SMALL FOUR-MANIFOLDS WITHOUT NON-SINGULAR SOLUTIONS OF NORMALIZED RICCI FLOWS*

MASASHI ISHIDA[†]

Abstract. It is known [6] that connected sums $X \# K3 \# (\Sigma_g \times \Sigma_h) \# \ell_1(S^1 \times S^3) \# \ell_2 \overline{\mathbb{C}P^2}$ satisfy the Gromov-Hitchin-Thorpe type inequality, but can not admit non-singular solutions of the normalized Ricci flow for any initial metric, where $\Sigma_g \times \Sigma_h$ is the product of two Riemann surfaces of odd genus, $\ell_1, \ell_2 > 0$ are sufficiently large positive integers, g, h > 3 are also sufficiently large positive odd integers, and X is a certain irreducible symplectic 4-manifold. These exmples are closely related with a conjecture of Fang, Zhang and Zhang [10]. In the current article, we point out that there still exist 4-manifolds with the same property even if $\ell_1 = \ell_2 = 0$ and g = h = 3. The topology of these new examples are smaller than that of previously known examples.

Key words. Four-manifold, Ricci flow, non-singular solution.

AMS subject classifications. 53C44, 57R57, 53C25.

1. Introduction. Let X be a closed oriented Riemannian manifold of dimension $n \geq 3$. The normalized Ricci flow on X is the following evolution equation:

(1)
$$\frac{\partial}{\partial t}g = -2Ric_g + \frac{2}{n} \left(\frac{\int_X s_g d\mu_g}{vol_g}\right) g,$$

where Ric_g is the Ricci curvature of the evolving Riemannian metric g, s_g is the scalar curvature of the evolving Riemannian metric $g, vol_g := \int_X d\mu_g$ and $d\mu_g$ is the volume measure with respect to g. In [19], Hamilton introduced a nice class of solutions of (1), which is so called non-singular. Recall that a solution $\{g(t)\}$, $t \in [0,T)$, to (1) is called non-singular if $T = \infty$ and the Riemannian curvature tensor $Rm_{g(t)}$ of g(t) satisfies $\sup_{X \times [0,T)} |Rm_{g(t)}| < \infty$. In particular, Hamilton [19] classified non-singular solutions to the normalized Ricci flow on a closed 3-manifold. After this pioneering work of Hamilton in dimension 3, Fang, Y.G. Zhang and Z.Z. Zhang [10] studied the properties of non-singular solutions to the normalized Ricci flow in higher dimensions. In the beautiful article [10], among other things, it was proved that the existence of the non-singular solution of the normalized Ricci flow forces a constraint on the Euler characteritic $\chi(X)$ and signature $\tau(X)$ of a given 4-manifold X. Based on this result, they proposed the following conjecture:

Conjecture 1.8 in [10]). Let X be a closed oriented smooth Riemannian 4-manifold with $||X|| \neq 0$ and $\overline{\lambda}(X) < 0$, where ||X|| is the Gromov's simplicial volume of X and $\overline{\lambda}(X)$ is the Perelman's $\overline{\lambda}$ invariant. If there is a non-singular solution to the normalized Ricci flow on X, then the Gromov-Hitchin-Thorpe type inequality holds:

(2)
$$2\chi(X) - 3|\tau(X)| \ge \frac{1}{1296\pi^2}||X||.$$

Here, the Perelman's $\overline{\lambda}$ invariant [23, 24] of X is a differential topological invariant defined by $\overline{\lambda}(X) = \sup_{g \in \mathcal{R}_X} \lambda_g(vol_g)^{2/n}$, where \mathcal{R}_X is the space of all Riemmannian

^{*}Received September 26, 2012; accepted for publication April 18, 2013.

[†]Department of Mathematics, Graduate School of Science, Osaka University, 1-1, Machikaneyama, Toyonaka, Osaka, 560-0043, Japan (ishida@math.sci.osaka-u.ac.jp).

metrics on X, λ_g is the lowest eigenvalue of the elliptic operator $4\Delta_g + s_g$, and $\Delta = d^*d = -\nabla \cdot \nabla$ is the positive-spectrum Laplace-Beltrami operator associated with g. See also [20].

To the best of our knowledge, Conjecture 1 still remains open. However, in a joint work with Baykur [6], the present author has shown that the converse of Conjecture 1 dose not hold in general. In fact, for $\ell_1, \ell_2 > 0$ which are sufficiently large positive integers, and for g, h > 3 which are also sufficiently large positive odd integers, it was proved in [6] that a connected sum of type

$$M := X \# K3 \# (\Sigma_g \times \Sigma_h) \# \ell_1(S^1 \times S^3) \# \ell_2 \overline{\mathbb{C}P^2}$$

has the following properties, where X is a certain irreducible symplectic 4-manifold, K3 is the K3 surface, $\Sigma_g \times \Sigma_h$ is the product of two Riemann surfaces Σ_g, Σ_h of odd genus and $\overline{\mathbb{C}P^2}$ is the complex projective plane with the reversed orientation:

1. M has $||M|| \neq 0$ and satisfies the strict case of the inequality (2):

$$2\chi(M) - 3|\tau(M)| > \frac{1}{1296\pi^2}||M||.$$

2. M admits infinitely many distinct smooth structures for which Perelman's λ invariant is negative and there is no non-singular solution to the normalized Ricci flow for any initial metric.

In what follows, we call these properties 1 and 2 ∞ -property \mathcal{R} for simplicity. Notice that the existence of 4-manifolds with ∞ -property \mathcal{R} particularly implies that the converse of Conjecture 1 does not hold in general. Namely, this tells us that the existence and non-existence of non-singular solutions are not controlled by the topological information like (2). Moreover, these also provide us new examples of 4-manifold without Einstein metrics because Einstein metric is an example of non-singular solution.

