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SMALL FOUR-MANIFOLDS WITHOUT NON-SINGULAR

SOLUTIONS OF NORMALIZED RICCI FLOWS∗

MASASHI ISHIDA†

Abstract. It is known [6] that connected sums X#K3#(Σg ×Σh)#ℓ1(S1
×S3)#ℓ2CP 2 satisfy

the Gromov-Hitchin-Thorpe type inequality, but can not admit non-singular solutions of the normal-
ized Ricci flow for any initial metric, where Σg × Σh is the product of two Riemann surfaces of odd
genus, ℓ1, ℓ2 > 0 are sufficiently large positive integers, g, h > 3 are also sufficiently large positive
odd integers, and X is a certain irreducible symplectic 4-manifold. These exmples are closely related
with a conjecture of Fang, Zhang and Zhang [10]. In the current article, we point out that there still
exist 4-manifolds with the same property even if ℓ1 = ℓ2 = 0 and g = h = 3. The topology of these
new examples are smaller than that of previously known examples.
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1. Introduction. Let X be a closed oriented Riemannian manifold of dimension
n ≥ 3. The normalized Ricci flow on X is the following evolution equation:

∂

∂t
g = −2Ricg +

2

n

(

∫

Xsgdµg

volg

)

g,(1)

where Ricg is the Ricci curvature of the evolving Riemannian metric g, sg is the scalar
curvature of the evolving Riemannian metric g, volg :=

∫

X
dµg and dµg is the volume

measure with respect to g. In [19], Hamilton introduced a nice class of solutions of
(1), which is so called non-singular. Recall that a solution {g(t)}, t ∈ [0, T ), to (1)
is called non-singular if T = ∞ and the Riemannian curvature tensor Rmg(t) of g(t)
satisfies supX×[0,T ) |Rmg(t)| < ∞. In particular, Hamilton [19] classified non-singular
solutions to the normalized Ricci flow on a closed 3-manifold. After this pioneering
work of Hamilton in dimension 3, Fang, Y.G. Zhang and Z.Z. Zhang [10] studied the
properties of non-singular solutions to the normalized Ricci flow in higher dimensions.
In the beautiful article [10], among other things, it was proved that the existence of
the non-singular solution of the normalized Ricci flow forces a constraint on the Euler
characteritic χ(X) and signature τ(X) of a given 4-manifold X . Based on this result,
they proposed the following conjecture:

Conjecture 1 (Conjecture 1.8 in [10]). Let X be a closed oriented smooth
Riemannian 4-manifold with ||X || 6= 0 and λ(X) < 0, where ||X || is the Gromov’s
simplicial volume of X and λ̄(X) is the Perelman’s λ̄ invariant. If there is a non-
singular solution to the normalized Ricci flow on X, then the Gromov-Hitchin-Thorpe
type inequality holds:

2χ(X)− 3|τ(X)| ≥
1

1296π2
||X ||.(2)

Here, the Perelman’s λ invariant [23, 24] of X is a differential topological invariant
defined by λ(X) = supg∈RX

λg(volg)
2/n, where RX is the space of all Riemmannian
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610 M. ISHIDA

metrics on X , λg is the lowest eigenvalue of the elliptic operator 4∆g + sg, and
∆ = d∗d = −∇ · ∇ is the positive-spectrum Laplace-Beltrami operator associated
with g. See also [20].

To the best of our knowledge, Conjecture 1 still remains open. However, in a joint
work with Baykur [6], the present author has shown that the converse of Conjecture
1 dose not hold in general. In fact, for ℓ1, ℓ2 > 0 which are sufficiently large positive
integers, and for g, h > 3 which are also sufficiently large positive odd integers, it was
proved in [6] that a connected sum of type

M := X#K3#(Σg × Σh)#ℓ1(S
1 × S3)#ℓ2CP 2

has the following properties, where X is a certain irreducible symplectic 4-manifold,
K3 is the K3 surface, Σg ×Σh is the product of two Riemann surfaces Σg,Σh of odd

genus and CP 2 is the complex projective plane with the reversed orientation:
1. M has ||M || 6= 0 and satisfies the strict case of the inequality (2):

2χ(M)− 3|τ(M)| >
1

1296π2
||M ||.

2. M admits infinitely many distinct smooth structures for which Perelman’s λ̄
invariant is negative and there is no non-singular solution to the normalized
Ricci flow for any initial metric.

In what follows, we call these properties 1 and 2 ∞-property R for simplicity. Notice
that the existence of 4-manifolds with ∞-propertyR particularly implies that the con-
verse of Conjecture 1 does not hold in general. Namely, this tells us that the existence
and non-existence of non-singular solutions are not controled by the topological infor-
mation like (2). Moreover, these also provide us new examples of 4-manifold without
Einstein metrics because Einstein metric is an example of non-singular solution.

