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PROJECTIVE COMPLETIONS OF AFFINE VARIETIES VIA

DEGREE-LIKE FUNCTIONS∗

PINAKI MONDAL†

Abstract. We study projective completions of affine algebraic varieties induced by filtrations on
their coordinate rings. In particular, we study the effect of the ‘multiplicative’ property of filtrations
on the corresponding completions and introduce a class of projective completions (of arbitrary affine
varieties) which generalizes the construction of toric varieties from convex rational polytopes. As
an application we recover (and generalize to varieties over algebraically closed fields of arbitrary
characteristics) a ‘finiteness’ property of divisorial valuations over complex affine varieties proved in
[dFEI08]. We also find a formula for the pull-back of the ‘divisor at infinity’ and apply it to compute
the matrix of intersection numbers of the curves at infinity on a class of compactifications of certain
affine surfaces.
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1. Introduction.

1.1. Summary. It is a standard fact in algebraic geometry that filtrations
(satisfying some natural conditions) on the ring of regular functions of affine varieties
correspond to their projective completions (i.e. complete varieties containing them
as dense open subsets). In this article we study the connection between properties
of filtrations and corresponding completions. We primarily focus on (completions
corresponding to) filtrations induced by subdegrees - a notion motivated by the theory
of toric varieties (in particular completions of the n-torus (C∗)n induced by convex
rational polytopes). In short the main results are as follows:

1. We develop a structure theorem for completions determined by subdegrees and
show that in a (precise) sense the correspondence between completions determined
by general filtrations and completions determined by subdegrees is analogous to the
correspondence between varieties and their normalizations.

2. As an application we show that every divisorial valuations over an affine
variety is ‘determined’ by its values on a finite number of functions. This result
was proved for varieties over C in [dFEI08] using desingularization and geometry of
arc spaces. Our proof uses essentially elementary (but perhaps somewhat involved)
commutative algebra and algebraic geometry.

3. We prove a formula for the pull-back (under a dominating morphism) of the
‘divisor at infinity’ on completions determined by subdegrees in terms of the linking
numbers (introduced by Samuel [Sam59]) of valuations centered at infinity; in partic-
ular this gives a global interpretation of linking numbers. As applications we compute
the matrix of intersection numbers of curves at infinity on a class of completions of
certain affine surfaces and find a necessary condition for the finite generation of a
subdegree on the coordinate ring of these surfaces. In particular it turns out that the
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matrix of linking numbers of the valuations centered at infinity is invertible, which
motivates a somewhat amusing conjecture on the invertibility of the matrix of the
maximum ratios of a finite collection of n-tuples of positive real numbers.

1.2. More elaborate discussion of main results.

Notation 1.1. Throughout this article X denotes an affine variety over an
algebraically closed field K. The ring of regular functions (resp. the field of rational
functions) on X will be denoted by K[X ] (resp. K(X)). Given an ideal I of a ring A
(resp. a graded ring B), the zero set of I in SpecA (resp. ProjB) will be denoted by
V (I).

Basic Construction and Guiding Examples. We consider the following ‘rough’
correspondence (here we avoid some technical assumptions - see Proposition 2.8 for
the formal version) -

Filtrations on K[X ] ←→
Closed immersions of X into weighted projec-
tive spaces.

In our case a filtration F on the ring K[X ] of regular functions on X is a family
{Fk : k ∈ Z} of vector subspaces of the ring K[X ] of regular functions on X such
that 1 ∈ F0 ⊆ F1 ⊆ F2 ⊆ · · · ⊆

⋃
d≥0 Fd = K[X ], and FdFe ⊆ Fd+e for all d, e ∈ Z.

The above correspondence is induced via the natural open immersion X →֒ X̄F :=

Proj
(∑

d≥0 Fdt
d
)
, where t is an indeterminate over K[X ] (Proposition 2.8). The

complement of X in X̄F is the zero set of the ideal of t. In most classical settings
filtrations appear in the guise of degree-like functions, i.e. functions δ : K[X ] → Z

which satisfy:

1. δ(f + g) ≤ max{δ(f), δ(g)} for all f, g ∈ K[X ], with < in the preceding
equation implying δ(f) = δ(g).

2. δ(fg) ≤ δ(f) + δ(g) for all f, g ∈ K[X ].

The filtration Fδ := {F δd }d∈Z induced by δ is given by F δd := {f ∈ K[X ] :
δ(f) ≤ d} and the completion of X corresponding to δ is X̄δ := ProjK[X ]δ, where
K[X ]δ :=

∑
d≥0 F

δ
d t
d is the graded ring associated to the filtration constructed as in

the preceding paragraph. For example, if X := Kn with coordinates (x1, . . . , xn) and
δ is the degree of polynomials in K[x1, . . . , xn], then X̄δ ∼= Pn(K). Similarly, if δ is
the weighted degree on K[x1, . . . , xn] which assigns a positive integral weight dj to
xj , 1 ≤ j ≤ n, then X̄δ is the weighted projective space Pn(K; 1, d1, . . . , dn).

A bigger class of completions induced by degree-like functions are projective toric
varieties. Indeed, let P be an n-dimensional convex polytope in Rn which contains
the origin in the interior and whose vertices have rational coordinates. Then P corre-
sponds to an n-dimensional projective normal toric variety XP . We claim that XP is
the completion of the n-torus X := (K∗)n induced by a degree-like function. Indeed,
define δP : K[x1, x

−1
1 , . . . , xn, x

−1
n ] \ {0} → Q such that

δP(
∑

aαx
α) := inf{r ∈ R : r ≥ 0, α ∈ rP for all α ∈ Zn such that aα 6= 0}

(see Figure 1 for an example). Pick any positive integer e such that eδP is integer-
valued. Then eδP is a degree-like function on K[X ] and it is not hard to see that
XP
∼= X̄eδP .
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Fig. 1. δP = max{δ1, δ2, δ3}

Note that our first two examples of degree-like functions, namely degree and
weighted degrees on polynomial rings, satisfy the multiplicative property (i.e. property
2) of degree-like functions with exact equality. On the other hand, it is straightfor-
ward to see that even though the degree-like functions δP of the preceding paragraph
in general do not satisfy property 2, they are the maxima of finitely many degree-like
functions which do satisfy it, namely the weighted degrees determined by the facets
(i.e. (n − 1)-dimensional faces) of P (see Figure 1 and Example 3.5). Motivated by
these examples we define two special classes of degree-like functions: semidegrees,
which satisfy property 2 of degree-like functions with exact equality, and subdegrees,
which are the maxima of finitely many semidegrees. The primary motive of this article
is to (start to) explore to what extent properties of toric varieties remain true for com-
pletions of affine varieties determined by general subdegrees. In a sequel to this paper
we plan to study compactifications of the affine space determined by special classes
of subdegrees, e.g. subdegrees determined by weighted degrees in different systems
of coordinates. We would like to mention that when dealing with compactifications,
sometimes using only the formalism of degree-like functions may simplify problems,
as we found out in the proof of the ‘algebraicity criterion’ of [Mon13a].

Remark 1.2. Note that the negative of an (integer-valued) semidegree is simply a
discrete valuation. More generally, negative of degree-like functions have been studied,
from the perspective of local geometry or algebra.

Our notion Classical terminologies for its negative

degree-like function order function [Szp66], [LJT08], pseudo-valuation [Huc70]
subdegree homogeneous order function [Szp66], subvaluation [Huc70]
semidegree (discrete) valuation



576 P. MONDAL

Our ‘structure theorem’ for subdegrees (Theorem 4.1) is a strengthening of a special
case of [Szp66, Theorem 1] (see Remark 4.3). An essential ingredient of our ‘main
existence theorem’ (Theorem 5.10) is Rees’ theory of subvaluations associated with
ideals [Ree56a], [Ree56b].

Structure Theorem for Subdegrees and its Corollaries. Let δ be a subdegree on
K[X ] with δ = max{δ1, . . . , δk}. Getting rid of the ‘extra’ δj ’s if necessary, we may
assume the presentation is minimal, i.e. for every j, 1 ≤ j ≤ k, there exists f ∈ K[X ]
such that δj(f) > δi(f) for all i 6= j, 1 ≤ i ≤ k. Our first main result is the ‘structure
theorem’ for subdegrees:

Theorem 1.3 (Informal version of Theorem 4.1 and Proposition 5.2). Every
subdegree δ has a unique minimal presentation. A degree-like function δ is a subdegree
iff the ideal I of K[X ]δ generated by t is a decomposable radical ideal. If δ is a
subdegree then the non-zero semidegrees in the minimal presentation of δ are multiples
of the orders of pole (of rational functions on X) along the irreducible components of
V (I) = X̄δ \X.

An immediate corollary of Theorem 1.3 gives a characterization of subdegrees
in the case that K[X ]δ is Noetherian, namely: δ is a subdegree iff δ(fk) = kδ(f)
for all f ∈ K[X ] and k ≥ 0. Another corollary of the arguments in the proof of
Theorem 1.3 is a ‘finiteness property’ of divisorial valuations. Recall that divisorial
valuations on K(X) are valuations of the form ν := q ordE : K(X)∗ → Z, where E is
a prime divisor on a normal variety Y equipped with a proper birational morphism
f : Y → X , q = q(v) is a positive integer number called the multiplicity of ν, and for
every h ∈ K(X)∗ which is regular at the generic point of f(E), ordE(h) is the order
of vanishing of h ◦ f at the generic point of E. Given a divisorial valuation ν over X ,
we may consider that ν is centered at infinity with respect to some affine variety Z w
hich is birational to X and therefore we may assume by means of Theorem 1.3 that
−ν is a semidegree associated to some subdegree on K[Z]. Applying arguments of the
proof of Theorem 1.3 to this context yields the following result which was proved in
[dFEI08, Theorem 0.2] for K = C.