However, in the construction of these examples, we took sufficiently large integers ℓ_1, ℓ_2, g, h . Therefore, it is a natural question to ask whether there still exists a 4manifold with ∞ -property \mathcal{R} for small ℓ_1, ℓ_2, g, h . The main purpose of the current article is to give a positive answer to this question. Namely, we shall prove that there still exist 4-manifolds with ∞ -property \mathcal{R} even if $\ell_1 = \ell_2 = 0$ and g = h = 3. In what follows, N_p denotes a 4-manifold with fundamental group \mathbb{Z}_p , p odd, which is obtained from the product $L(p,1) \times S^1$ of Lens space L(p,1) and S^1 by performing a 0-surgery along $\{pt\} \times S^1$. The main result of the current article is as follows:

THEOREM A. For any positive integer $0 \le n \le 7$, there exists an irreducible symplectic 4-manifold X_n which is homeomorphic to 1. $4\mathbb{C}P^2\#(13+n)\overline{\mathbb{C}P^2}\#(S^1\times S^3)$ or 2. $3\mathbb{C}P^2\#(12+n)\overline{\mathbb{C}P^2}\#N_p$ or

- 3. $3\mathbb{C}P^2\#(12+n)\overline{\mathbb{C}P^2}$

and a connected sum $X_n \# K3 \# (\Sigma_3 \times \Sigma_3)$ has ∞ -property \mathcal{R} .

Acknowledgements. The author is grateful to the Max-Plank-Institut für Mathematik in Bonn for its hospitality. This work is partially supported by the Grant-in-Aid for Scientific Research (C), Japan Society for the Promotion of Science, No. 20540090.

2. Preliminaries. In the following, for any closed 4-manifold X, $b^+(X)$ (resp. $b^{-}(X)$) denotes the dimension of a maximal linear subspace of $H^{2}(X,\mathbb{R})$ on which the cup product pairing is positive (resp. negative) definite. Notice that $b_2(X) =$ $b^+(X) + b^-(X)$ and $\tau(X) = b^+(X) - b^-(X)$.

2.1. Non-vanishing theorem of BF_X . Let X be a closed smooth Riemannian 4-manifold X with $b^+(X) > 1$. Recall that a spin^c-structure $\mathfrak s$ on X induces a pair of spinor bundles S^{\pm} which are Hermitian vector bundles of rank 2. A Riemannian metric on X and a unitary connection A on the determinant line bundle $\mathcal L$ induce the twisted Dirac operator $\mathcal D_A:\Gamma(S^+)\longrightarrow \Gamma(S^-)$. The Seiberg-Witten monopole equations [27] over X are the following non-linear partial differential equations for a unitary connection A of $\mathcal L$ and a spinor $\phi \in \Gamma(S^+)$:

$$\mathcal{D}_A \phi = 0, \ F_A^+ = iq(\phi),$$

here F_A^+ is the self-dual part of the curvature of A and $q: S^+ \to \wedge^+$ is a certain natural real-quadratic map, where \wedge^+ is the bundle of self-dual 2-forms. In what follows, we denote the first Chern class of the complex line bundle $\mathcal L$ associated with $\mathfrak s$ by $c_1(\mathfrak s)$.

An element $\mathfrak{a} \in H^2(X,\mathbb{Z})/\text{torsion} \subset H^2(X,\mathbb{R})$ is called monopole class [21, 22] of X if there exists a spin^c-structure \mathfrak{s} with $c_1^{\mathbb{R}}(\mathfrak{s}) = \mathfrak{a}$ which has the property that the corresponding Seiberg-Witten monopole equations have a solution for every Riemannian metric on X. Here $c_1^{\mathbb{R}}(\mathfrak{s})$ is the image of $c_1(\mathfrak{s})$ in $H^2(X,\mathbb{R})$. It is known [22, 16] that the set of all monopole classes of X is finite.

There are several ways to detect the existence of monopole classes. For any closed oriented smooth 4-manifold X with $b^+(X) > 1$, one can define the Seiberg-Witten invariant [27] for any spin^c-structure \mathfrak{s} by integrating a cohomology class on the moduli space of solutions of the Seiberg-Witten monopole equations associated with \mathfrak{s} :

$$SW_X: Spin(X) \longrightarrow \mathbb{Z},$$

where Spin(X) is the set of all spin^c-structures on X. We call the first Chern class $c_1(\mathfrak{s})$ Seiberg-Witten basic class of X if $SW_X(\mathfrak{s}) \neq 0$ for a spin^c-structure \mathfrak{s} . In particular, Seiberg-Witten basic classes are monopole classes. Moreover, there is a sophisticated refinement of the idea of the construction of the Seiberg-Witten invariant, which is due to Bauer and Furuta [3, 4, 5]. The invariant is called the stable cohomotopy Seiberg-Witten invariant and denote it by BF_X . This invariant detects the presence of a monopole class by element of a certain complicated stable cohomotopy group $\pi^0_{\mathbb{T},\mathcal{U}}(\operatorname{Pic}(X);\operatorname{ind} l)$, where see [5] for the definition of the stable cohomotopy group:

$$BF_X(\mathfrak{s}) \in \pi^0_{\mathbb{T},\mathcal{U}}(\operatorname{Pic}(X); \operatorname{ind} l).$$

It is known [16] that the non-triviality of the stable cohomotopy Seiberg-Witten invariants implies the existence of monopole classes.

To state a non-vanishing theorem of the stable cohomotopy Seiberg-Witten invariants, we need to fix some notations. For any spin^c-structure \mathfrak{s} on X, we introduce the following quantity:

$$\mathfrak{S}^{ij}(\mathfrak{s}) := \frac{1}{2} < c_1(\mathfrak{s}) \cup \mathfrak{e}_i \cup \mathfrak{e}_j, [X] >,$$

where $\mathfrak{e}_1, \mathfrak{e}_2, \dots, \mathfrak{e}_s$ is a set of generators of $H^1(X, \mathbb{Z})$ and $s = b_1(X)$. Here [X] is the fundamental class of X_i and $\langle \cdot, \cdot \rangle$ is the pairing between cohomology and homology.

Definition 2 ([6]). A closed oriented smooth 4-manifold X with $b^+(X) \ge 2$ is called BF-admissible if the following holds:

- 1. There is a spin^c-structure \mathfrak{s} with $SW_X(\mathfrak{s}) \equiv 1 \pmod{2}$ and $c_1^2(\mathfrak{s}) = 2\chi(X) + 3\tau(X)$
- 2. $b^+(X) b_1(X) \equiv 3 \pmod{4}$.
- 3. $\mathfrak{S}^{ij}(\mathfrak{s}) \equiv 0 \pmod{2}$ for any i, j.