However, in the construction of these examples, we took sufficiently large integers
ℓ1, ℓ2, g, h. Therefore, it is a natural question to ask whether there still exists a 4-
manifold with ∞-property R for small ℓ1, ℓ2, g, h. The main purpose of the current
article is to give a positive answer to this question. Namely, we shall prove that there
still exist 4-manifolds with ∞-property R even if ℓ1 = ℓ2 = 0 and g = h = 3. In
what follows, Np denotes a 4-manifold with fundamental group Zp, p odd, which is
obtained from the product L(p, 1)× S1 of Lens space L(p, 1) and S1 by performing a
0-surgery along {pt} × S1. The main result of the current article is as follows:

Theorem A. For any positive integer 0 ≤ n ≤ 7, there exists an irreducible
symplectic 4-manifold Xn which is homeomoprhic to

1. 4CP 2#(13 + n)CP 2#(S1 × S3) or
2. 3CP 2#(12 + n)CP 2#Np or

3. 3CP 2#(12 + n)CP 2

and a connected sum Xn#K3#(Σ3 × Σ3) has ∞-property R.

Acknowledgements. The author is grateful to the Max-Plank-Institut für
Mathematik in Bonn for its hospitality. This work is partially supported by the
Grant-in-Aid for Scientific Research (C), Japan Society for the Promotion of Science,
No. 20540090.

2. Preliminaries. In the following, for any closed 4-manifold X , b+(X) (resp.
b−(X)) denotes the dimension of a maximal linear subspace of H2(X,R) on which
the cup product pairing is positive (resp. negative) definite. Notice that b2(X) =
b+(X) + b−(X) and τ(X) = b+(X)− b−(X).
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2.1. Non-vanishing theorem of BFX . Let X be a closed smooth Riemannian
4-manifold X with b+(X) > 1. Recall that a spinc-structure s on X induces a pair
of spinor bundles S± which are Hermitian vector bundles of rank 2. A Riemannian
metric on X and a unitary connection A on the determinant line bundle L induce
the twisted Dirac operator DA : Γ(S+) −→ Γ(S−). The Seiberg-Witten monopole
equations [27] over X are the following non-linear partial differential equations for a
unitary connection A of L and a spinor φ ∈ Γ(S+):

DAφ = 0, F+
A = iq(φ),

here F+
A is the self-dual part of the curvature of A and q : S+ → ∧+ is a certain

natural real-quadratic map, where ∧+ is the bundle of self-dual 2-forms. In what
follows, we denote the first Chern class of the complex line bundle L associated with
s by c1(s).

An element a ∈ H2(X,Z)/torsion ⊂ H2(X,R) is called monopole class [21, 22] of
X if there exists a spinc-structure s with cR1 (s) = a which has the property that the
corresponding Seiberg-Witten monopole equations have a solution for every Rieman-
nian metric on X . Here cR1 (s) is the image of c1(s) in H2(X,R). It is known [22, 16]
that the set of all monopole classes of X is finite.

There are several ways to detect the existence of monopole classes. For any closed
oriented smooth 4-manifold X with b+(X) > 1, one can define the Seiberg-Witten
invariant [27] for any spinc-structure s by integrating a cohomology class on the moduli
space of solutions of the Seiberg-Witten monopole equations associated with s:

SWX : Spin(X) −→ Z,

where Spin(X) is the set of all spinc-structures on X . We call the first Chern class
c1(s) Seiberg-Witten basic class of X if SWX(s) 6= 0 for a spinc-structure s. In par-
ticular, Seiberg-Witten basic classes are monopole classes. Moreover, there is a so-
phisticated refinement of the idea of the construction of the Seiberg-Witten invariant,
which is due to Bauer and Furuta [3, 4, 5]. The invariant is called the stable coho-
motopy Seiberg-Witten invariant and denote it by BFX . This invariant detects the
presence of a monopole class by element of a certain complicated stable cohomotopy
group π0

T,U (Pic(X); ind l), where see [5] for the definition of the stable cohomotopy
group:

BFX(s) ∈ π0
T,U(Pic(X); ind l).

It is known [16] that the non-triviality of the stable cohomotopy Seiberg-Witten in-
variants implies the existence of monopole classes.

To state a non-vanishing theorem of the stable cohomotopy Seiberg-Witten in-
variants, we need to fix some notations. For any spinc-structure s on X , we introduce
the following quantity:

Sij(s) :=
1

2
< c1(s) ∪ ei ∪ ej , [X ] >,

where e1, e2, · · · , es is a set of generators of H1(X,Z) and s = b1(X). Here [X ] is the
fundamental class of Xi and < ·, · > is the pairing between cohomology and homology.