Theorem (Theorem 5.14). Let X be an irreducible affine variety and ν be a
divisorial valuation over X. Then there exist elements f1, . . . , fr ∈ K[X ] \ {0} such
that for every f ∈ K[X ] \ {0},

ν(f) = min{ν′(f) : ν′
is a divisorial valuation over X, ν

′(fi) = ν(fi) for 1 ≤ i ≤ r}(∗)

= min{ν′(f) : ν′
is a valuation on K(X) such that the value group of ν contains

the integers and ν
′(fi) = ν(fi) for 1 ≤ i ≤ r}(∗′)

Normalization at infinity of completions. In order to study a given completion X̄
of an affine variety X , it is natural to try to find a ‘simpler’ model, i.e. a ‘simpler’
completion X̄ ′ of X which dominates X̄ , i.e. which comes with a morphism π : X̄ ′ →
X̄ that restricts to the identity on X . If X is normal or non-singular, a natural choice
for the ‘simpler’ model is the normalization or a desingularization of X̄ (provided the
latter exists of course). For a general X , we introduce the normalization at infinity
of X̄ with respect to X , which is the unique minimal completion X̄ ′ dominating X̄
such that X̄ ′ is normal at infinity with respect to X , i.e. for all open subset U of X̄ ′,
the ring of regular functions on U is integrally closed in the ring of regular functions
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on U ∩ X . In particular, if X̄ is normal, then X̄ ′ ∼= X̄. Using the theory of Rees
valuations ([Ree56a], [Ree56b]) we show that

Theorem (A reformulation of Theorem 5.10). Let X̄ be a projective completion
of X such that X̄ \ X is the support of an effective ample divisor. Then there is a
subdegree δ′ on K[X ] such that X̄δ′ is the normalization at infinity of X̄ with respect
to X. If δ is any degree-like function such that X̄δ ∼= X̄, then one such δ′ is given by:

δ′(f) := e lim
n→∞

δ(fn)

n
for all f ∈ K[X ],

where e is a sufficiently divisible integer.

Note 1.4. A completion X̄ of X is induced by a degree-like function iff X̄ \X
is the support of an effective ample divisor (Proposition 2.8).

Divisor at Infinity and its Multiplicities. Let δ be a subdegree and δ =
max{δ1, . . . , δk} be the minimal presentation of δ as the maximum of semidegrees.
It follows from Theorem 1.3 that δj = −dj ordEj

, where E1, . . . , Ek are irreducible
components of X̄δ \X , and for each j, ordEj

is the order of vanishing along Ej and
dj is some positive integer. This motivates a natural question about the roles of the
numbers dj . More precisely, it is natural to ask

Question 1.5. If X̄1 and X̄2 are two completions of X such that the set of
divisorial valuations associated to the irreducible complements of X̄j \X are identical,
then is it true that X̄1

∼= X̄2?’

If dimX ≤ 2, then it is easy to see that the answer to Question 1.5 is positive.
However, straightforward examples from toric geometry shows that it is not true in
higher dimensions. Indeed, for n ≥ 3, it is easy to find two convex rational polytopes
(‘rational’ means that the vertices have rational coordinates) P1,P2 in Rn such that
the following properties are satisfied (see Figure 2):

1. there is a one-to-one correspondence between the facets of Pi’s such that for
each facet Q1 of P1, the corresponding facet Q2 of P2 has the same outer
normal (i.e. Q1 and Q2 are parallel and on the ‘same side’ of the origin), but

2. P1 and P2 are not combinatorially isomorphic (i.e. the face lattice of Pi’s are
not isomorphic).

P1 P2

Fig. 2. Polytopes corresponding to toric varieties giving negative answer to Question 1.5

Then it follows from basic theory of toric varieties (e.g. as in [Ful93]) that the toric
varieties XP1 and XP2 are not isomorphic, even though the irreducible components of
the complement of the n-torus inXPj

’s determine the same set of divisorial valuations.

The preceding example shows that qj ’s play a non-trivial role in the structure
of X̄δ. One of the places they manifest is in the divisor on X̄δ determined by t ∈
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K[X ]δ =
∑

d≥0 F
δ
d t
d. Indeed, the Q-Cartier divisor of t on X̄δ is precisely

∑k

j=1
1
dj
Ej

(Lemma 6.2). We call this divisor the divisor at infinity and denote it by Dδ
∞. The

toric analogue for the divisor at infinity is the divisor of a polytope ([CLS11, Section
7.1]). We prove a formula for its pull-back under a dominant morphism:

Proposition (Proposition 6.4). Let φ : Z → X̄δ be a dominant morphism. Then

φ∗(Dδ
∞) =

∑

W

lφ∞(δ, poleW )[W ],(1)

where the sum is over codimension one irreducible subvarieties W of Z, and for each
such W , the function poleW is the negative of the order ordW of vanishing along W
and

lφ∞(δ, poleW ) := max

{
poleW (φ∗(f))

δ(f)
: f ∈ K[X ], δ(f) > 0

}
.

Remark 1.6. Identity (1) in particular implies that lφ∞(δ, poleW ) exists. Note
also that the sum in identity (1) is finite, since lφ∞(δ, poleW ) = 0 for all codimension
one irreducible subvariety W of Z such that W ∩ φ−1(X) 6= ∅.

Remark-Definition 1.7. Given a Krull local ring o, a valuation ω on o and a
height one prime ideal p of o, the linking number [Huc70] of ω and the valuation νp
on o corresponding to p is

l(ω, νp) := inf
f∈p, f 6=0

ω(f)

νp(f)
.

The linking number was introduced in [Sam59] in connection with defining the pull-
back of Weil divisors under a birational regular mapping. More precisely, if φ : Z → Y
is a birational map and ω (resp. νp) is the order of vanishing along a codimension one
subvariety W of Z (resp. V of Y ), then l(ω, νp) is a ‘candidate’ for the coefficient of
[W ] in φ∗([V ]). Now assume Y := X̄δ for a semidegree δ (i.e. Y \ X is irreducible)
and V := Y \X . Then δ = −νp and poleW = −ω. [Sam59, Theorem 2] and identity
(1) then imply that

lφ∞(δ, poleW ) = l(− poleW ,−δ).

It is perhaps instructive that l(− poleW ,−δ) and l
φ
∞(δ, poleW ) measure the same quan-

tity, but the inf of the local computation is replaced by a sup in the global compu-
tation. We call lφ∞(δ, poleW ) the linking number at infinity (relative to φ) of δ and
poleW . In the case that φ is birational (so that φ∗ is identity on the function field),
we simply write l∞(δ, poleW ) for lφ∞(δ, poleW ).

Intersection numbers of curves at infinity. Let X be a normal affine surface with
no non-constant invertible regular functions (e.g. K2) and X̄1, . . . , X̄k be normal al-
gebraic completions of X such that for each j, the complement Cj of X in X̄j is
an irreducible curve. Let X̄ be the normalization of the diagonal embedding of X
into X̄1 × · · · × X̄k. We apply Proposition 6.4 to compute the matrix of intersection
numbers of the curves at infinity on X̄ in terms of the linking numbers at infinity
of associated semidegrees (Lemma 6.6) - in particular, it turns out that in this case
the matrix of linking numbers at infinity of the semidegrees is invertible. Taking the
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semidegrees to be weighted degrees yields the following statement (which is not hard
to verify directly, see e.g. [mat]):

Corollary 1.8 (cf. Corollary 6.7). Let n = 2. Let v1, . . . , vk be pairwise non-
proportional elements in Qn with positive coordinates and L be the k× k matrix with
entries

lij := max{
vjm
vim

: 1 ≤ m ≤ n}.

Then L is invertible.

Motivated by Corollary 1.8 and a lot of computation (done mostly for n = 3), we
propose the following

Conjecture 1.9. The conclusion of Corollary 1.8 remains true for all n ≥ 2.

Since lij ’s are precisely the linking numbers at infinity of weighted degrees deter-
mined by vi and vj , it seems plausible that Conjecture 1.9 can be proved/disproved
using the geometry of toric varieties associated to polytopes with facets determined
by vj ’s.

Finite generation of subdegrees. For a subdegree δ on K[X ] to correspond to a
completion ofX , it is necessary that δ is finitely generated, i.e. the graded ring K[X ]δ is
finitely generated as an algebra over K. It is therefore natural to try to find conditions
which guarantee that δ is finitely generated. Note that if δ1, . . . , δk are semidegrees
such that δ = max{δ1, . . . , δk}, then K[X ]δ =

⋂k
j=1 K[X ]δj . It is therefore natural to

ask:

Question 1.10. If each δj is finitely generated, then is it true that δ is also
finitely generated?

If X = (K∗)n and each δj is a weighted degree in a fixed set of coordinates on
X , then the answer to Question 1.10 is positive and is an implication of Gordan’s
Lemma (which states that the integral points in a closed rational cone of Rn form a
finitely generated semigroup). But as the following example from [Mon13b] shows,
the answer is in general false, even for n = 2.

Example 1.11. Consider elements y1 := y− x5 − x−2 and y2 := y+ x5 − x−2 of
C(x, y). Let δ1 (resp. δ2) be the weighted degree on C(x, y) with respect to coordinates
(x, y1) (resp. (x, y2)) corresponding to weights 1 for x and −3 for y1 (resp. y2). Then
it turns out that C[x, y]δj is finitely generated for each j and δ := max{δ1, δ2} is
strictly positive on non-constant elements of C[x, y], but δ is not finitely generated -
see [Mon13b, Section 2] for details. In fact it is shown in [Mon13b] that δ corresponds
to a non-algebraic normal analytic compactification of C2.

For n = 2, we give a positive answer to Question 1.10 under the additional
hypothesis that each δj is strictly positive on every non-constant regular function on
X (Corollary 6.9). Indeed, this additional hypothesis is equivalent to saying that
each X̄δj is a projective completion of X . Let X̄ be the normalization of the diagonal
embedding of X into X̄δ1 × · · · × X̄δk . Then Question 1.10 reduces to a question
about ampleness of some divisors on X̄, which we answer using Proposition 6.4.

Remark 1.12. Special cases of the surfaces X̄ of the preceding paragraph (for
X = C2) have been studied in [CPRL02]. They constitute a natural class of surfaces
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for which the cone of curves is ‘nice’, e.g. it is finitely generated and simplicial (this
follows e.g. from Lemma 6.6).

Remark-Question 1.13. Counter-examples to Question 1.10 that we know of
(e.g. Example 1.11) require the characteristic of the field to be zero. Therefore we
ask: is the answer to Question 1.10 positive if K has positive characteristic?