Then, we have

THEOREM 3 ([18]). For i = 1, 2, 3, let X_i be BF-admissible, closed oriented smooth 4-manifolds. Then a connected sum $\#_{i=1}^j X_i$ has a non-trivial stable cohomotopy Seiberg-Witten invariant, where j = 2, 3.

We shall use Theorem 3 to prove Theorem A.

2.2. Irreducible BF-admissible 4-manifolds. We need to find BF-admissible 4-manifolds to prove Theorem A. For this purpose, let us recall the following nice result on the existence of irreducible symplectic 4-manifolds, where notice that it is known [12] that any simply connected minimal symplectic 4-manifold is irreducible.

THEOREM 4 (Theorem A in [1]). Let a and b integers satisfying $2a + 3b \ge 0$, and $a + b \equiv 0 \pmod{4}$. If, in addition, $b \le -2$ is satisfied. Then there exists a simply connected minimal symplectic 4-manifold X with $(\chi(X), \tau(X)) = (a, b)$ and odd intersection form, except possibly for (a, b) equal to (7, -3), (11, -3), (13, -5), or (15, -7).

Consider a symplectic 4-manifold with $(\chi(X), \tau(X)) = (a, b)$ in Theorem 4. Since $\chi(X) = 2 - 2b_1(X) + b_2(X) = 2 + b^+(X) + b^-(X) = a$ and $\tau(X) = b^+(X) - b^-(X) = b$ hold, we have $b^+(X) = \alpha - 1$ and $b^-(X) = \beta - 1$, where $\alpha := (a + b)/2$ and $\beta := (a - b)/2$. Since X has odd intersection form, the celebrated result of Freedman [11] tells us that X is homeomorphic to

$$(\alpha - 1)\mathbb{C}P^2 \# (\beta - 1)\overline{\mathbb{C}P^2}.$$

Suppose now that $b^+(X) = \alpha - 1 \equiv 3 \pmod{4}$, i.e., $a + b \equiv 0 \pmod{8}$. Then X satisfies the second condition in Definition 2, where notice that $b_1(X) = 0$. Since X is a symplectic 4-manifold with $b^+(X) > 1$, a famous result of Taubes [25] tells us that X satisfies the first condition in Definition 2. In fact, we can take a canonical spin^c-structure compatible with a symplectic structure. The third condition in Definition 2 is also satisfied since we have $b_1(X) = 0$. Hence we obtain the following existence result of BF-admissible 4-manifolds:

COROLLARY 5. Let (a,b) be a pair of integers satisfying $2a+3b \geq 0$, $a+b \equiv 0 \pmod 8$, and $b \leq -2$ is satisfied, except possibly for (a,b) equal to (11,-3), (13,-5), or (15,-7). Set as $\alpha=(a+b)/2$ and $\beta=(a-b)/2$. Then, there exists a BF-admissible, irreducible symplectic 4-manifold which is homeomorphic to $(\alpha-1)\mathbb{C}P^2\#(\beta-1)\mathbb{C}P^2$.

In the case of non-simply connected, we have a similar result as follows:

THEOREM 6 (Theorem B in [6]). Let a and b are integers satisfying $2a + 3b \ge 0$, $a + b \equiv 0 \pmod{8}$, and $b \le -2$ is satisfied, except possibly for (a,b) equal to (11,-3), (13,-5), or (15,-7). Set as $\alpha = (a+b)/2$ and $\beta = (a-b)/2$. Then, there exists a BF-admissible, irreducible symplectic 4-manifold with fundamental group \mathbb{Z} which is homeomorphic to $\alpha \mathbb{C}P^2 \# \beta \mathbb{C}P^2 \# (S^1 \times S^3)$ and a BF-admissible, irreducible symplectic 4-manifold with fundamental group \mathbb{Z}_p which is homeomorphic to $(\alpha - 1)\mathbb{C}P^2 \# (\beta - 1)\mathbb{C}P^2 \# N_p$.

2.3. Obstruction to the non-singular solutions. We also use the following result on estimates on Perelman's $\bar{\lambda}$ invariant, which was proved in [6]:

THEOREM 7. For m=1,2,3, let X_m be BF-admissible 4-manifolds. And assume that $\sum_{i=1}^{j} (2\chi(X_i) + 3\tau(X_i)) > 0$, where j=2,3. Then, Perelman's $\bar{\lambda}$ invariant of a connected sum $Z := \#_{i=1}^{j} X_i$ satisfies

(3)
$$\bar{\lambda}(Z) \le -4\pi \sqrt{2\sum_{i=1}^{j} C(X_i)} < 0,$$

where $C(X_i) := 2\chi(X_i) + 3\tau(X_i)$.

We should notice that the first non-trivial bound for Perelman's $\bar{\lambda}$ invariant of 4-manifold was proved in an interesting article [9] by using Seiberg-Witten monopole equations.

We also have the following obstruction to the existence of non-singular solution to the normalized Ricci flow, which was also proved in [6]:

Theorem 8. For i=1,2,3, let X_i be BF-admissible 4-manifolds. Assume also that $\sum_{i=1}^{j} (2\chi(X_i) + 3\tau(X_i)) > 0$ is satisfied, where j=2,3. Then, on a connected sum $Z := \#_{i=1}^{j} X_i$, there is no non-singular solution to the normalized Ricci flow for any initial metric if

(4)
$$12(j-1) > \sum_{i=1}^{j} \left(2\chi(X_i) + 3\tau(X_i) \right).$$

3. Proof of Theorem A.

3.1. Case 1.

Lemma 9. For any pair (k, ℓ) of positive integers satisfying

(5)
$$-7 \le 5k - \ell < 8, \ 5\ell - k \ge -103,$$

the following inequalities are satisfied simultaneously:

(6)
$$5\ell - k + 88 + 8\left(2 - \frac{12}{1296\pi^2}\right) > 0,$$

(7)
$$5k - \ell + 8\left(2 - \frac{12}{1296\pi^2}\right) > 8,$$

$$(8) 5k - \ell < 8.$$

Proof. The inequality (7) is equivalent to

(9)
$$5k - \ell > -8\left(1 - \frac{12}{1296\pi^2}\right).$$

Since $\pi > 3$ holds, we get

$$1 - \frac{12}{1296\pi^2} > 1 - \frac{12}{1296 \cdot 3^2}.$$

Therefore,

(10)
$$-8\left(1 - \frac{12}{1296\pi^2}\right) < -8\left(1 - \frac{12}{12963^2}\right) < -7.$$