Definition 2 ([6]). A closed oriented smooth 4-manifold X with b+(X) ≥ 2 is
called BF-admissible if the following holds:
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1. There is a spinc-structure s with SWX(s) ≡ 1 (mod 2) and c21(s) = 2χ(X) +
3τ(X)

2. b+(X)− b1(X) ≡ 3 (mod 4).
3. Sij(s) ≡ 0 (mod 2) for any i, j.

Then, we have

Theorem 3 ([18]). For i = 1, 2, 3, let Xi be BF-admissible, closed oriented
smooth 4-manifolds. Then a connected sum #j

i=1Xi has a non-trivial stable cohomo-
topy Seiberg-Witten invariant, where j = 2, 3.

We shall use Theorem 3 to prove Theorem A.

2.2. Irreducible BF-admissible 4-manifolds. We need to find BF-admissible
4-manifolds to prove Theorem A. For this purpose, let us recall the following nice
result on the existence of irreducible symplectic 4-manifolds, where notice that it is
known [12] that any simply connected minimal symplectic 4-manifold is irreducible.

Theorem 4 (Theorem A in [1]). Let a and b integers satisfying 2a + 3b ≥ 0,
and a + b ≡ 0 (mod 4). If, in addtion, b ≤ −2 is satisfied. Then there exists a
simply connected minimal symplectic 4-manifold X with (χ(X), τ(X)) = (a, b) and
odd intersection form, except possibly for (a, b) equal to (7,−3), (11,−3), (13,−5), or
(15,−7).

Consider a symplectic 4-manifold with (χ(X), τ(X)) = (a, b) in Theorem 4. Since
χ(X) = 2−2b1(X)+b2(X) = 2+b+(X)+b−(X) = a and τ(X) = b+(X)−b−(X) = b
hold, we have b+(X) = α − 1 and b−(X) = β − 1, where α := (a + b)/2 and
β := (a− b)/2. Since X has odd intersection form, the celebrated result of Freedman
[11] tells us that X is homeomorphic to

(α− 1)CP 2#(β − 1)CP 2.

Suppose now that b+(X) = α − 1 ≡ 3 (mod 4), i.e., a + b ≡ 0 (mod 8). Then X
satisfies the second condition in Definition 2, where notice that b1(X) = 0. Since X is
a symplectic 4-manifold with b+(X) > 1, a famous result of Taubes [25] tells us that
X satisfies the first condition in Definition 2. In fact, we can take a canonical spinc-
structure compatible with a symplectic structure. The third condition in Definition
2 is also satisfied since we have b1(X) = 0. Hence we obtain the following existence
result of BF-admissible 4-manifolds:

Corollary 5. Let (a, b) be a pair of integers satisfying 2a + 3b ≥ 0, a + b ≡
0 (mod 8), and b ≤ −2 is satisfied, except possibly for (a, b) equal to (11,−3),
(13,−5), or (15,−7). Set as α = (a+ b)/2 and β = (a− b)/2. Then, there ex-
ists a BF-admissible, irreducible symplectic 4-manifold which is homeomorphic to
(α− 1)CP 2#(β − 1)CP 2.

In the case of non-simply connected, we have a similar result as follows:

Theorem 6 (Theorem B in [6]). Let a and b are integers satisfying 2a + 3b ≥
0, a + b ≡ 0 (mod 8), and b ≤ −2 is satisfied, except possibly for (a, b) equal to
(11,−3), (13,−5), or (15,−7). Set as α = (a+ b)/2 and β = (a− b)/2. Then, there
exists a BF-admissible, irreducible symplectic 4-manifold with fundamental group Z

which is homeomorphic to αCP 2#βCP 2#(S1 ×S3) and a BF-admissible, irreducible
symplectic 4-manifold with fundamental group Zp which is homeomorphic to (α −

1)CP 2#(β − 1)CP 2#Np.
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2.3. Obstruction to the non-singular solutions. We also use the following
result on estimates on Perelman’s λ̄ invariant, which was proved in [6]:

Theorem 7. For m = 1, 2, 3, let Xm be BF-admissible 4-manifolds. And assume
that

∑j
i=1(2χ(Xi) + 3τ(Xi)) > 0, where j = 2, 3. Then, Perelman’s λ̄ invariant of a

connected sum Z := #j
i=1Xi satisfies

λ̄(Z) ≤ −4π

√

√

√

√2

j
∑

i=1

C(Xi) < 0,(3)

where C(Xi) := 2χ(Xi) + 3τ(Xi).

We should notice that the first non-trivial bound for Perelman’s λ̄ invariant of
4-manifold was proved in an interesting article [9] by using Seiberg-Witten monopole
equations.