1.3. Organization. In the next section we introduce and give some examples of
the correspondence between filtrations on the coordinate ring K[X ] of an affine variety
X and projective completions of X . In particular, we show that ‘finitely generated’
filtrations on K[X ] correspond to immersions of X into generalized weighted projective
spaces (Proposition 2.8). In Section 3 we reformulate the notion of filtrations in terms
of degree-like functions and introduce two special classes of degree-like functions which
are protagonists of this article, namely semidegree and subdegree.

The remaining sections contain our main results. In Section 4 we establish the
structure theorem of subdegrees (Theorem 4.1) and some of its immediate corollaries.
Section 5 is devoted to the study of ‘normality’ properties of completions determined
by subdegrees. In this section we establish the relation between semidegrees in the
minimal presentation of a subdegree and orders of pole along components of the
hypersurface at infinity on the completion induced by the subdegree (Proposition
5.2). We also introduce the notion of relative normality at infinity, and show that
the completion X̄δ of an affine variety X determined by a a subdegree δ on K[X ] is
relatively normal at infinity with respect to X (Proposition 5.6). We then establish
the existence of a subdegree δ̃ which normalizes a given degree-like function δ in the

sense that X̄ δ̃ is the normalization at infinity (with respect to X) of X̄δ (Theorem
5.10). We end Section 5 with a proof of the ‘finiteness property’ of divisorial valuations
discovered (in the case of complex varieties) in [dFEI08] (Theorem 5.14). In Section 6
we prove the ‘pull-back formula’ of the divisor at infinity (Proposition 6.4) and apply
it to give a geometric proof of Corollary 1.8 and find a sufficient condition for the
answer to Question 1.10 to be positive.

This article is mostly based on my PhD thesis. Some of the results of this ar-
ticle were announced in [Mon08] and [Mon12]. I express my gratitude to my thesis
advisor Professor Pierre Milman for posing the questions, helpful suggestions, and in
general guiding me throughout this work. I would also like to thank Professor Askold
Khovanskii for helpful suggestions (e.g. he pointed out the possibility of a connection
between semidegrees and ‘orders of poles at infinity’ [Kho]) and Professor Bernard
Teissier for bringing the article [Szp66] to my attention.

2. Compactifications from filtrations. In this section we set up the corre-
spondence between filtrations and completions. The material is basic and well-known
(except for assertion 2 of Proposition 2.8).

Definition 2.1. A filtration F on an K-algebra A is a family {Fi : i ∈ Z} of
K-vector subspaces of A such that

1. Fi ⊆ Fi+1 for all i ∈ Z

2. 1 ∈ F0 \ F−1

3. A =
⋃
i∈Z

Fi and
4. FiFj ⊆ Fi+j for all i, j ∈ Z.

Remark 2.2. The condition 1 6∈ F−1 is introduced only to exclude the trivial
filtration, i.e. the filtration {Fi := A}i∈Z.
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To each filtration F on a K-algebra A we associate two graded rings:

AF :=
⊕

d≥0

Fd, and grAF :=
⊕

d≥0

(Fd/Fd−1).

For each f ∈ Fd, we denote the ‘copy’ of f in the d-th graded component of AF by
(f)d. The ring AF has a natural graded K-algebra structure with the multiplication
defined by:

(
∑

d

(fd)d

)(
∑

e

(ge)e

)
:=
∑

k

∑

d+e=k

(fdge)k.

We say that F is a finitely generated filtration if AF is a finitely generated K-algebra.

Remark 2.3. Let t be an indeterminate over A. Then there is an isomorphism

AF ∼=
∑

d≥0

Fdt
d ⊆ A[t, t−1]

which maps (f)d 7→ ftd for all f ∈ A (in particular, (1)1 7→ t). It follows immediately
from this isomorphism that A is a domain iff AF is also a domain.

Remark 2.4 (Motivation for the grading on AF). Note that even though it
is possible for a filtration to have non-trivial components with negative degree, when
forming the graded rings we take the direct sum only over components of non-negative
degree. The motivation is geometric: given a variety Y and a Cartier divisor D on
Y , a basic object of study in algebraic geometry is the graded ring

RY,D :=
⊕

d≥0

H0(Y,OY (dD)),(2)

and in some ‘natural’ scenarios it turns out that Y ∼= ProjRY,D (e.g. see assertion
2b of Proposition 2.8). Now let X be the complement of the support of D in Y
and FD,d := H0(Y,OY (dD))|X . Then FD := {FD,d}d∈Z defines a filtration on A :=
Γ(X,OX), and it follows from our definition that AF ∼= RY,D. Our choice of taking
the sum over components with only non-negative components of F (in the definition
of AF ) comes from emulating the definition of RY,D. Initial supporting evidences for
this choice come from Example 2.5 and Proposition 2.8 below.

Example 2.5. Let ω1, . . . , ωn ∈ Z such that gcd(ω1, . . . , ωn) = 1 and

at least one of the ωi’s is positive.(3)

Let ω be the weighted degree on A := K[x1, . . . , xn] corresponding to weights ωk for
xk, 1 ≤ k ≤ n. Define a filtration Fω on A as Fω := {f ∈ A : ω(f) ≤ d}d≥0 and
let X̄Fω := ProjAF . If each ωk > 0, then we noted in the beginning of Section 1.2
that X̄Fω is the classical weighted projective space Pn(K; 1, d1, . . . , dn); in particular,
X̄Fω is a projective completion of X := SpecA ∼= Kn. But it is straightforward to
check that even if some of the ωk’s are non-positive, as long as (3) is satisfied, X̄Fω is
a quasi-projective variety containing X as a dense open subset, X∞ := X̄Fω \X is an
irreducible n−1 dimensional subvariety of X̄Fω and for every polynomial f ∈ A, ω(f)
is prec isely the pole of f alongX∞ (in the terminology of Section 3, ω is a semidegree,
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and the last assertion of the preceding sentence is a precursor of Proposition 5.2). Note
that X̄Fω is a generalized weighted projective space in the sense of Definition 2.7.

Remark 2.6. Note that (3) is a natural condition in our context, since the under-
lying goal in Example 2.5 is to construct varieties that contain Kn, and ω is a degree-
like function (Definition 3.1) which is ‘expected’ to measure the pole of polynomials
along the boundary to be constructed. For the resulting space to be ‘reasonable,’ at
least some of the polynomials should grow near infinity, i.e. they should have positive
poles.

Definition 2.7 (Generalized weighted projective spaces). Pick ω0, . . . , ωn ∈ Z

satisfying (3). We give two equivalent definitions for the generalized weighted pro-
jective space Pn(K;ω0, . . . , ωn) (note that our definitions agree with the definition of
weighted projective spaces in the classically treated case that ωj ’s are all positive).

Definition 2.7.1. Let ω be the weighted degree on S := K[x0, . . . , xn] corre-
sponding to weights ωk for xk, 0 ≤ k ≤ n. Then

Pn(K;ω0, . . . , ωn) := Proj


∑

d≥0

Sd


 , where

Sd := {f ∈ S : f weighted homogeneous with respect to ω, ω(f) = d}.

Definition 2.7.2. W.l.o.g. assume ω0 > 0. Pick linearly independent vectors
v1, . . . , vn ∈ Rn. Define v0 := − 1

ω0

∑n

k=1 ωkvk and set L to be the Z-span of v0, . . . , vn
(i.e. L is the lattice generated by v0, . . . , vn). Then Pn(K;ω0, . . . , ωn) is the toric
variety corresponding to the fan ‘determined by’ v0, . . . , vn in the lattice L. More
precisely, for each i, 0 ≤ i ≤ n, let σi be the (n-dimensional simplicial) cone generated
by all vj ’s other than vi, and let Σω0,...,ωn

be the simplicial fan consisting of those σi
(and all their sub-cones) for which ωi > 0. Then Pn(K;ω0, . . . , ωn) is the toric variety
corresponding to the fan Σω0,...,ωn

and the lattice L.

v1

v2

v0
Σ1,3,2

v1

v2

v0

Σ1,3,−2

v1

v2

v0
Σ1,−3,2

v1

v2

Σ1,−3,−2

Fig. 3. Fans of generalized weighted projective surfaces

The following proposition establishes the basic dictionary between completions of
an affine variety and filtrations on its coordinate ring.

Proposition 2.8. Let X be a (possibly reducible) affine variety.
1. If F := {Fd : d ∈ Z} is a filtration on K[X ], then X̄F := ProjK[X ]F is a

reduced scheme containing X as a (Zariski) open dense subset. The embedding
X →֒ X̄F is induced via the map:

X = SpecK[X ] ∋ p 7→
⊕

d≥0

(p ∩ Fd) ∈ ProjK[X ]F = X̄F .
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The complement of X in X̄F is the zero set of (1)1 and is isomorphic (as a
scheme) to Proj grAF . Moreover,
(a) If F is finitely generated, then

i. X̄F is a closed subvariety of a generalized weighted projective space,
and

ii. X̄F \X is the support of an effective ample divisor on X̄F .
(b) If in addition (to the assumptions of 1a) F0 = K, then X̄F is a projective

variety.
2. (a) If S is a graded K-algebra such that ProjS contains X as a dense open

subset and ProjS \ X = V (h) for some homogeneous h ∈ X of degree
d > 0, then there is a filtration F on K[X ] such that X̄F ∼= ProjS.

(b) If Y is a closed subvariety of a generalized weighted variety containing
X such that Y \X is the support of an effective ample divisor, then there
is a finitely generated filtration F on K[X ] such that X̄F ∼= Y .

Proof. We omit the proof of assertion 1, since it follows in a straightforwardmatter
from the definitions. For assertion 2a, recall that ProjS \ V (h) ∼= SpecS(h), where
S(h) is the subring of the localization Sh of S consisting of homogeneous elements of
degree zero. By assumption there is an isomorphism φ : S(h)

∼= K[X ]. For each k ≥ 0,
define

Fk := φ(Skd/h
kd) = {g ∈ K[X ] : φ−1(g) ∈ Skd/h

kd}.

