(33) ~7<2a+3b<8, 2a—3b>—103.

By Lemma 12 and Lemma 13, if (33) holds, for any closed 4-manifold Z ¢ which
is homeomorphic to kCP?#(CP2#N,, the connected sum Lg:g(m) satisfies (30) and
(31).

Moreover, Theorem 6 tells us that, except possibly for (a,b) equal to (11,—3),
(13, =5), or (15, —7), for any pair (a,b) of integers satisfying

(34) 2a+3b>0, a+b=0 (mod 8),b < —2,

there exists a BF-admissible, irreducible symplectic 4-manifold Zj ; which is home-
omorphic to kCP?#(CP2#N,. Notice that 2a — 3b > —103 always holds under
2a +3b > 0 and b < —2. Therefore, both (33) and (34) hold if (32) is satis-
fied. The desired result now follows, where notice that 2a + 3b > 9 holds for
(a,b) = (11,-3),(13,-5),(15,=7). 0O

We prove the Case 2 of Theorem A as follows: For any integer 0 < n < 7,
let @ = 17+ n and b = —9 — n. In particular, we have a + b = 8 = 0 (mod 8),
0<2a+3b=7T—n<8and b < —-2. We also have

(a+0) (a—10b)
2 2

k= —1=3, (= —1=12+n.
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Then, Proposition 14 tells us that there exists a BF-admissible, irreducible sym-
plectic 4-manifold Z3 194, which is homeomorphic to 3CP?#(12 + n)CP2#N,,, and
Lg:éﬂn(m) = Z3124nF#Y (M)#(X3 x X3) satisfies (30) and (31). The connected sum
L§:§2+"(m) satisfies the strict Gromov-Hitchin-Thorpe type inequality by (14). And
Theorem 8 implies that we have no non-singular solution to the normalized Ricci
flow on Lg:éﬂn(m) for any initial metric under (31). On the other hand, we have
C(Z3124n) + C(Ym) + C(X3 x ¥3) =7 —n+16 = 23 —n > 0. Therefore, by (3), we
obtain

L3577 (m)) < —4m/2(23 —n) < 0.

Finally, as the proof of Case 1 above, for each n, we are able to show that
{L§:§2+"(m)}meN contains infinitely many diffeo types by taking m — oo. For

any m, notice that L3;*""(m) is homeomorphic to L(n) := 3CP2#(12 +
n)CP2# N, # K34 (X3 x X3). Therefore, we are able to conclude that L(n) has oo-
property R as desired.

3.3. Case 3. Finally, we shall prove Case 3 of Theorem A. Let P, be any
4-manifold which is homeomorphic to kCP2#¢CP2. Then, we have

(35) 2X(Pk7g) + 3T(Pk7g) =5k —/(+4, QX(P;CJ) — 3T(Pk)g) =50 —k+4.

Notice that we have QX(P;CJ)—I—?)T(P;C)@) = 2X(Zk74)+3T(Z;€)g) and 2X(Pk7g)—3T(Pk)g) =
2x(Zk,e) — 37(Zk,e) by (26) and (35). Consider the following connects sum

Gy (m) i= P y#Ym# (S x 5y),

where Y,,, is again the homotopy K3 surface used as before. Then, by using Corollary
5 instead of Theorem 6 and using the same argument with that of Proposition 14, we
are able to obtain

PROPOSITION 15. Let (a,b) be any pair of integers satisfying
(36) a+b=0 (mod 8), b< -2, 0<2a+3b<8.

Let

a—i—b_l7 K:a_b—l.

k=
2

Then, there exits a BF-admissible, irreducible symplectic 4-manifold Py ¢ which is
homeomorphic to kCP?#¢CP? and for each k,{,m, Ggg(m) = P o#Ym# (X3 x X3)
satisfies

(37) 2(G5m) = 3G > TGSl £ 0,

(38) C(Pe) + C(Ym) + C (S5 x 53) < 24

Case 3 in Theorem A follows easily from Proposition 15. As before, for any integer
0<n<7leta=174+n and b = —9 —n. Of course, we have a + b = 0 (mod 8),
0<2a+3b=7T—n<8and b< -2,k =3 and { =12+ n. Then, Proposition 15
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implies that there exists a BF-admissible, irreducible symplectic 4-manifold P; 124y,
which is homeomorphic to 3CP?#(12 + n)CP2, and

G§Zé2+n(m) = P3,12+n#y(m)#(23 X 23)

satisfies (37) and (38). Hence, Gg:éﬂn (m) satisfies the strict Gromov-Hitchin-Thorpe
type inequality, and there is no non-singular solution to the normalized Ricci flow
on G§:§2+"(m) for any initial metric by Theorem 8. We are also able to show the
following by (3):

AG557 " (m)) < —47m/2(23 —n) < 0.

Finally, by considering the sequence {G§:§2+n(m)}meN, we conclude that 3CP?#(12+
n)CP2# K34 (X3 x X3) has co-property R for each n.
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