We also have the following obstruction to the existence of non-singular solution
to the normalized Ricci flow, which was also proved in [6]:

Theorem 8. For i = 1, 2, 3, let Xi be BF-admissible 4-manifolds. Assume also
that

∑j
i=1(2χ(Xi) + 3τ(Xi)) > 0 is satisfied, where j = 2, 3. Then, on a connected

sum Z := #j
i=1Xi, there is no non-singular solution to the normalized Ricci flow for

any initial metric if

12(j − 1) >

j
∑

i=1

(

2χ(Xi) + 3τ(Xi)
)

.(4)

3. Proof of Theorem A.

3.1. Case 1.

Lemma 9. For any pair (k, ℓ) of positive integers satisfying

−7 ≤ 5k − ℓ < 8, 5ℓ− k ≥ −103,(5)

the following inequalities are satisfied simultaneously:

5ℓ− k + 88 + 8
(

2−
12

1296π2

)

> 0,(6)

5k − ℓ+ 8
(

2−
12

1296π2

)

> 8,(7)

5k − ℓ < 8.(8)

Proof. The inequality (7) is equivalent to

5k − ℓ > −8
(

1−
12

1296π2

)

.(9)

Since π > 3 holds, we get

1−
12

1296π2
> 1−

12

1296·32
.
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Therefore,

−8
(

1−
12

1296π2

)

< −8
(

1−
12

129632

)

< −7.(10)

This tells us that (9) always holds if −7 ≤ 5k− ℓ is satisfied. Hence both (7) and (8)
are satisfied under −7 ≤ 5k − ℓ < 8. Similarly, we also have

−88− 8
(

2−
12

1296π2

)

= −96− 8
(

1−
12

1296π2

)

< −103.

Therefore (6) holds if 5ℓ− k ≥ −103 is satisfied.

Let Y0 be a Kummer surface with an elliptic fibration Y0 → CP 1. Let Ym be
obtained from Y0 by performing a logarithmic transformation of order 2m+1 on a non-
singular fiber of Y0. Then, Ym are simply connected spin manifolds with b+(Ym) = 3
and b−(Ym) = 19. By the Freedman classification [11], Ym must be homeomorphic
to a K3 surface. And Ym is a Kähler surface with b+(Ym) > 1 and hence a result of
Witten [27] tells us that ±c1(Ym) are monopole classes of Ym for each m. We have
c1(Ym) = 2mf, where f is Poincaré dual to the multiple fiber which is introduced by
the logarithmic transformation. See also [2]. Notice also that Ym is a BF-admissible
4-manifold.

On the other hand, let Xk,ℓ be any 4-manifold which is homeomorphic to

kCP 2#ℓCP 2#(S1 × S3). Then, we have 2χ(Xk,ℓ) + 3τ(Xk,ℓ) = 5k − ℓ and
2χ(Xk,ℓ)− 3τ(Xk,ℓ) = 5ℓ− k. Consider the following connected sum

Mk,ℓ
g,h(m) := Xk,ℓ#Ym#(Σg × Σh).(11)

Then we also have

2χ(Mk,ℓ
g,h(m)) + 3τ(Mk,ℓ

g,h(m)) = 5k − ℓ+ 4(g − 1)(h− 1)− 8,(12)

2χ(Mk,ℓ
g,h(m)) − 3τ(Mk,ℓ

g,h(m)) = 5ℓ− k + 88 + 4(g − 1)(h− 1).(13)

Lemma 10. Consider the connected sum (11) in the case where g = h = 3, i.e.,

Mk,ℓ
3,3 (m). Then the following inequality holds if both (6) and (7) are satisfied:

2χ(Mk,ℓ
3,3 (m))− 3|τ(Mk,ℓ

3,3 (m))| >
1

1296π2
||Mk,ℓ

3,3 (m)|| 6= 0.(14)

Similarly, the following holds if (8) is satisfied:

C(Xk,ℓ) + C(Ym) + C(Σ3 × Σ3) < 24,(15)

where C(X) := 2χ(X) + 3τ(X) for any closed 4-manifold X.

Proof. Notice that we have C(Xk,ℓ) = 5k − ℓ, C(K3) = 0 and C(Σ3 × Σ3) =
4 · 2 · 2 = 16. Therefore, (15) is equivalent to 5k − ℓ + 16 < 24. This is nothing
but (8). On the other hand, the simplicial volume of any connected sum M1#M2

satisfies ||M1#M2|| = ||M1|| + ||M2||. See [7, 13]. It is known that [7, 13] that any
simply connected manifold has vanishing simplicial volume. In particular, we have
||Ym|| = 0. It is also [13] known that the simplicial volume vanishes for any closed
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manifold whose fundamental group is amenable. Since it is known that any abelian
group is amenable, we have ||Xk,ℓ|| = 0 because the fundamental group of Xk,ℓ is Z.
Moreover, the following result is proved in [8]:

||Σh × Σg|| = 24(g − 1)(h− 1).