Then it is straightforward to check that the F := {Fi}i≥0 is a filtration on K[X ] which
satisfies the claim of assertion 2a.

Now we prove Assertion 2b. Since Y is a closed subvariety of a generalized of a
generalized weighted variety, it turns out that Y = ProjS for a finitely generated N-
graded K-algebra S such that S0 = H0(Y,OY ) (this follows from arguments similar to
the proof of the corresponding statements for subvarieties of projective spaces [Har77,
Proposition 5.15, Corollary II.5.16]). By assumption there is an effective Cartier
divisor D on Y with suppD = Y \ X and global sections f0, . . . , fk of OY (D) such
that φ : Y →֒ Pk which maps y 7→ [f0(y) : · · · : fk(y)] induces an immersion. Since
D is effective, we may (and will) w.l.o.g. assume f0 = 1. It follows that K[X ] =
K[f1, . . . , fk]. Let t1, . . . , tk be indeterminates and define a filtration F = {Fd}d≥0 on
K[X ] with

Fd := {f ∈ K[X] : f = G(f1, . . . , fk) for some G ∈ S0[t1, . . . , tk], deg(G) ≤ d}, d ≥ 0.

Note that F is generated by construction, since K[X ]F = S0[(f0)1, . . . , (fk)1]. We
now show that X̄F ∼= Y .

Let U := SpecS0. Pick K-algebra generators g1, . . . , gl of R. Then X̄F is the
closure in U ×Pk of the image of the map φ̃ : X → U ×Pk given by x 7→ (g(x), φ(x)),
where g := (g1, . . . , gl). Now note that φ̃ extends naturally to all of Y (since each
gi ∈ H0(Y,OY )), and moreover, since φ is an immersion of Y into Pk, it follows that
φ̃ induces an immersion of Y into X̄F . Now note that S0 is the zeroth component
of both S and K[X ]F , so that both Y and X̄F are proper over the affine variety U .
Since the morphism X̄F → U is simply the extension of the morphism Y → U , the
arguments of [Goo69, Proposition 1] show that φ̃(Y ) = X̄F , as required.

Definition 2.9. We say that a filtration F on the coordinate ring of an affine
variety X is projective if it satisfies the hypothesis of assertion 1b of Proposition 2.8.

Example 2.5 is our most basic example of filtrations and corresponding immersions
into weighted projective spaces. We now give some other examples.
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Example 2.10. Let X := Kn, n ≥ 2. Pick an integer k, 1 ≤ k < n, and define
a filtration F := {Fd}d≥0 on K[X ] = K[x1, . . . , xn] as follows: take F1 to be the
K-linear span of all monomials of degree less than or equal to two excluding those of
the form xixj with i ≥ j > k. Let Fd = (F1)

d for d ≥ 1. Then X̄F is isomorphic to
the blow-up of Pn(K) along the subspace V := V (x0, . . . , xk).

Example 2.11. If X is a normal affine variety with trivial Picard group and
X̄ ⊆ PN (K) be a normal projective completion of X such that X∞ := X̄ \ X is
irreducible, then X∞ is the support of an effective ample divisor and therefore X̄ is
isomorphic to X̄F for some filtration F on K[X ] (Proposition 2.8).

Example 2.12. If dimX = 1, then every projective completion Y of X is
isomorphic to X̄F for some filtration F on K[X ]. Indeed, it follows from the Nakai-
Moishezon criterion of ampleness (or the Riemann-Roch theorem) that Y \X is the
support of an effective ample Cartier divisor [Goo69, Proposition 5], so that the claim
follows from Proposition 2.8.

Example 2.13. Every non-singular projective completion of affine surfaces comes
from a filtration. More generally, it follows from [Goo69, Theorem 1] and the Nakai-
Moishezon criterion that if X is an arbitrary affine surface and X̄ is a complete surface
containing X such that X̄ \X is the support of an effective Cartier divisor, then in
fact X̄ \X is the support of an effective ample divisor, so that X̄ is determined by a
filtration on K[X ]. Note that there exist complete normal surfaces X̄ and open affine
subsets X of X̄ such that X̄ \ X is not the support of any Cartier divisor (see e.g.
[ove]) - so that X̄ is not determined by any filtration on K[X ].

Example 2.14. There are non-singular projective completions of (non-singular)
affine varieties of dimension ≥ 3 which are not determined by a filtration, as the
following example of Hironaka shows. Let φ : V ′ → V be a morphism of 3-dimensional
projective varieties, with V ′ non-singular and V non-singular except at a point P , such
that φ−1(P ) is a curve and φ is an isomorphism on the rest of V ′ and V . Let W be a
hyperplane section of V through P . Then X := V ′ \ φ−1(W ) ∼= V \W is affine, but
φ−1(W ) is not the support of any effective ample divisor on V ′ (see [Goo69, Section
1]). Therefore Proposition 2.8 implies that there is no filtration F on A such that
X̄F ∼= V ′.

3. Semidegree and subdegree.

Definition 3.1. A degree-like function on A is a map δ : A \ {0} → Z ∪ {−∞}
such that:

1. δ(K) = 0.
2. δ(f + g) ≤ max{δ(f), δ(g)} for all f, g ∈ A, with < in the preceding equation

implying δ(f) = δ(g).
3. δ(fg) ≤ δ(f) + δ(g) for all f, g ∈ A.

Remark 3.2. We allow degree-like functions to have−∞ as a value, since they do
correspond to some filtrations (via the correspondence defined below). On the other
hand, we will see (from Proposition 5.1 and Theorem 5.10 below) that the degree-like
functions associated to completions of affine varieties are always integer-valued.

There is a one-to-one correspondence between degree-like functions and filtrations:
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Filtrations ←→ degree-like functions
F = {Fd}d∈Z −→ δF : f ∈ A 7→ inf{d : f ∈ Fd}

Fδ := {Fd := {f ∈ A : δ(f) ≤ d}}d∈Z ←− δ

In the remainder of this article we identify degree-like functions with the corre-
sponding filtrations. In particular, we refer to a degree-like function δ as projective
(resp. finitely generated) iff the corresponding filtration Fδ is projective (resp. finitely
generated). Similarly, K[X ]δ, grK[X ]δ and X̄δ will be shorthand notations respec-
tively for K[X ]Fδ , grK[X ]Fδ and X̄Fδ .

The protagonists of this article are two classes of degree-like functions which
satisfy stronger versions of the multiplicative property (i.e. property 3 above).

Definition 3.3.

• A degree-like function δ on A is a semidegree iff δ(fg) = δ(f) + δ(g) for all
f, g ∈ A \ {0}.
• We say that δ is a subdegree if there are semidegrees δ1, . . . , δN such that

δ(f) = max
1≤i≤N

δi(f) for all f ∈ A \ {0}.(4)

Given a subdegree δ as in (4), we may assume by getting rid of some δi’s if
necessary that every δi that appears in (4) is not redundant, i.e. for every i, there is
an f ∈ A such that δi(f) > δj(f) for all j 6= i. In this case we will say that (4) is a
minimal presentation of δ.

Example 3.4 (Weighted Degree). As noted in the introduction, every weighted
degree δ on the polynomial ring K[x1, . . . , xn] is a semidegree.

Example 3.5 (Subdegrees determined by rational polytopes). Let X be the n-
torus (K∗)n and A := K[x1, x

−1
1 , . . . , xn, x

−1
n ] be its coordinate ring. Let P be a convex

rational polytope (i.e. a convex polytope in Rn with vertices in Qn) of dimension n
containing origin in its interior. Recall (from introduction) that P determines a
degree-like function on A. More precisely, recall that if δP : A \ {0} → Q is defined as

δP(
∑

aαx
α) := inf{r ∈ R : r ≥ 0, α ∈ rP for all α ∈ Zn such that aα 6= 0},

and e is any positive integer such that eδP is integer-valued, then eδP is a degree-like
function on A. We claim that eδP is in fact a subdegree on A. Indeed, for each facet
Q of P , let ωQ be the smallest ‘outward pointing’ integral vector normal to Q and let
cQ := 〈ωQ, αQ〉, where αQ is any element of the hyperplane that contains Q. Define

δQ(
∑

aαx
α) := max

aα 6=0

〈ωQ, α〉

cQ
.

Then it is straightforward to see that eδQ is a weighted degree on A for each facet Q
of P , and eδP = max{eδQ : Q is a facet of P}, so that eδP is a subdegree, as claimed.
It is not hard to see that XδP is isomorphic to the toric variety XP determined by P .

Example 3.6 (An iterated semidegree). Let X := K2 and A := K[x1, x2].
Define a filtration F := {Fd : d ≥ 0} on A by setting F0 := K , F1 := K〈1, x21 − x

3
2〉 ,

F2 := (F1)
2 + K〈x2〉 , F3 := F1F2 + K〈x1〉 and Fd :=

∑d−1
j=1 FjFd−j for d ≥ 4. Let
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δ := δF . Note that δ(x1) = 3 and δ(x2) = 2, but δ(x21 − x
3
2) = 1. We claim that δ is

a semidegree. Indeed,

Aδ = K[(1)1, (x1)3, (x2)2, (x
2
1 − x

3
2)1]
∼= K[X1, X2, Y, Z]/〈Y Z

5 −X2
1 +X3

2 〉 ,(5)

where the last isomorphism is induced by a K-algebra homomorphism which sends
X1 7→ (x1)3, X2 7→ (x2)2, Y 7→ (x21−x

3
2)1 and Z 7→ (1)1. The inverse image of the ideal

I := 〈(1)1〉 of Aδ under this isomorphism coincides with ideal 〈Z, Y Z5 −X2
1 +X3

2 〉 =
〈Z,X2

1 −X
3
2 〉. Since the latter is a prime ideal of K[X1, X2, Y, Z], it follows that I is

a prime ideal of Aδ as well. Theorem 4.1 then implies that δ is a semidegree. Identity
(5) implies that X̄δ is isomorphic to the hypersurface V (Y Z5 − X2

1 + X3
2 ) of the

weighted projective space P3(K; 1, 3, 2, 1) with (weighted homogeneous) coordinates
[Z : X1 : X2 : Y ]. The semidegree δ is an example of an iterated semidegree (to be
introduced in the forthcoming continuation of this article).