This tells us that (9) always holds if $-7 \le 5k - \ell$ is satisfied. Hence both (7) and (8) are satisfied under $-7 \le 5k - \ell < 8$. Similarly, we also have

$$-88 - 8\left(2 - \frac{12}{1296\pi^2}\right) = -96 - 8\left(1 - \frac{12}{1296\pi^2}\right) < -103.$$

Therefore (6) holds if $5\ell - k \ge -103$ is satisfied. \square

Let Y_0 be a Kummer surface with an elliptic fibration $Y_0 \to \mathbb{C}P^1$. Let Y_m be obtained from Y_0 by performing a logarithmic transformation of order 2m+1 on a non-singular fiber of Y_0 . Then, Y_m are simply connected spin manifolds with $b^+(Y_m) = 3$ and $b^-(Y_m) = 19$. By the Freedman classification [11], Y_m must be homeomorphic to a K3 surface. And Y_m is a Kähler surface with $b^+(Y_m) > 1$ and hence a result of Witten [27] tells us that $\pm c_1(Y_m)$ are monopole classes of Y_m for each m. We have $c_1(Y_m) = 2m\mathfrak{f}$, where \mathfrak{f} is Poincaré dual to the multiple fiber which is introduced by the logarithmic transformation. See also [2]. Notice also that Y_m is a BF-admissible 4-manifold.

On the other hand, let $X_{k,\ell}$ be any 4-manifold which is homeomorphic to $k\mathbb{C}P^2\#\ell\overline{\mathbb{C}P^2}\#(S^1\times S^3)$. Then, we have $2\chi(X_{k,\ell})+3\tau(X_{k,\ell})=5k-\ell$ and $2\chi(X_{k,\ell})-3\tau(X_{k,\ell})=5\ell-k$. Consider the following connected sum

(11)
$$M_{g,h}^{k,\ell}(m) := X_{k,\ell} \# Y_m \# (\Sigma_g \times \Sigma_h).$$

Then we also have

(12)
$$2\chi(M_{q,h}^{k,\ell}(m)) + 3\tau(M_{q,h}^{k,\ell}(m)) = 5k - \ell + 4(g-1)(h-1) - 8,$$

(13)
$$2\chi(M_{g,h}^{k,\ell}(m)) - 3\tau(M_{g,h}^{k,\ell}(m)) = 5\ell - k + 88 + 4(g-1)(h-1).$$

LEMMA 10. Consider the connected sum (11) in the case where g = h = 3, i.e., $M_{3,3}^{k,\ell}(m)$. Then the following inequality holds if both (6) and (7) are satisfied:

(14)
$$2\chi(M_{3,3}^{k,\ell}(m)) - 3|\tau(M_{3,3}^{k,\ell}(m))| > \frac{1}{1296\pi^2}||M_{3,3}^{k,\ell}(m)|| \neq 0.$$

Similarly, the following holds if (8) is satisfied:

(15)
$$C(X_{k,\ell}) + C(Y_m) + C(\Sigma_3 \times \Sigma_3) < 24,$$

where $C(X) := 2\chi(X) + 3\tau(X)$ for any closed 4-manifold X.

Proof. Notice that we have $C(X_{k,\ell}) = 5k - \ell$, C(K3) = 0 and $C(\Sigma_3 \times \Sigma_3) = 4 \cdot 2 \cdot 2 = 16$. Therefore, (15) is equivalent to $5k - \ell + 16 < 24$. This is nothing but (8). On the other hand, the simplicial volume of any connected sum $M_1 \# M_2$ satisfies $||M_1 \# M_2|| = ||M_1|| + ||M_2||$. See [7, 13]. It is known that [7, 13] that any simply connected manifold has vanishing simplicial volume. In particular, we have $||Y_m|| = 0$. It is also [13] known that the simplicial volume vanishes for any closed

manifold whose fundamental group is amenable. Since it is known that any abelian group is amenable, we have $||X_{k,\ell}|| = 0$ because the fundamental group of $X_{k,\ell}$ is \mathbb{Z} . Moreover, the following result is proved in [8]:

$$||\Sigma_h \times \Sigma_g|| = 24(g-1)(h-1).$$

Hence, we have $||M_{3,3}^{k,\ell}(m)|| = ||X_{k,\ell}|| + ||Y_m|| + ||\Sigma_3 \times \Sigma_3|| = 24 \cdot 2 \cdot 2$. In particular, $||M_{3,3}^{k,\ell}(m)|| \neq 0$. This implies

$$\frac{1}{1296\pi^2}||M_{3,3}^{k,\ell}(m)|| = \frac{24}{1296\pi^2}4 = \frac{12}{1296\pi^2}8.$$

By (12), we also have $2\chi(M_{3,3}^{k,\ell}(m)) + 3\tau(M_{3,3}^{k,\ell}(m)) = 5k - \ell + 4 \cdot 2 \cdot 2 - 8 = 5k - \ell + 8 \cdot 2 - 8$. Therefore,

$$2\chi(M_{3,3}^{k,\ell}(m)) + 3\tau(M_{3,3}^{k,\ell}(m)) > \frac{1}{1296\pi^2}||M_{3,3}^{k,\ell}(m)||$$

is equaivalent to

$$5k - \ell + 8 \cdot 2 - 8 > \frac{12}{1296\pi^2} 8,$$

namely,

$$5k - \ell + 8\left(2 - \frac{12}{1296\pi^2}\right) > 8.$$

Notice that this is the inequality (7). Similarly, by (13), we also have $2\chi(M_{3,3}^{k,\ell}(m)) - 3\tau(M_{3,3}^{k,\ell}(m)) = 5\ell - k + 88 + 4 \cdot 2 \cdot 2 = 5k - \ell + 88 + 8 \cdot 2$. Hence,

$$2\chi(M_{3,3}^{k,\ell}(m)) - 3\tau(M_{3,3}^{k,\ell}(m)) > \frac{1}{1296\pi^2}||M_{3,3}^{k,\ell}(m)||$$

is equivalent to

$$5\ell - k + 88 + 8 \cdot 2 > \frac{12}{1296\pi^2} 8,$$

namely,

$$5\ell - k + 88 + 8\left(2 - \frac{12}{1296\pi^2}\right) > 0.$$

This is nothing but the inequality (6). Therefore, (14) holds if both (6) and (7) are satisfied. \square