Hence, we have ||Mk,ℓ
3,3 (m)|| = ||Xk,ℓ||+ ||Ym||+ ||Σ3 ×Σ3|| = 24 · 2 · 2. In particular,

||Mk,ℓ
3,3 (m)|| 6= 0. This implies

1

1296π2
||Mk,ℓ

3,3 (m)|| =
24

1296π2
4 =

12

1296π2
8.

By (12), we also have 2χ(Mk,ℓ
3,3 (m))+3τ(Mk,ℓ

3,3 (m)) = 5k−ℓ+4·2·2−8 = 5k−ℓ+8·2−8.
Therefore,

2χ(Mk,ℓ
3,3 (m)) + 3τ(Mk,ℓ

3,3 (m)) >
1

1296π2
||Mk,ℓ

3,3 (m)||

is equaivalent to

5k − ℓ+ 8 · 2− 8 >
12

1296π2
8,

namely,

5k − ℓ+ 8
(

2−
12

1296π2

)

> 8.

Notice that this is the inequality (7). Similarly, by (13), we also have 2χ(Mk,ℓ
3,3 (m))−

3τ(Mk,ℓ
3,3 (m)) = 5ℓ− k + 88 + 4 · 2 · 2 = 5k − ℓ+ 88 + 8 · 2. Hence,

2χ(Mk,ℓ
3,3 (m))− 3τ(Mk,ℓ

3,3 (m)) >
1

1296π2
||Mk,ℓ

3,3 (m)||

is equivalent to

5ℓ− k + 88 + 8 · 2 >
12

1296π2
8,

namely,

5ℓ− k + 88 + 8
(

2−
12

1296π2

)

> 0.

This is nothing but the inequality (6). Therefore, (14) holds if both (6) and (7) are
satisfied.

Theorem 6, Lemma 9 and Lemma 10 imply

Proposition 11. Let (a, b) be any pair of integers satisfying

a+ b ≡ 0 (mod 8), b ≤ −2, 0 ≤ 2a+ 3b < 8.(16)

Let k = (a+ b)/2 and ℓ = (a− b)/2. Then there exits a BF-admissible, irreducible
symplectic 4-manifold Xk,ℓ with fundamental group Z which is homeomorphic to
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kCP 2#ℓCP 2#(S1 × S3). And the connected sum Mk,ℓ
3,3 (m) := Xk,ℓ#Ym#(Σ3 × Σ3)

satisfies both (14) and (15) for each k, ℓ,m.

Proof. First of all, notice that

5k − ℓ = 5
(a+ b)

2
−

(a− b)

2
= 2a+ 3b, 5ℓ− k = 5

(a− b)

2
−

(a+ b)

2
= 2a− 3b.

Therefore, the condition (5) is equivalent to

−7 ≤ 2a+ 3b < 8, 2a− 3b ≥ −103.(17)

Then, Lemma 9 and Lemma 10 tell us that, if (17) holds, then, for any closed 4-
manifold Xk,ℓ which is homeomorphic to kCP 2#ℓCP 2#(S1×S3), the connected sum

Mk,ℓ
3,3 (m) satisfies both (14) and (15).
On the other hand, Theorem 6 tells us that, except possibly for (a, b) equal to

(11,−3), (13,−5), or (15,−7), for any pair (a, b) of integers satisfying

2a+ 3b ≥ 0, a+ b ≡ 0 (mod 8), b ≤ −2,(18)

there exists a BF-admissible, irreducible symplectic 4-manifold Xk,ℓ which is home-

omorphic to kCP 2#ℓCP 2#(S1 × S3). Notice that, under 2a + 3b ≥ 0 and b ≤ −2,
2a − 3b ≥ −103 always holds because 2a − 3b ≥ 2a + 3b ≥ 0. Therefore, both
(17) and (18) hold if (16) is satisfied. Notice also that 2a + 3b ≥ 9 holds for
(a, b) = (11,−3), (13,−5), (15,−7). The desired result now follows.

We are now in a position to prove the Case 1 in Theorem A. First of all, for any
integer 0 ≤ n ≤ 7, we set

a = 17 + n, b = −9− n.(19)

In particular, we have a+b = 8 and 2a+3b = 7−n. Hence we have a+b ≡ 0 ( mod 8),
0 ≤ 2a+ 3b = 7− n < 8 and b ≤ −2. Notice also that

k =
(a+ b)

2
= 4, ℓ =

(a− b)

2
= 13 + n.