4. Basic structure of subdegrees. The goal of this section is to prove the
following theorem and its corollaries. Recall that an ideal I of a ring R is decomposable
if it is the intersection of finitely many primary ideals of R.

Theorem 4.1 (Structure theorem for subdegrees). Let δ be a degree like function
on an integral domain A and I be the ideal of Aδ generated by (1)1 (recall the notation
from Section 2 that each for f ∈ A and each d ≥ δ(f), we denote the ‘copy’ of f in
the d-th graded component of Aδ by (f)d).

1. δ is a semidegree if and only if I is a prime ideal.
2. δ is a subdegree if and only if I is a decomposable radical ideal.
3. If δ is a subdegree, then semidegrees δ1, . . . , δN of a minimal presentation

δ = max1≤i≤N δi of δ are unique.
4. If Aδ is Noetherian, then δ is a subdegree if and only if I is a radical ideal.

Theoem 4.1 was proven in my Ph.D. thesis [Mon10, Section 2.2]. Later I came to
know of the article [Szp66] (I heartily thank Professor Bernard Teissier for bringing
it to my attention) - and assertions 1, 2 and 4 of Theorem 4.1 follow from the results
of [Szp66] (see Remark 4.3 below). However, I present here a complete proof of
Theorem 4.1, since proving only assertion 3 takes almost the same amount of work.
The essential ingredients are Lemmas 4.1.1 and 4.1.2.

Corollary 4.2. Assume Aδ is Noetherian. Then δ is a subdegree on A iff
δ(fk) = kδ(f) for all f ∈ A and k ≥ 0.

Proof. Let I be the ideal of Aδ from the statement of Theorem 4.1. Note that
for every f ∈ A and d ∈ Z, (f)d ∈ I iff δ(f) < d. It follows that I is radical iff
δ(fk) = kδ(f) for all f ∈ A and k ≥ 0. Now the corollary follows from assertion 4 of
Theorem 4.1.

Remark 4.3. [Szp66] considers order functions, which are negative of our degree-
like functions with the exception that the values are allowed to be in R∪∞ (instead of
Z∪∞). An order function ν on a ring A is homogeneous if ν(fk) = kδ(f) for all k ≥ 0
and f ∈ A. [Szp66, Theorem 1] states that ν is homogeneous iff ν is the maximum of
a (possibly infinite) collection of valuations. Assertions 1, 2 and 4 of Theorem 4.1 and
Corollary 4.2 follow from this result. However, the results of [Szp66] (or arguments
of their proofs) does not seem to imply Assertion 3 of Theorem 4.1.
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Proof of Theorem 4.1. Assertion 1 follows from the definition of semidegrees and
the observation that for all f ∈ A and d ∈ Z, δ(f) = d iff (f)d ∈ Aδ \ I . Assertion 4
is a consequence of assertion 2. Therefore it remains to prove assertions 2 and 3. We
now prove the ‘only if’ direction of assertion 2.

Assume δ is a subdegree. Let δ = max1≤i≤N δi be a minimal presentation of δ.
For each i with 0 ≤ i ≤ N , fix an fi ∈ A such that

di := δi(fi) > δj(fi) for 1 ≤ j 6= i ≤ N.(6)

Then, in particular, δ(fi) = di ∈ Z. Assertion 2 of the following lemma implies the
‘only if’ direction of assertion 2 of the theorem.

Lemma 4.1.1. For each i, 1 ≤ i ≤ N , let pi := (I : (fi)di) = {F ∈ A
δ : F (fi)di ∈

I}.
(1) The collection of homogeneous elements of pi is Li := {(f)d : f ∈ A, δi(f) <

δ(f) ≤ d}.
(2) For each i, pi is a distinct minimal prime ideal of Aδ containing I. In particular,

(fi)di ∈
(⋂

j 6=i pj

)
\ pi for each i. Moreover, I =

⋂N
i=1 pi.

Proof. We first prove assertion 1. Fix an i, 1 ≤ i ≤ N . Let (f)d be an arbitrary
homogeneous element of pi. We will show that (f)d ∈ Li. If δ(f) < d, then δi(f) ≤
δ(f) < d and (f)d ∈ Li. So assume δ(f) = d. Since (f)d(fi)di = (ffi)d+di ∈ I,
it follows that δ(ffi) < d + di. But then δi(ffi) = δi(f) + δi(fi) < d + di, so that
δi(f) < d = δ(f), and thus (f)d ∈ Li. To summarize, all homogeneous elements of pi
belong to Li.

Now we show that Li ⊆ pi. Pick (f)d ∈ Li. If d > δ(f), then (f)d ∈ I ⊆ pi. So
assume d = δ(f). Then δi(f) < d = δ(f), and thus δi(ffi) = δi(f) + δi(fi) < d+ di.
Also, for each j 6= i, δj(fi) < di, so that δj(ffi) = δj(f) + δj(fi) < d+ di. It follows
that δ(ffi) < d + di, so that (f)d(fi)di = (ffi)d+di ∈ I. Therefore (f)d ∈ pi, which
proves that Li ⊆ pi and completes the proof of assertion 1 of the lemma.

To see that pi is prime, let (g1)e1 , (g2)e2 be homogeneous elements of Aδ such that
(g1)e1(g2)e2 ∈ pi. Since pi is a homogeneous ideal, it suffices to show that one of the
(gj)ej ’s belong to pi. Due to assertion 1 of the lemma, (g1g2)e1+e2 = (g1)e1(g2)e2 ∈ Li,
which means that δi(g1g2) = δi(g1) + δi(g2) < e1 + e2. Since ej ≥ δ(gj) ≥ δi(gj) for
each j, it follows that there is at least one j such that δi(gj) < ej. Then assertion 1
of the lemma implies that (gj)ej ∈ pi, as required.

Next we show that pi’s are distinct minimal prime ideals of Aδ containing I.
Indeed, that pi’s are distinct follows from assertion 1 and the observation that (fi)di ∈
(
⋂
j 6=i Lj)\Li for 1 ≤ i ≤ N . Now fix i, 1 ≤ i ≤ N , and a prime ideal p of Aδ such that

I ⊆ p ⊆ pi. Then (fi)di 6∈ p (since assertion 1 implies (fi)di 6∈ pi). But if (g)e ∈ pi,
then (g)e(fi)di ∈ I ⊆ p and it follows that (g)e ∈ p. Hence pi ⊆ p, and therefore
pi = p. Consequently, pi is a minimal prime ideal of Aδ containing I, as required.

Finally, pick any homogeneous (g)e ∈
⋂N
i=1 pi. Then by assertion 1, for each i,

δi(g) < e. Therefore δ(g) = maxi δi(g) < e, and hence (g)e ∈ I. It follows that⋂N
i=1 pi = I, which concludes the proof of the lemma.

Now we prove assertion 3 of the theorem (the ‘if’ direction of assertion 2 will
be proven at the end). Let δ = max1≤i≤N ′ δ′i be another minimal presentation of δ.
Then there exist f ′

1, . . . , f
′
N ′ ∈ A such that

d′i := δ′i(f
′
i) > δ′j(f

′
i) for 1 ≤ j 6= i ≤ N ′.(6′)
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Then d′i are integers. Let p′i := (I : (f ′
i)d′i), 1 ≤ i ≤ N ′. Then Lemma 4.1.1 implies

that both I =
⋂N
i=1 pi and I =

⋂N ′

i=1 p
′
i are minimal primary decompositions of I. The

uniqueness of minimal primary decompositions then implies that N = N ′ and, after
an appropriate re-indexing of δ′i’s if necessary, pi = p′i for all i, 1 ≤ i ≤ N .

Fix an i, 1 ≤ i ≤ N . Lemma 4.1.1 implies that

(f ′
i)d′i ∈

⋂

j 6=i

L′
j \ L

′
i =

⋂

j 6=i

Lj \ Li ,

where Lj ’s (resp. L′
j’s) are the set of homogeneous elements of pj ’s (resp. p′j ’s). It

follows from the description of Lj ’s and L
′
j ’s from assertion 1 of Lemma 4.1.1 that for

each i, 1 ≤ i ≤ N ,

d′i = δ′i(f
′
i) = δ(f ′

i) = δi(f
′
i), and(7)

δj(f
′
i) < δi(f

′
i) for all j 6= i.(8)

Identity (7) and inequality (8) imply that property (6) remains true even after replac-
ing fi’s and di’s by f ′

i ’s and d′i’s. Since fi’s were assumed to be arbitrary elements
in A such that (6) is true, we may assume without loss of generality that fi = f ′

i for
each i. But then the following lemma implies that δi = δ′i for each i, as required.

Lemma 4.1.2. If δ = max1≤i≤N δi is a minimal presentation for δ and
f1, . . . , fN ∈ A satisfy (6), then

δi(f) = lim
k→∞

δ((fi)
kf)− δ((fi)

k)(9)

for all f ∈ A and all i, 1 ≤ i ≤ N .

Proof. Fix an i, 1 ≤ i ≤ N , and define δ̃i(f) := limk→∞ δ((fi)
kf) − δ((fi)k) for

all f ∈ A. We first show that δ̃i is well defined. Indeed, Let f ∈ A and k ≥ 1. Since
(fi)di 6∈ I and I is radical (assertion 2 of Lemma 4.1.1), it follows that ((fi)di)

k =
((fi)

k)kdi 6∈ I, so that δ((fi)
k) = kdi. Therefore,

δ((fi)
k+1f)− δ((fi)

k+1) ≤ δ((fi)
kf) + δ(fi)− δ((fi)

k+1)

= δ((fi)
kf) + di − (k + 1)di

= δ((fi)
kf)− kdi

= δ((fi)
kf)− δ((fi)

k).