Theorem 6, Lemma 9 and Lemma 10 imply

Proposition 11. Let (a,b) be any pair of integers satisfying

(16)
$$a+b \equiv 0 \pmod{8}, b \leq -2, 0 \leq 2a+3b < 8.$$

Let k = (a+b)/2 and $\ell = (a-b)/2$. Then there exits a BF-admissible, irreducible symplectic 4-manifold $X_{k,\ell}$ with fundamental group $\mathbb Z$ which is homeomorphic to

 $k\mathbb{C}P^2\#\ell\overline{\mathbb{C}P^2}\#(S^1\times S^3)$. And the connected sum $M_{3,3}^{k,\ell}(m):=X_{k,\ell}\#Y_m\#(\Sigma_3\times\Sigma_3)$ satisfies both (14) and (15) for each k,ℓ,m .

Proof. First of all, notice that

$$5k - \ell = 5\frac{(a+b)}{2} - \frac{(a-b)}{2} = 2a + 3b, \ 5\ell - k = 5\frac{(a-b)}{2} - \frac{(a+b)}{2} = 2a - 3b.$$

Therefore, the condition (5) is equivalent to

$$(17) -7 \le 2a + 3b < 8, \ 2a - 3b \ge -103.$$

Then, Lemma 9 and Lemma 10 tell us that, if (17) holds, then, for any closed 4-manifold $X_{k,\ell}$ which is homeomorphic to $k\mathbb{C}P^2\#\ell\mathbb{C}P^2\#(S^1\times S^3)$, the connected sum $M_{3,3}^{k,\ell}(m)$ satisfies both (14) and (15).

On the other hand, Theorem 6 tells us that, except possibly for (a, b) equal to (11, -3), (13, -5), or (15, -7), for any pair (a, b) of integers satisfying

(18)
$$2a + 3b \ge 0, \ a + b \equiv 0 \pmod{8}, b \le -2,$$

there exists a BF-admissible, irreducible symplectic 4-manifold $X_{k,\ell}$ which is homeomorphic to $k\mathbb{C}P^2\#\ell\overline{\mathbb{C}P^2}\#(S^1\times S^3)$. Notice that, under $2a+3b\geq 0$ and $b\leq -2$, $2a-3b\geq -103$ always holds because $2a-3b\geq 2a+3b\geq 0$. Therefore, both (17) and (18) hold if (16) is satisfied. Notice also that $2a+3b\geq 9$ holds for (a,b)=(11,-3),(13,-5),(15,-7). The desired result now follows. \square

We are now in a position to prove the Case 1 in Theorem A. First of all, for any integer $0 \le n \le 7$, we set

$$(19) a = 17 + n, b = -9 - n.$$

In particular, we have a+b=8 and 2a+3b=7-n. Hence we have $a+b\equiv 0 \pmod 8$, $0\leq 2a+3b=7-n<8$ and $b\leq -2$. Notice also that

$$k = \frac{(a+b)}{2} = 4, \ \ell = \frac{(a-b)}{2} = 13 + n.$$

Then, Proposition 11 tells us that there exists a BF-admissible, irreducible symplectic 4-manifold $X_{4,13+n}$ which is homeomorphic to $4\mathbb{C}P^2\#(13+n)\overline{\mathbb{C}P^2}\#(S^1\times S^3)$ and $M_{3,3}^{4,13+n}(m):=X_{4,13+n}\#Y_m\#(\Sigma_3\times\Sigma_3)$ satisfies both (14) and (15). Notice that $M_{3,3}^{4,13+n}(m)$ satisfies the strict Gromov-Hitchin-Thorpe type inequality by (14). Moreover, Theorem 8 in the case where j=3 tells us that there is no non-singular solution to the normalized Ricci flow on $M_{3,3}^{4,13+n}$ for any initial metric under (15), here notice that $X_{4,13+n},Y_m$ and $(\Sigma_3\times\Sigma_3)$ are all BF-admissible.

On the other hand, we have $C(X_{4,13+n})+C(Y_m)+C(\Sigma_3\times\Sigma_3)=5k-\ell+0+16=2a+3b+16=23-n>0$. Therefore, we obtain the following bound on Perelman's $\overline{\lambda}$ invariant by (3):

$$\bar{\lambda}(M_{3,3}^{4,13+n}(m)) \le -4\pi\sqrt{2(23-n)} < 0.$$

Finally, for each n, we shall show that the following sequence

$$\{M_{3,3}^{4,13+n}(m)\}_{m\in\mathbb{N}}$$

contains infinitely many diffeo types. First of all, notice that the connected sum $X_{4,13+n}$ has non-trivial stable cohomotopy Seiberg-Witten invariants by Theorem 3. In particular, $M_{3,3}^{3,12+n}(m)$ has monopole classes which are given by

(21)
$$\pm c_1(X_{4,13+n}) \pm c_1(Y_m) \pm c_1(\Sigma_3 \times \Sigma_3),$$

where $c_1(X)$ denotes the first Chern class of the canonical line bundle of a closed symplectic 4-manifold X and we have $c_1(Y_m) = 2m\mathfrak{f}$. Suppose now that the sequence (20) contains only finitely many diffeomorphism types. Namely, suppose that there exists a positive integer m_0 such that $M_{3,3}^{4,13+n}(m_0)$ is diffemorphic to $M_{3,3}^{4,13+n}(m)$ for any integer $m \geq m_0$. Then, by taking $m \to \infty$, we see that the set of monopole classes of the 4-manifold $M_{3,3}^{4,13+n}(m_0)$ is unbounded by (21). However, this is a contradiction because the set of monopole classes of any given smooth 4-manifold with $b^+ > 1$ must be finite. Therefore, the sequence (20) must contain infinitely many diffeomorphism types. For any m, since $M_{3,3}^{4,13+n}(m)$ is homeomorphic to $M(n) := 4\mathbb{C}P^2\#(13+n)\overline{\mathbb{C}P^2}\#(S^1\times S^3)\#K3\#(\Sigma_3\times\Sigma_3)$, we are able to conclude that M(n) has ∞ -property \mathcal{R} as desired. Case 1 in Theorem A now follows.