Then, Proposition 11 tells us that there exists a BF-admissible, irreducible symplec-
tic 4-manifold X4,13+n which is homeomorphic to 4CP 2#(13 + n)CP 2#(S1 × S3)

and M4,13+n
3,3 (m) := X4,13+n#Ym#(Σ3 × Σ3) satisfies both (14) and (15). Notice

that M4,13+n
3,3 (m) satisfies the strict Gromov-Hitchin-Thorpe type inequality by (14).

Moreover, Theorem 8 in the case where j = 3 tells us that there is no non-singular
solution to the normalized Ricci flow on M4,13+n

3,3 for any initial metric under (15),
here notice that X4,13+n, Ym and (Σ3 × Σ3) are all BF-admissible.

On the other hand, we have C(X4,13+n)+C(Ym)+C(Σ3×Σ3) = 5k−ℓ+0+16 =
2a+ 3b+ 16 = 23− n > 0. Therefore, we obtain the following bound on Perelman’s
λ invariant by (3):

λ̄(M4,13+n
3,3 (m)) ≤ −4π

√

2(23− n) < 0.

Finally, for each n, we shall show that the following sequence

{M4,13+n
3,3 (m)}m∈N(20)
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contains infinitely many diffeo types. First of all, notice that the connected sum
X4,13+n has non-trivial stable cohomotopy Seiberg-Witten invariants by Theorem 3.

In particular, M3,12+n
3,3 (m) has monopole classes which are given by

±c1(X4,13+n)± c1(Ym)± c1(Σ3 × Σ3),(21)

where c1(X) denotes the first Chern class of the canonical line bundle of a closed
symplectic 4-manifold X and we have c1(Ym) = 2mf. Suppose now that the sequence
(20) contains only finitely many diffeomorphism types. Namely, suppose that there
exists a positve integer m0 such that M4,13+n

3,3 (m0) is diffemorphic to M4,13+n
3,3 (m) for

any integer m ≥ m0. Then, by taking m → ∞, we see that the set of monopole
classes of the 4-manifold M4,13+n

3,3 (m0) is unbounded by (21). However, this is a
contradiction because the set of monopole classes of any given smooth 4-manifold
with b+ > 1 must be finite. Therefore, the sequence (20) must contain infinitely many
diffeomorphism types. For any m, since M4,13+n

3,3 (m) is homeomorphic to M(n) :=

4CP 2#(13 + n)CP 2#(S1 × S3)#K3#(Σ3 ×Σ3), we are able to conclude that M(n)
has ∞-property R as desired. Case 1 in Theorem A now follows.

3.2. Case 2. In this subsection, we shall prove Case 2 in Theorem A. The
strategy of the proof in this case is similar to that of Case 1.

Lemma 12. For any pair (k, ℓ) of positive integers satisfying

−11 ≤ 5k − ℓ < 4, 5ℓ− k ≥ −107,(22)

the following conditions are satisfied simultaneously:

5ℓ− k + 92 + 8
(

2−
12

1296π2

)

> 0,(23)

5k − ℓ+ 8
(

2−
12

1296π2

)

> 4,(24)

5k − ℓ < 4.(25)

Proof. One can check that

−92− 8
(

2−
12

1296π2

)

< −107.

Hence, if 5ℓ− k ≥ −107 holds, (23) is also satisfied. Similarly, we have

4− 8
(

2−
12

1296π2

)

< −11.

Hence, (24) holds if 5k − ℓ ≥ −11. This tells us that both (24) and (25) are satisfied
under −11 ≤ 5k − ℓ < 4.

Let Zk,ℓ be any 4-manifold which is homeomorphic to kCP 2#ℓCP 2#Np. Then,
we have

2χ(Zk,ℓ) + 3τ(Zk,ℓ) = 5k − ℓ+ 4, 2χ(Zk,ℓ)− 3τ(Zk,ℓ) = 5ℓ− k + 4.(26)
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Consider the following connected sum

Lk,ℓ
g,h(m) := Zk,ℓ#Ym#(Σh × Σg),(27)

where Ym is the homotopy K3 surface used in Section 3.1. Then we also have

2χ(Lk,ℓ
g,h(m)) + 3τ(Lk,ℓ

g,h(m)) = 5k − ℓ+ 4(g − 1)(h− 1)− 4,(28)

2χ(Lk,ℓ
g,h(m)) − 3τ(Lk,ℓ

g,h(m)) = 5ℓ− k + 4(g − 1)(h− 1) + 92.(29)

Lemma 13. Consider the connected sum (27) in the case wher g = h = 3, i.e.,

Lk,ℓ
3,3(m). Then the following inequality holds if both (23) and (24) are satisfied:

2χ(Lk,ℓ
3,3(m)) − 3|τ(Lk,ℓ

3,3(m))| >
1

1296π2
||Lk,ℓ

3,3(m)|| 6= 0.(30)