(10)

It follows that δ̃i(f) is a well defined element in Z ∪ {−∞}.
We now show that δ̃i = δi. Note that for all k ≥ 0 and all f ∈ A, δ((fi)kf) −

δ((fi)
k) ≥ δi((fi)

kf) − δ((fi)k) = δi(f) (the last equality uses that δ(fi) = δi(fi)),
so that δ̃i ≥ δi. To see the opposite inequality, let f ∈ A and d ∈ Z be such that
d ≥ δi(f). Then kdi + d ≥ δi((fi)

kf) for all k. Moreover, (6) implies that for
sufficiently large k, kdi+ d > kδj(fi)+ δj(f) = δj((fi)

kf) for all j 6= i. It follows that
for sufficiently large k, δ((fi)

kf) ≤ kdi + d, and hence δ((fi)
kf)− δ((fi)k) ≤ d. Since

{δ((fi)kf)− δ((fi)k)} is a decreasing sequence due to (10), it follows that δ̃i(f) ≤ d.
Summarizing, we have proved that δ̃i(f) ≤ d whenever δi(f) ≤ d. Applying the pr
eceding statement to d = δi(f) when δi(f) ∈ Z, and otherwise letting d converge to
δi(f) = −∞ from above, we see that δ̃i(f) ≤ δi(f). It follows that δi(f) = δ̃i(f),
which completes the proof of the lemma and therefore, assertion 3 of Theorem 4.1.
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It remains to prove the ‘if’ direction of assertion 2 of the theorem. So assume I is
a decomposable radical ideal of Aδ. We have to show that δ is a subdegree. It follows
from the general theory of primary decomposition (e.g. as in [AM69, Chapter 4]) that
there exist (f1)d1 , . . . , (fN)dN ∈ Aδ \ I such that pi := (I : (fi)di) is a prime ideal

containing I for each i and I =
⋂N
i=1 pi. Since (fi)di 6∈ I, it follows that δ(fi) = di ∈ Z

for each i. For each i = 1, . . . , N , define δi : A→ Z ∪ {−∞} as in (9), i.e.

δi(f) := lim
k→∞

δ((fi)
kf)− δ((fi)

k)

for all f ∈ A. The same arguments as in the first part of the proof of Lemma 4.1.2
imply that the relations of (10) remain true and consequently δi is well defined
for all i, 1 ≤ i ≤ N . It follows from elementary but somewhat long computations
that δi’s satisfy the properties of a semidegree - we refer to the proof of [Mon10,
Theorem 2.2.1] for details. We now show that δ = maxNi=1 δi. Indeed, fix f ∈ A and
1 ≤ i ≤ N . Then δ(f) ≥ δ(fif)− δ(fi) ≥ δi(f) (the first inequality follows from the
multiplicative property of degree-like functions and the second one is a consequence
of (10)). It follows that δ ≥ maxNi=1 δi.

For the opposite inequality, pick any f ∈ A. If δ(f) = −∞, then for all i and
for all k ≥ 0, δ((fi)

kf) = −∞, and therefore δi(f) = −∞ = δ(f). So assume
δ(f) ∈ Z. Since (f)δ(f) 6∈ I, there is an i such that (f)δ(f) 6∈ pi. Note that (fi)di
also does not lie in pi, for otherwise ((fi)di)

2 would be an element of I and this
would imply that (fi)di ∈ I (since I is a radical ideal), contradicting our choice of
(fi)di . Thus neither of (f)δ(f) and (fi)di is an element of pi. Since pi is prime, it

follows that for all k ≥ 0, ((fi)di)
k(f)δ(f) = ((fi)

kf)kdi+δ(f) 6∈ pi. Consequently

δ(fki f) = δ(f) + kdi = δ(f) + δ(fki ) for all k ≥ 0. It then follows that δi(f) = δ(f).
Combining with the inequality proved in the preceding paragraph, this shows that
δ = maxNi=1 δi and therefore δ is indeed a subdegree. This completes the proof of the
theorem.

Corollary 4.4. Let δ be a non-negative subdegree on A and δ = maxNi=1 δi
be its minimal presentation. Let X := SpecA. Then the number of the irreducible
components of X∞ := X̄δ \X is N if none of the δi’s is the zero degree-like function
and N − 1 otherwise.

Proof. Proposition 2.8 implies that X∞ = V (I) ⊆ ProjAδ, where I is the ideal
in Aδ generated by (1)1. According to Lemma 4.1.1, I has a minimal prime decom-

position of the form I =
⋂N
i=1 pi, with each pi being a prime ideal corresponding to

δi, 1 ≤ i ≤ N . Consequently X∞ = V (I) =
⋃N
i=1 V (pi). The corollary now follows

from the following

Claim. For each i, 1 ≤ i ≤ N , the semidegree δi is identically zero on A iff
V (pi) = ∅.

Proof. Let Aδ+ =
⊕

d≥1{(f)d : f ∈ A} be the irrelevant ideal of Aδ. Fix i,
1 ≤ i ≤ N . Then

V (pi) = ∅ ⇐⇒ pi ⊇ A
δ
+

⇐⇒ {(f)d : f ∈ A, d > δi(f)} ⊇ {(f)d : f ∈ A, d ≥ 1}

(according to Lemma 4.1.1)

⇐⇒ δi(f) ≤ 0 for all f ∈ A

⇐⇒ δ = max ({δj : j 6= i, 1 ≤ j ≤ N} ∪ {δ0}) (since δ is non-negative),
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where δ0 is the zero degree-like function on A, i.e. δ0(f) := 0 for all f ∈ A. Since
δ0 is a semidegree and the minimal decomposition of δ is unique, it follows that
V (pi) = ∅ ⇐⇒ δi = δ0, which completes the proof of the claim.

Example 4.5. Applied to the subdegree of Example 3.5 determined by a convex
rational polytope P , Corollary 4.4 implies the (standard) fact that the irreducible
components of the complement of the torus in the toric variety XP are in a one-to-
one correspondence with the facets of P .

5. Normality at infinity. In this section using the theory of Rees’ valuations
we work out the precise relation between the semidegrees in the minimal presentation
of a subdegree and the orders of vanishing along the components of the hypersurface
at infinity on the corresponding completion. We also establish our ‘Main Existence
Theorem’ which states that given a completion X̄ of an affine variety X determined
by an arbitrary degree-like function, there is a subdegree on K[X ] which determines
the normalization at infinity of X̄ with respect to X . As a consequence we prove a
‘finiteness’ property of divisorial valuations. We start with a presentation (following
[McA83, chapter XI]) of the relevant results of Rees (starting with a reminder of the
notion of a Krull domain).

Definition. A domain B is a Krull domain iff
1. Bp is a discrete valuation ring for all height one prime ideals p of B, and
2. every non-zero principal ideal of B is the intersection of a finite number of

primary ideals of height one.

Every normal Noetherian domain is a Krull domain [Mat80, Section 41]. In
particular, the integral closure of Aδ is a Krull domain provided that Aδ is finitely
generated.

For an ideal I of a ring R define νI : R→ N ∪ {∞} and ν̄I : R→ Q+ ∪ {∞} by:

νI(x) := sup{m : x ∈ Im}, and

ν̄I(x) := lim
m→∞

νI(x
m)

m
,

(11)

for all x ∈ R. Recall that the integral closure J̄ of an ideal J of R is the ideal defined
by: J̄ := {x ∈ R : x satisfies an equation of the form: xs + j1x

s−1 + · · ·+ js = 0 with
jk ∈ Jk for all k = 1, . . . , s}.

Theorem 5.0 (Rees’ Theorem - see [McA83, Propositions 11.1 – 11.6]). For any
ring R and any ideal I of R, ν̄I is well defined. Assume R is a Noetherian domain.
Then

(1) there is a positive integer e such that for all x ∈ R, ν̄I(x) ∈
1
e
N, and

(2) if k ≥ 0 is an integer then ν̄I(x) ≥ k if and only if x ∈ Īk, where Īk is the
integral closure of Ik in R.

(3) Assume in addition that I is a principal ideal generated by u and R̄ is an
integral extension of R which is a Krull domain. Let p1, . . . , pr be the height 1 prime

ideals of R̄ containing u. Then for all x ∈ R, ν̄I(x) = min{ νi(x)
ei

: i = 1, . . . , r}, where
for each i = 1, . . . , r, νi is the valuation associated with the discrete valuation ring
R̄pi

and ei := νi(u).

Let δ be a finitely generated subdegree on a K-algebra A with a minimal presen-
tation δ = max1≤i≤N δi. It is not hard to see that the Noetherian-ness of Aδ implies
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that δ is integer-valued, i.e. there is no non-zero f ∈ A such that δ(f) = −∞. On the
other hand, it is not obvious (e.g. from identity (9)) whether δi’s can take −∞ as a
value or not. But the following corollary states that in fact they can not.

Proposition 5.1. Let A and δ be as above. Let B be any Krull domain which is
also an integral extension of Aδ and p1, . . . , pr be the height one primes of B containing
(1)1. For each j, 1 ≤ j ≤ r, define a function δ̂j on A \ {0} by

δ̂j(f) = δ(f)−
νj((f)δ(f))

ej

where νj is the discrete valuation of the discrete valuation ring Bpj
and ej := νj((1)1).

Then for each i, 1 ≤ i ≤ N , δi ≡ δ̂j for some j, 1 ≤ j ≤ r. In particular, for every i,
the semidegree δi is integer valued, and consequently −δi is a discrete valuation.

Sketch of a proof. Let I be the ideal generated by (1)1 in Aδ and ν̄I be the Rees’
valuation corresponding to I. Let f ∈ A. Since δ(f) ∈ Z (from the remark following
Theorem 5.0) and δ is a subdegree, it follows that ν̄I((f)δ(f)) = 0. Assertion 3

of Rees’ theorem then implies that minrj=1
νj((f)δ(f))

ej
= 0, where ej := νj((1)1) for

every j. Therefore δ(f) = δ(f) − minrj=1
νj((f)δ(f))

ej
= maxrj=1 δ̂j(f) for all f ∈ A.

The assertions of Proposition 5.1 then follow from the uniqueness of the minimal
presentation of subdegrees (assertion 3 of Theorem 4.1) provided we can show that

each δ̂j is a semidegree. The latter assertion follows from case by case computations
- we refer the reader to [Mon10, Theorem 2.2.11] for details.