3.2. Case 2. In this subsection, we shall prove Case 2 in Theorem A. The strategy of the proof in this case is similar to that of Case 1.

LEMMA 12. For any pair (k, ℓ) of positive integers satisfying

$$(22) -11 \le 5k - \ell < 4, \ 5\ell - k \ge -107,$$

the following conditions are satisfied simultaneously:

(23)
$$5\ell - k + 92 + 8\left(2 - \frac{12}{1296\pi^2}\right) > 0,$$

(24)
$$5k - \ell + 8\left(2 - \frac{12}{1296\pi^2}\right) > 4,$$

$$(25) 5k - \ell < 4.$$

Proof. One can check that

$$-92 - 8\left(2 - \frac{12}{1296\pi^2}\right) < -107.$$

Hence, if $5\ell - k \ge -107$ holds, (23) is also satisfied. Similarly, we have

$$4 - 8\left(2 - \frac{12}{1296\pi^2}\right) < -11.$$

Hence, (24) holds if $5k - \ell \ge -11$. This tells us that both (24) and (25) are satisfied under $-11 \le 5k - \ell < 4$. \square

Let $Z_{k,\ell}$ be any 4-manifold which is homeomorphic to $k\mathbb{C}P^2\#\ell\overline{\mathbb{C}P^2}\#N_p$. Then, we have

(26)
$$2\chi(Z_{k,\ell}) + 3\tau(Z_{k,\ell}) = 5k - \ell + 4, \ 2\chi(Z_{k,\ell}) - 3\tau(Z_{k,\ell}) = 5\ell - k + 4.$$

Consider the following connected sum

(27)
$$L_{a,h}^{k,\ell}(m) := Z_{k,\ell} \# Y_m \# (\Sigma_h \times \Sigma_g),$$

where Y_m is the homotopy K3 surface used in Section 3.1. Then we also have

(28)
$$2\chi(L_{q,h}^{k,\ell}(m)) + 3\tau(L_{q,h}^{k,\ell}(m)) = 5k - \ell + 4(g-1)(h-1) - 4,$$

(29)
$$2\chi(L_{q,h}^{k,\ell}(m)) - 3\tau(L_{q,h}^{k,\ell}(m)) = 5\ell - k + 4(g-1)(h-1) + 92.$$

LEMMA 13. Consider the connected sum (27) in the case wher g = h = 3, i.e., $L_{3,3}^{k,\ell}(m)$. Then the following inequality holds if both (23) and (24) are satisfied:

(30)
$$2\chi(L_{3,3}^{k,\ell}(m)) - 3|\tau(L_{3,3}^{k,\ell}(m))| > \frac{1}{1296\pi^2}||L_{3,3}^{k,\ell}(m)|| \neq 0.$$

Similarly, the following holds if (25) is satisfied:

$$(31) C(Z_{k,\ell}) + C(Y_m) + C(\Sigma_3 \times \Sigma_3) < 24.$$

Proof. We have $C(Z_{k,\ell})=5k-\ell+4$, $C(Y_m)=0$ and $C(\Sigma_3\times\Sigma_3)=4\cdot 2\cdot 2=16$. Therefore, (31) is equivalent to $5k-\ell+4+16<24$. This is (25). On the other hand, as the proof of Lemma 10, we have $||L_{3,3}^{k,\ell}(m)||=||Z_{k,\ell}||+||Y_m||+||\Sigma_3\times\Sigma_3||=24\cdot 2\cdot 2$, where notice that $||Z_{k,\ell}||=0$ holds because the fundamental group of $Z_{k,\ell}$ is \mathbb{Z}_p and hence this is amenable. From the above, we get

$$\frac{1}{1296\pi^2}||L_{3,3}^{k,\ell}(m)|| = \frac{24}{1296\pi^2}4 = \frac{12}{1296\pi^2}8.$$

In particular, $||L_{3,3}^{k,\ell}(m)|| \neq 0$. By (28), we also have $2\chi(L_{g,h}^{k,\ell}(m)) + 3\tau(L_{g,h}^{k,\ell}(m)) = 5k - \ell + 4 \cdot 2 \cdot 2 - 4 = 5k - \ell + 8 \cdot 2 - 4$. Therefore,

$$2\chi(L_{3,3}^{k,\ell}(m)) + 3\tau(L_{3,3}^{k,\ell}(m)) > \frac{1}{1296\pi^2} ||L_{3,3}^{k,\ell}(m)||$$

is equivalent to

$$5k - \ell + 8 \cdot 2 - 4 > \frac{12}{1296\pi^2} 8,$$

namely,

$$5k - \ell + 8\left(2 - \frac{12}{1296\pi^2}\right) > 4.$$

This is the inequality (24). Similarly, by (29), we also have $2\chi(L_{3,3}^{k,\ell}(m)) - 3\tau(L_{3,3}^{k,\ell}(m)) = 5\ell - k + 4 \cdot 2 \cdot 2 + 92 = 5\ell - k + 92 + 8 \cdot 2$. Hence,

$$2\chi(L_{3,3}^{k,\ell}(m)) - 3\tau(L_{3,3}^{k,\ell}(m)) > \frac{1}{1296\pi^2}||L_{3,3}^{k,\ell}(m)||$$

is equivalent to

$$5\ell - k + 92 + 8 \cdot 2 > \frac{12}{1296\pi^2} 8,$$

namely,

$$5\ell - k + 92 + 8\left(2 - \frac{12}{1296\pi^2}\right) > 0.$$

This is nothing but (23). Therefore, (30) holds if both (23) and (24) are satisfied. \square

By Theorem 6, Lemma 12 and Lemma 13, we obtain

PROPOSITION 14. Let (a,b) be any pair of integers satisfying

(32)
$$a+b \equiv 0 \pmod{8}, b \leq -2, 0 \leq 2a+3b < 8.$$

And let

$$k = \frac{a+b}{2} - 1, \ \ell = \frac{a-b}{2} - 1.$$

Then there exits a BF-admissible, irreducible symplectic 4-manifold $Z_{k,\ell}$ with fundamental group \mathbb{Z}_p which is homeomorphic to $k\mathbb{C}P^2\#\ell\overline{\mathbb{C}P^2}\#N_p$, and the connected sum $L_{3,3}^{k,\ell}(m) := Z_{k,\ell}\#Y_m\#(\Sigma_3 \times \Sigma_3)$ satisfies (30) and (31) for each k,ℓ,m .