Similarly, the following holds if (25) is satisfied:

C(Zk,ℓ) + C(Ym) + C(Σ3 × Σ3) < 24.(31)

Proof. We have C(Zk,ℓ) = 5k− ℓ+4, C(Ym) = 0 and C(Σ3 ×Σ3) = 4 · 2 · 2 = 16.
Therefore, (31) is equivalent to 5k− ℓ+4+16< 24. This is (25). On the other hand,

as the proof of Lemma 10, we have ||Lk,ℓ
3,3(m)|| = ||Zk,ℓ||+ ||Ym||+ ||Σ3×Σ3|| = 24 ·2 ·2,

where notice that ||Zk,ℓ|| = 0 holds because the fundamental group of Zk,ℓ is Zp and
hence this is amenable. From the above, we get

1

1296π2
||Lk,ℓ

3,3(m)|| =
24

1296π2
4 =

12

1296π2
8.

In particular, ||Lk,ℓ
3,3(m)|| 6= 0. By (28), we also have 2χ(Lk,ℓ

g,h(m)) + 3τ(Lk,ℓ
g,h(m)) =

5k − ℓ+ 4 · 2 · 2− 4 = 5k − ℓ+ 8 · 2− 4. Therefore,

2χ(Lk,ℓ
3,3(m)) + 3τ(Lk,ℓ

3,3(m)) >
1

1296π2
||Lk,ℓ

3,3(m)||

is equivalent to

5k − ℓ+ 8 · 2− 4 >
12

1296π2
8,

namely,

5k − ℓ+ 8
(

2−
12

1296π2

)

> 4.

This is the inequality (24). Similarly, by (29), we also have 2χ(Lk,ℓ
3,3(m)) −

3τ(Lk,ℓ
3,3(m)) = 5ℓ− k + 4 · 2 · 2 + 92 = 5ℓ− k + 92 + 8 · 2. Hence,

2χ(Lk,ℓ
3,3(m))− 3τ(Lk,ℓ

3,3(m)) >
1

1296π2
||Lk,ℓ

3,3(m)||
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is equivalent to

5ℓ− k + 92 + 8 · 2 >
12

1296π2
8,

namely,

5ℓ− k + 92 + 8
(

2−
12

1296π2

)

> 0.

This is nothing but (23). Therefore, (30) holds if both (23) and (24) are satisfied.

By Theorem 6, Lemma 12 and Lemma 13, we obtain

Proposition 14. Let (a, b) be any pair of integers satisfying

a+ b ≡ 0 (mod 8), b ≤ −2, 0 ≤ 2a+ 3b < 8.(32)

And let

k =
a+ b

2
− 1, ℓ =

a− b

2
− 1.

Then there exits a BF-admissible, irreducible symplectic 4-manifold Zk,ℓ with funda-

mental group Zp which is homeomorphic to kCP 2#ℓCP 2#Np, and the connected sum

Lk,ℓ
3,3(m) := Zk,ℓ#Ym#(Σ3 × Σ3) satisfies (30) and (31) for each k, ℓ,m.

Proof. First of all, notice that

5k − ℓ = 5
((a+ b)

2
− 1

)

−
((a− b)

2
− 1

)

= 2a+ 3b− 4,

5ℓ− k = 5(
(a− b)

2
− 1)− (

(a+ b)

2
− 1) = 2a− 3b− 4.

Therefore, the condition (22) is equivalent to

−7 ≤ 2a+ 3b < 8, 2a− 3b ≥ −103.(33)

By Lemma 12 and Lemma 13, if (33) holds, for any closed 4-manifold Zk,ℓ which

is homeomorphic to kCP 2#ℓCP 2#Np, the connected sum Lk,ℓ
3,3(m) satisfies (30) and

(31).
Moreover, Theorem 6 tells us that, except possibly for (a, b) equal to (11,−3),

(13,−5), or (15,−7), for any pair (a, b) of integers satisfying

2a+ 3b ≥ 0, a+ b ≡ 0 (mod 8), b ≤ −2,(34)

there exists a BF-admissible, irreducible symplectic 4-manifold Zk,ℓ which is home-

omorphic to kCP 2#ℓCP 2#Np. Notice that 2a − 3b ≥ −103 always holds under
2a + 3b ≥ 0 and b ≤ −2. Therefore, both (33) and (34) hold if (32) is satis-
fied. The desired result now follows, where notice that 2a + 3b ≥ 9 holds for
(a, b) = (11,−3), (13,−5), (15,−7).