Let X be an affine algebraic variety and δ be a finitely generated subdegree on
A := K[X ] with the minimal presentation δ = max1≤i≤N δi. Pick i such that δi 6≡ 0.
It follows from (the proof of) Corollary 4.4 that δi corresponds to a component Vi of
the hypersurface at infinity on X̄δ. Using Proposition 5.1, the following proposition
establishes the relation between δi and the orders of vanishing along Vi.

Proposition 5.2. Let X, A, δ, δi and Vi be as above. For every f ∈ K(X) \
{0}, the order of vanishing of f along Vi is −δi(f)/di, where di := gcd{δi(g) : g ∈
K(X), δi(g) > 0}. In particular, the local ring OVi,X̄δ of X̄δ at Vi is regular.

Proof. Let pi be the prime ideal of Aδ corresponding to δi. Then OVi,X̄δ is the

degree zero part of the local ring Aδpi
. As in Remark 2.3, let us identify Aδ with∑

Fdt
d. Then

OVi,X̄δ = {
ftkd

(gtd)k
: gtd 6∈ pi, d ≥ δ(g), k ≥ 0}

= {
f

gk
: (g)δ(g) 6∈ pi, δ(f) ≤ kδ(g), k ≥ 0}.

(12)

Recall from Proposition 5.1 that νi := −δi/di is a discrete valuation on K(X). Let
Ri ⊆ K(X) be the valuation ring of νi. It suffices to show that OVi,X̄δ = Ri. Recall
that Ri := {g1/g2 : g1, g2 ∈ A, g2 6= 0, νi(g1/g2) ≥ 0}. Pick g1, g2 ∈ A such that
g1/g2 ∈ Ri. Then νi(g1/g2) = νi(g1) − νi(g2) ≥ 0 and hence δi(g1) ≤ δi(g2). Pick
fi ∈ A such that δi(fi) > δj(fi) for all j 6= i. It follows due to (9) that there is
k ≥ 1 such that δ(glf

k
i ) = δi(glf

k
i ) for l = 1, 2. Then δ(g1f

k
i ) = δi(g1f

k
i ) = δi(g1) +

δi(f
k
i ) ≤ δi(g2) + δi(f

k
i ) = δi(g2f

k
i ) = δ(g2f

k
i ). Moreover, Lemma 4.1.1 implies that
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(glf
k
i )δ(glfk

i ) 6∈ pi for l = 1, 2. Then, according to (??), g1f
k
i /(g2f

k
i ) = g1/g2 ∈ OVi,X̄δ .

Consequently Ri ⊆ OVi,X̄δ . Therefore OVi,X̄δ = Ri due to

Lemma 5.2.1. Let R be a discrete valuation ring and K be the quotient field of
R. If S is a proper subring of K such that R ⊆ S, then R = S.

Proof. Let ν be the discrete valuation associated to R and h ∈ R be a parameter
for ν, in particular ν(h) = 1. Assume contrary to the claim that R 6= S. Let f ∈ S\R.
Then f = u/hk for some unit u of R and k > 0. It follows that h−1 = u−1fhk−1 ∈ S.
Let g ∈ K \ {0}. Then ν(gh−ν(g)) = 0 and therefore gh−ν(g) ∈ R ⊆ S and also
g = gh−ν(g) · hν(g) ∈ S. Therefore S = K, contrary to the assumptions, which
completes the proof.

To summarize, we have proved that OVi,X̄δ is precisely the valuation ring of νi
(and therefore regular). Since valuations are completely determined by their valuation
rings [ZS75, Section VI.8], it follows that νi is the valuation corresponding to OVi,X̄δ ,
which completes the proof of the proposition.

Remark 5.3. If V is a codimension one irreducible subvariety a variety Y , then
OV,Y is a regular local ring iff V 6⊆ Sing Y iff codimension of Sing Y ∩ V in Y is at
least 2 (where Sing Y is the set of singular points of Y ). Therefore, an equivalent
formulation of Proposition 5.2 is to say that in a completion X̄δ of an affine variety
X determined by a subdegree δ, the codimension of the ‘singular points at infinity’ is
at least two, or in other words, X̄δ is non-singular in codimension one at infinity.

Example 5.4. Let P be a convex polytope of dimension n containing the origin
in its interior and Q be a facet of P . Recall from Example 3.5 that the semidegree
corresponding to Q associated with the subdegree eδP (where e is an appropriate

integer to ensure eδP is integer valued) is eδQ, where δQ(x
α) := 〈ωQ,α〉

cQ
. Since the

greatest common divisor of the coordinates of ωQ is 1, Proposition 5.2 implies the
familiar fact that the order of zero of xα along the component of the hypersurface at
infinity corresponding to Q is −〈ωQ, α〉 [Ful93, Section 3.3].

Let X and δ be as in proposition 5.2. If X is normal, then Proposition 5.2 implies
that X̄δ is non-singular in codimension one, i.e. X̄δ satisfies one of the two criteria of
Serre for normality (see, e.g. [Mat80, Theorem 39]). It is not hard to see that if X
is normal, then X̄δ is in fact normal (it follows from the fact that in this case K[X ]δ

is integrally closed - see [Mon10, Proposition 2.2.7]). If on the other hand X is not
normal, then clearly X̄δ is not normal. But we will see below that all is not lost: X̄δ

is relatively normal at infinity with respect to X .

Definition 5.5. Let Y be an algebraic variety containing X as a (Zariski) dense
open subset and ψ : Z → Y be a morphism of algebraic varieties. We say that
ψ is relatively normal at infinity with respect to X if for any open subset U of Y ,
Γ(ψ−1(U),OZ) is integrally closed in Γ(ψ−1(U ∩ X),OZ). In the case that Z = Y
and ψ is the identity, we simply say that Y is relatively normal at infinity with respect
to X .

Proposition 5.6. Let δ be a finitely generated subdegree on the ring of regular
functions on an affine variety X. Then X̄δ is relatively normal at infinity with respect
to X.

Proof. Let A := K[X ] and D(G) := {Q ∈ X̄δ|G 6∈ Q} = Spec(Aδ)(G) be

a basic affine open subset of X̄δ, where G is a homogeneous element in Aδof
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positive degree d and (Aδ)(G) is the subring of (Aδ)G := Aδ[ 1
G
] consisting of degree

zero homogeneous elements. Then G = (g)d for some g ∈ A with d ≥ δ(g) and
therefore (Aδ)(G) = { f

gk
: f ∈ A, δ(f) ≤ kd}. In particular, 1

g
∈ (Aδ)(G). Conse-

quently, the regular functions on D(G)∩X are generated as a K-algebra by A and 1
g
,

i.e. D(G)∩X = SpecAg. We now show that (Aδ)(G) is integrally closed relative to Ag.

If d > δ(g), then G = (g)d((1)1)
d−δ(g), so that Spec(Aδ)(G) ⊆ Spec(Aδ)((1)1) =

SpecA = X (Proposition 2.8). It follows that (Aδ)(G) = Ag, so that (Aδ)(G) is
obviously integrally closed relative to Ag. So assume d = δ(g). Let δ1, . . . , δN be the
semidegrees associated to δ. W.l.o.g. we may assume that there existsm, 1 ≤ m ≤ N ,
such that d = δ1(g) = · · · = δm(g) > δi(g) for all i, m < i ≤ N .

Claim 5.6.1. (Aδ)(G) = Ag ∩
⋂m
i=1OVi,X̄δ , where for every i, 1 ≤ i ≤ m, Vi is

the component of the hypersurface at infinity of X̄δ corresponding to δi.

Proof. At first note that

(Aδ)(G) = {
(f)kd
((g)d)k

: δ(f) ≤ kd, k ≥ 0} = {
f

gk
∈ Ag : δ(f) ≤ kd, k ≥ 0}

= Ag ∩
N⋂

i=1

{
f

gk
: f ∈ A, δi(f) ≤ kd, k ≥ 0}

= Ag ∩
m⋂

i=1

{
f

gk
: f ∈ A, δi(f) ≤ kδi(g), k ≥ 0}

∩
N⋂

i=m+1

{
f

gk
: f ∈ A, δi(f) ≤ kd, k ≥ 0}

= Ag ∩
m⋂

i=1

OVi,X̄δ ∩
N⋂

i=m+1

{
f

gk
: f ∈ A, δi(f) ≤ kd, k ≥ 0},

where the last equality is a consequence of Proposition 5.2. It follows that (Aδ)(G) ⊆

Ag ∩
⋂m
i=1OVi,X̄δ . It remains to show the opposite inclusion. Let f ∈ A and f

gk
∈⋂m

i=1OVi,X̄δ . Then δi(f) ≤ kδi(g) = kd for all i, 1 ≤ i ≤ m. Recall that δj(g) < d
for all j with m + 1 ≤ j ≤ N . It follows that if l is a sufficiently large integer, then
for all j, m + 1 ≤ j ≤ N , δj(fg

l) = δj(f) + lδj(g) ≤ (l + k)d. Pick an integer l as
in the preceding sentence. Then δ(fgl) = maxNj=1 δj(fg

l) ≤ (l + k)d, and therefore
f

gk
= fgl

gk+l ∈ (Aδ)(G). This implies that (Aδ)(G) ⊇ Ag ∩
⋂m
i=1OVi,X̄δ and completes

the proof of the claim.

Recall (from Proposition 5.2) that each OVi,X̄δ is a discrete valuation ring, there-

fore in particular is integrally closed. It then follows that (Aδ)(G) is integrally closed
relative to Ag, as required to prove the proposition.

Remark 5.7. In the same way that normality implies non-singularity in codi-
mension one, it can be shown that for a completion X̄ of X , if X̄ is normal at infinity
with respect to X , then X̄ is also non-singular at infinity in codimension one (with
respect to X). Therefore Proposition 5.6 strengthens Proposition 5.2.

In general, completions corresponding to degree-like functions may have arbitrar-
ily bad singularities at infinity. Below we introduce the notion of normalization at
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infinity, which makes the hypersurface at infinity of a given completion a bit ‘less
singular’, in the same sense that normalization of a singular variety is less singular
than itself.

Definition 5.8. Let Y be a variety containing X as a dense open subset. The
normalization of Y at infinity with respect to X is another variety Ỹ containing X
as a dense open subset and a finite morphism φ : Ỹ → Y such that Ỹ is normal at
infinity with respect to X and φ|X is the identity map.