Proof. First of all, notice that

$$5k - \ell = 5\left(\frac{(a+b)}{2} - 1\right) - \left(\frac{(a-b)}{2} - 1\right) = 2a + 3b - 4,$$

$$5\ell - k = 5(\frac{(a-b)}{2} - 1) - (\frac{(a+b)}{2} - 1) = 2a - 3b - 4.$$

Therefore, the condition (22) is equivalent to

$$(33) -7 \le 2a + 3b < 8, \ 2a - 3b \ge -103.$$

By Lemma 12 and Lemma 13, if (33) holds, for any closed 4-manifold $Z_{k,\ell}$ which is homeomorphic to $k\mathbb{C}P^2\#\ell\overline{\mathbb{C}P^2}\#N_p$, the connected sum $L_{3,3}^{k,\ell}(m)$ satisfies (30) and (31).

Moreover, Theorem 6 tells us that, except possibly for (a, b) equal to (11, -3), (13, -5), or (15, -7), for any pair (a, b) of integers satisfying

(34)
$$2a + 3b \ge 0, \ a + b \equiv 0 \pmod{8}, b \le -2,$$

there exists a BF-admissible, irreducible symplectic 4-manifold $Z_{k,\ell}$ which is homeomorphic to $k\mathbb{C}P^2\#\ell\overline{\mathbb{C}P^2}\#N_p$. Notice that $2a-3b\geq -103$ always holds under $2a+3b\geq 0$ and $b\leq -2$. Therefore, both (33) and (34) hold if (32) is satisfied. The desired result now follows, where notice that $2a+3b\geq 9$ holds for (a,b)=(11,-3),(13,-5),(15,-7). \square

We prove the Case 2 of Theorem A as follows: For any integer $0 \le n \le 7$, let a = 17 + n and b = -9 - n. In particular, we have $a + b = 8 \equiv 0 \pmod{8}$, $0 \le 2a + 3b = 7 - n < 8$ and $b \le -2$. We also have

$$k = \frac{(a+b)}{2} - 1 = 3, \ \ell = \frac{(a-b)}{2} - 1 = 12 + n.$$

Then, Proposition 14 tells us that there exists a BF-admissible, irreducible symplectic 4-manifold $Z_{3,12+n}$ which is homeomorphic to $3\mathbb{C}P^2\#(12+n)\overline{\mathbb{C}P^2}\#N_p$, and $L_{3,3}^{3,12+n}(m):=Z_{3,12+n}\#Y(m)\#(\Sigma_3\times\Sigma_3)$ satisfies (30) and (31). The connected sum $L_{3,3}^{3,12+n}(m)$ satisfies the strict Gromov-Hitchin-Thorpe type inequality by (14). And Theorem 8 implies that we have no non-singular solution to the normalized Ricci flow on $L_{3,3}^{3,12+n}(m)$ for any initial metric under (31). On the other hand, we have $C(Z_{3,12+n})+C(Y_m)+C(\Sigma_3\times\Sigma_3)=7-n+16=23-n>0$. Therefore, by (3), we obtain

$$\bar{\lambda}(L_{3,3}^{3,12+n}(m)) \le -4\pi\sqrt{2(23-n)} < 0.$$

Finally, as the proof of Case 1 above, for each n, we are able to show that $\{L_{3,3}^{3,12+n}(m)\}_{m\in\mathbb{N}}$ contains infinitely many diffeo types by taking $m\to\infty$. For any m, notice that $L_{3,3}^{3,12+n}(m)$ is homeomorphic to $L(n):=3\mathbb{C}P^2\#(12+n)\overline{\mathbb{C}P^2}\#N_p\#K3\#(\Sigma_3\times\Sigma_3)$. Therefore, we are able to conclude that L(n) has ∞ -property \mathcal{R} as desired.

3.3. Case 3. Finally, we shall prove Case 3 of Theorem A. Let $P_{k,\ell}$ be any 4-manifold which is homeomorphic to $k\mathbb{C}P^2\#\ell\overline{\mathbb{C}P^2}$. Then, we have

(35)
$$2\chi(P_{k,\ell}) + 3\tau(P_{k,\ell}) = 5k - \ell + 4, \ 2\chi(P_{k,\ell}) - 3\tau(P_{k,\ell}) = 5\ell - k + 4.$$

Notice that we have $2\chi(P_{k,\ell}) + 3\tau(P_{k,\ell}) = 2\chi(Z_{k,\ell}) + 3\tau(Z_{k,\ell})$ and $2\chi(P_{k,\ell}) - 3\tau(P_{k,\ell}) = 2\chi(Z_{k,\ell}) - 3\tau(Z_{k,\ell})$ by (26) and (35). Consider the following connects sum

$$G_{g,h}^{k,\ell}(m) := P_{k,\ell} \# Y_m \# (\Sigma_h \times \Sigma_g),$$

where Y_m is again the homotopy K3 surface used as before. Then, by using Corollary 5 instead of Theorem 6 and using the same argument with that of Proposition 14, we are able to obtain