We prove the Case 2 of Theorem A as follows: For any integer 0 ≤ n ≤ 7,
let a = 17 + n and b = −9 − n. In particular, we have a + b = 8 ≡ 0 (mod 8),
0 ≤ 2a+ 3b = 7− n < 8 and b ≤ −2. We also have

k =
(a+ b)

2
− 1 = 3, ℓ =

(a− b)

2
− 1 = 12 + n.
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Then, Proposition 14 tells us that there exists a BF-admissible, irreducible sym-
plectic 4-manifold Z3,12+n which is homeomorphic to 3CP 2#(12 + n)CP 2#Np, and

L3,12+n
3,3 (m) := Z3,12+n#Y (m)#(Σ3 ×Σ3) satisfies (30) and (31). The connected sum

L3,12+n
3,3 (m) satisfies the strict Gromov-Hitchin-Thorpe type inequality by (14). And

Theorem 8 implies that we have no non-singular solution to the normalized Ricci
flow on L3,12+n

3,3 (m) for any initial metric under (31). On the other hand, we have
C(Z3,12+n) +C(Ym) + C(Σ3 × Σ3) = 7− n+ 16 = 23− n > 0. Therefore, by (3), we
obtain

λ̄(L3,12+n
3,3 (m)) ≤ −4π

√

2(23− n) < 0.

Finally, as the proof of Case 1 above, for each n, we are able to show that
{L3,12+n

3,3 (m)}m∈N contains infinitely many diffeo types by taking m → ∞. For

any m, notice that L3,12+n
3,3 (m) is homeomorphic to L(n) := 3CP 2#(12 +

n)CP 2#Np#K3#(Σ3 × Σ3). Therefore, we are able to conclude that L(n) has ∞-
property R as desired.

3.3. Case 3. Finally, we shall prove Case 3 of Theorem A. Let Pk,ℓ be any

4-manifold which is homeomorphic to kCP 2#ℓCP 2. Then, we have

2χ(Pk,ℓ) + 3τ(Pk,ℓ) = 5k − ℓ+ 4, 2χ(Pk,ℓ)− 3τ(Pk,ℓ) = 5ℓ− k + 4.(35)

Notice that we have 2χ(Pk,ℓ)+3τ(Pk,ℓ) = 2χ(Zk,ℓ)+3τ(Zk,ℓ) and 2χ(Pk,ℓ)−3τ(Pk,ℓ) =
2χ(Zk,ℓ)− 3τ(Zk,ℓ) by (26) and (35). Consider the following connects sum

Gk,ℓ
g,h(m) := Pk,ℓ#Ym#(Σh × Σg),

where Ym is again the homotopy K3 surface used as before. Then, by using Corollary
5 instead of Theorem 6 and using the same argument with that of Proposition 14, we
are able to obtain

Proposition 15. Let (a, b) be any pair of integers satisfying

a+ b ≡ 0 (mod 8), b ≤ −2, 0 ≤ 2a+ 3b < 8.(36)

Let

k =
a+ b

2
− 1, ℓ =

a− b

2
− 1.

Then, there exits a BF-admissible, irreducible symplectic 4-manifold Pk,ℓ which is

homeomorphic to kCP 2#ℓCP 2 and for each k, ℓ,m, Gk,ℓ
3,3(m) := Pk,ℓ#Ym#(Σ3 ×Σ3)

satisfies

2χ(Gk,ℓ
3,3(m))− 3|τ(Gk,ℓ

3,3(m))| >
1

1296π2
||Gk,ℓ

3,3(m)|| 6= 0,(37)

C(Pk,ℓ) + C(Ym) + C(Σ3 × Σ3) < 24.(38)

Case 3 in Theorem A follows easily from Proposition 15. As before, for any integer
0 ≤ n ≤ 7, let a = 17 + n and b = −9 − n. Of course, we have a + b ≡ 0 (mod 8),
0 ≤ 2a + 3b = 7 − n < 8 and b < −2, k = 3 and ℓ = 12 + n. Then, Proposition 15
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implies that there exists a BF-admissible, irreducible symplectic 4-manifold P3,12+n

which is homeomorphic to 3CP 2#(12 + n)CP 2, and

G3,12+n
3,3 (m) := P3,12+n#Y (m)#(Σ3 × Σ3)

satisfies (37) and (38). Hence, G3,12+n
3,3 (m) satisfies the strict Gromov-Hitchin-Thorpe

type inequality, and there is no non-singular solution to the normalized Ricci flow
on G3,12+n

3,3 (m) for any initial metric by Theorem 8. We are also able to show the
following by (3):

λ̄(G3,12+n
3,3 (m)) ≤ −4π

√

2(23− n) < 0.

Finally, by considering the sequence {G3,12+n
3,3 (m)}m∈N, we conclude that 3CP

2#(12+

n)CP 2#K3#(Σ3 × Σ3) has ∞-property R for each n.
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