Proposition 15. Let (a,b) be any pair of integers satisfying

(36)
$$a+b \equiv 0 \pmod{8}, b \leq -2, 0 \leq 2a+3b < 8.$$

Let

$$k = \frac{a+b}{2} - 1, \ \ell = \frac{a-b}{2} - 1.$$

Then, there exits a BF-admissible, irreducible symplectic 4-manifold $P_{k,\ell}$ which is homeomorphic to $k\mathbb{C}P^2\#\ell\overline{\mathbb{C}P^2}$ and for each k,ℓ,m , $G_{3,3}^{k,\ell}(m):=P_{k,\ell}\#Y_m\#(\Sigma_3\times\Sigma_3)$ satisfies

$$(37) 2\chi(G_{3,3}^{k,\ell}(m)) - 3|\tau(G_{3,3}^{k,\ell}(m))| > \frac{1}{1296\pi^2}||G_{3,3}^{k,\ell}(m)|| \neq 0,$$

$$(38) C(P_{k,\ell}) + C(Y_m) + C(\Sigma_3 \times \Sigma_3) < 24.$$

Case 3 in Theorem A follows easily from Proposition 15. As before, for any integer $0 \le n \le 7$, let a = 17 + n and b = -9 - n. Of course, we have $a + b \equiv 0 \pmod{8}$, $0 \le 2a + 3b = 7 - n < 8$ and b < -2, k = 3 and $\ell = 12 + n$. Then, Proposition 15

implies that there exists a BF-admissible, irreducible symplectic 4-manifold $P_{3,12+n}$ which is homeomorphic to $3\mathbb{C}P^2\#(12+n)\overline{\mathbb{C}P^2}$, and

$$G_{3,3}^{3,12+n}(m) := P_{3,12+n} \# Y(m) \# (\Sigma_3 \times \Sigma_3)$$

satisfies (37) and (38). Hence, $G_{3,3}^{3,12+n}(m)$ satisfies the strict Gromov-Hitchin-Thorpe type inequality, and there is no non-singular solution to the normalized Ricci flow on $G_{3,3}^{3,12+n}(m)$ for any initial metric by Theorem 8. We are also able to show the following by (3):

$$\bar{\lambda}(G_{3,3}^{3,12+n}(m)) \le -4\pi\sqrt{2(23-n)} < 0.$$

Finally, by considering the sequence $\{G_{3,3}^{3,12+n}(m)\}_{m\in\mathbb{N}}$, we conclude that $3\mathbb{C}P^2\#(12+n)\overline{\mathbb{C}P^2}\#K3\#(\Sigma_3\times\Sigma_3)$ has ∞ -property \mathcal{R} for each n.

REFERENCES

- [1] D. AKHMEDOV, S. BALDRIDGE, R. I. BAYKUR AND B. D. PARK, Simply connected minimal symplectic 4-manifolds with signature less than -1, to appear in J. Eur. Math. Soc. arXiv:0705.0778.
- [2] W. P. Barth, A. M. Peters, and A. Van de Ven, Compact complex surfaces, Springer (2004).
- [3] S. BAUER AND M. FURUTA, Stable cohomotopy refinement of Seiberg-Witten invariants: I, Invent. Math., 155 (2004), pp. 1–19.
- [4] S. BAUER, Stable cohomotopy refinement of Seiberg-Witten invariants: II, Invent. Math., 155 (2004), pp. 21-40.
- [5] S. BAUER, Refined Seiberg-Witten invariants. Different faces of geometry, pp. 1–46, Int. Math. Ser. (N.Y.), Kluwer/Plenum, New York, 2004.
- [6] R. I. BAYKUR AND M. ISHIDA, Families of 4-manifolds with nontrivial stable cohomotopy Seiberg-Witten invariants, and normalized Ricci flow, arXiv:1011.2744 (2010), to appear in Journal of Geometric Analysis.
- [7] A. Besse, Einstein manifolds, Springer-Verlag (1987).
- [8] M. Bucher-Karlsson, The simplicial volume of closed manifolds covered by H² × H², arXiv:math/0703587 [math.DG].
- [9] F. Q. FANG AND Y. G. ZHANG, Perelman's λ-functional and the Seiberg-Witten equations, Front. Math. China, 2 (2007), pp. 191–210.
- [10] F. Q. FANG, Y. G. ZHANG, AND Z. Z. ZHANG, Non-singular solutions to the normalized Ricci flow equation, Math. Ann., 340 (2008), pp. 647–674.
- [11] M. H. FREEDMAN, The topology of four-dimensional manifolds, J. Differential Geom., 17 (1982), pp. 357–453.
- [12] M. D. J. Hamilton and D. Kotschick, Minimality and irreducibility of symplectic fourmanifolds, Int. Math. Res. Not. 2006, Art. ID 35032.
- [13] M. GROMOV, Volume and bounded cohomology, Publ. Math. I.H.E.S., 56 (1982), pp. 5-99.
- [14] N. J. HITCHIN, Compact four-dimensional Einstein manifolds, J. Differential Geom., 9 (1974), pp. 435–441.
- [15] M. ISHIDA AND C. LEBRUN, Spin manifolds, Einstein metrics, and differential topology, Math. Res. Lett., 9 (2002), pp. 229–240.
- [16] M. ISHIDA AND C. LEBRUN, Curvature, connected sums, and Seiberg-Witten theory, Comm. Anal. Geom., 11 (2003), pp. 809–836.
- [17] M. ISHIDA, The normalized Ricci flow on four-manifolds and exotic smooth structures, arXiv:0807.2169 (2008).
- [18] M. ISHIDA AND H. SASAHIRA, Stable cohomotopy Seiberg-Witten invariants of connected sums of four-manifolds with positive first Betti number, arXiv:0804.3452 (2008).
- [19] R. HAMILTON, Non-singular solutions of the Ricci flow on three-manifolds, Comm. Anal. Geom., 7 (1999), pp. 695–729.
- [20] B. Kleiner and J. Lott, Notes on Perelman's papers, arXiv: math.DG/0605667 (2006).
- [21] P. B. Kronheimer, Minimal genus in $S^1 \times M$, Invent. Math., 135 (1999), pp. 45-61.
- [22] C. LeBrun, Four-manifolds, curvature bounds, and convex geometry, arXiv: math.DG/061 1450 (2006).

- [23] G. Perelman, The entropy formula for the Ricci flow and its geometric applications, arXiv: math.DG/0211159 (2002).
- [24] G. Perelman, Ricci flow with surgery on three-manifolds, arXiv: math.DG/0303109 (2003).
- [25] C. H. TAUBES, The Seiberg-Witten invariants and symplectic forms, Math. Res. Lett., 1 (1994), pp. 809–822.
- [26] J. A. THORPE, Some remarks on the Gauss-Bonnet formula, J. Math. Mech., 18 (1969), pp. 779–786.
- [27] E. WITTEN, Monopoles and four-manifolds, Math. Res. Lett., 1 (1994), pp. 809–822.