Proposition 5.9. Let X be an arbitrary irreducible variety and Y be a variety
containing X as a Zariski dense open subset. Then the normalization Ỹ of Y at
infinity (with respect to X) exists and is unique. Moreover, Ỹ has the following
universal properties:

1. If ψ : Z → Y is a dominant morphism of algebraic varieties such that Z
is normal at infinity with respect to X via ψ, then there exists a unique
morphism θ : Z → Ỹ such that the following diagram commutes.

Z

θ

����
��
��
�� ψ

��?
??

??
??

?

Ỹ
φ

// Y

2. If Z is another variety containing X as an open subset and ψ : Z → Y is a
finite morphism such that ψ|X is the identity map, then there exists a unique
morphism θ : Ỹ → Z such that the following diagram commutes.

Z
ψ

��?
??

??
??

?

Ỹ

θ

??�������� φ
// Y

Proof. The universal properties of the normalization at infinity are completely
analogous to those of normalization and the standard proofs of the latter (e.g. the
proof in [Sha94]) apply almost word by word to prove the former. We therefore skip
the details.

Let X be a Zariski open subset of a variety Y . If Y is affine (resp. projective),
then it can be shown that the normalization Ỹ of Y at infinity with respect to X is
also affine (resp. projective). If X is affine and Y is a completion of X determined
by a degree-like function δ on K[X ], then similarly it turns out that Ỹ is also the
completion of X determined by a degree-like function δ̃. In fact, as the next theorem
shows, δ̃ can be taken to be a subdegree.

Theorem 5.10 (Main Existence Theorem). Let X be an affine variety and δ be
a finitely generated degree-like function on A := K[X ]. Then

1. There is a positive integer e and a subdegree δ̃ on A such that for all h ∈ A,

δ̃(h) := e lim
m→∞

δ(hm)

m
.

2. There is a natural inclusion Aeδ ⊆ Aδ̃ of graded rings such that Aδ̃ is integral
over Aeδ. In particular, δ̃ is finitely generated. If δ is non-negative (resp.
projective), then δ̃ is also non-negative (resp. projective).
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3. The variety X̄ δ̃ is the normalization at infinity of X̄δ with respect to X.

Proof. Let I be the ideal generated by (1)1 in Aδ. Fix h ∈ A and m ∈ N. Since
δ(hm) ≤ mδ(h), it follows that k := mδ(h) − δ(hm) is the largest integer such that
(hm)mδ(h) ∈ I

k, and consequently νI(((h)δ(h))
m) = k = mδ(h) − δ(hm) (where νI is

defined as in (11)). Therefore δ(hm)/m = δ(h) − νI(((h)δ(h))
m)/m. Assertion 1 of

Theorem 5.0 then implies that δ̄(h) := limm→∞ δ(hm)/m = δ(h)− ν̄I((h)δ(h)) is well

defined and there exists a positive integer e (independent of h) such that δ̄(h) ∈ 1
e
Z.

Taking δ̃ := eδ̄ proves the displayed formula of assertion 1. Moreover, note that

δ̃(hm) = mδ̃(h) for all h and m. Therefore, if we show that Aδ̃ is finitely generated,
then it follows via Corollary 4.2 that δ̃ is a subdegree. Hence it suffices to prove
assertion 2 to complete the proof of assertion 1.

We now prove assertion 2. Let F := {Fd}d∈Z be the filtration on A corresponding
to δ and identify Aδ with

⊕
i≥0 Fit

i. Let F̄m
e
:= {h ∈ A : δ̄(h) ≤ m

e
} for all m ≥ 0,

and define Aδ̄ :=
⊕

m≥0 F̄m
e
t
m
e . Since δ̄ ≤ δ, it follows that Fk ⊆ F̄k for each k ∈ Z.

Therefore Aδ ⊆ Aδ̄.

Claim 5.10.1. Aδ̄ is integral over Aδ.

Proof. It suffices to show that htδ̄(h) is integral over Aδ for each h ∈ A such that
δ̄(h) ≥ 0. Let h be as in the preceding sentence. Then htδ̄(h) is integral over Aδ if and
only if H̄ := (htδ̄(h))e is integral over Aδ. Note that eδ̄(h) = δ̄(he) by construction of
δ̄, and therefore H̄ = hetδ̄(h

e). Let H := hetδ(h
e) ∈ Aδ and k := ν̄I(H), where I is the

ideal generated by (1)1 in Aδ. Since νI(H
m) = mδ(H) − δ(Hm) and δ(H) = δ(he),

it follows that k = δ(he) − δ̄(he) = δ(he) − eδ̄(h). Then k is an integer. Hence
according to assertion 2 of Theorem 5.0, H is in the integral closure of Ik in Aδ, i.e.
H satisfies an equation of the form H l + G1H

l−1 + · · · + Gl = 0, where Gi ∈ Iik

for ea ch i. Comparing the coefficients at tlδ(h
e) in the above equation, we may

assume w.l.o.g. that each Gi is of the form git
iδ(he) for some gi ∈ A. Since Gi ∈ Iik,

it follows that iδ(he) ≥ δ(gi) + ik, implying that git
i(δ(he)−k) is an element of Aδ.

Moreover, regarding H as an element of the ring Aδ̄ (via the embedding Aδ →֒ Aδ̄)
yields H = hetδ(h

e) = hetδ̄(h
e)+k = hetδ̄(h

e)tk = tkH̄. Substituting these values of H
and Gi into the equation of integral dependence for H and then canceling a factor of
tlk we conclude that (H̄)l+

∑l

i=1 git
i(δ(he)−k)(H̄)l−i = 0. But then H̄ is integral over

Aδ, which completes the proof of the claim.

Let F̃ := {F̃d}d≥0 be the filtration corresponding to δ̃ = eδ̄. Ob-

serve that F̃d = {f : eδ̄(h) ≤ d} = F̄ d
e
, so that the homomorphism

χ : Aδ̄ :=
⊕

d≥0 F̄ d
e
t
d
e −→

⊕
d≥0 F̃ds

d ∼= Aδ̃ that sends t 7→ se and is the

identity map on the coefficients (i.e. on F̄ d
e
for d ≥ 0) is in fact an isomorphism of

K-algebras. Therefore, it follows due to Claim 5.10.1 that Aδ̃ = χ(Aδ̄) is integral

over χ(Aδ). On the other hand, since δ̃ ≤ eδ, there is a natural inclusion Aeδ ⊆ Aδ̃

of graded rings and χ(Aδ) ⊆ Aeδ . Therefore Aδ̃ is integral over Aeδ. S ince Aδ (and

therefore also Aeδ) is a finitely generated K-algebra, it follows that Aδ̃ is a finitely
generated K-algebra.

If δ is non-negative (resp. complete), then by construction δ̃ is also non-negative
(resp. complete). This completes the proof of assertion 2 and therefore also assertion
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1 of the theorem. Moreover, Proposition 5.6 implies that X̄ δ̃ is normal at infinity

with respect to X . Since the natural morphism X̄ δ̃ → X̄δ induced by the integral

inclusion Aeδ ⊆ Aδ̃ is finite, it follows that X̄ δ̃ is the normalization of X̄δ at infinity
with respect to X . This completes the proof of the theorem.

Remark-Definition 5.11. Let X,A, δ and δ̃ be as in Theorem 5.10. If in

addition X is normal, then X δ̃ is also normal (cf. the remark following Example

5.4). The universal property of the normalization then implies that X̄ δ̃ is in fact the
normalization of X̄δ. Motivated by this, we will refer to δ̃ as a normalization of δ.
(Note that the normalization of degree-like functions is unique only up to a constant
factor, depending on the choice of e of assertion 1 of Theorem 5.10).

Example 5.12. Let A be a finite subset of Zn such that Zn = ZA and the
convex hull P of A in Rn contains the origin in its interior. Let XA be the closure of
the image of the map φA : (K∗)n →֒ P|A|−1(K) whose components are the monomials
xα with α ∈ A. XA is the (possibly non-normal) toric variety corresponding to A
(see e.g. [GKZ94, Section 5.1]). Let X := (K∗)n and η be the degree-like function on
K[X ] corresponding to the completion X →֒ XA and eδP be a subdegree associated
to P as in Example 3.5. Then it is not hard to see that δP is a normalization of η.
This implies (following Remark-Definition 5.11) that XP is the normalization of XA

(cf. [GKZ94, Proposition 2.8(a)]).

Remark 5.13. Let δ be a finitely generated degree-like function on K[X ] and δ̃
be a normalization of δ. Theorem 5.10 states that applying δ̃ to K[X ] produces the
normalization at infinity of X̄δ with respect to X . In light of this statement, it is
natural to ask if applying δ̃ to the coordinate ring of the normalization of X would
produce the normalization of X̄δ. This indeed turns out to be true, i.e. if we denote
normalization by the symbol ‘tilde’, then we have:

¯̃X δ̃ ∼= ˜̄Xδ.

We end this section with an application of our results. Namely, we prove the fol-
lowing ‘finiteness-property’ of divisorial valuations (defined in the paragraph following
Theorem 1.3) proved in [dFEI08] for K = C.

Theorem 5.14. Let X be an irreducible affine variety and ν be a divisorial
valuation over X. Then there exist elements f1, . . . , fr ∈ K[X ] \ {0} such that for
every f ∈ K[X ] \ {0},

ν(f) = min{ν′(f) : ν′
is a divisorial valuation over X, ν

′(fi) = ν(fi) for 1 ≤ i ≤ r}(∗)

= min{ν′(f) : ν′
is a valuation on K(X) such that the value group of ν contains

the integers and ν
′(fi) = ν(fi) for 1 ≤ i ≤ r}(∗′)

Proof. There exists a normal variety Y equipped with a birational morphism
π : Y → X and a prime divisor E on Y such that ν = q ordE for some positive
integer q. Let U be an open affine subset of Y such that E ∩ U 6= ∅ and Ū be an
arbitrary projective completion of U . Pick an effective ample divisor D on Ū such
that E ∩U ⊆ supp(D) and set Z := Ū \ supp(D). Then Ū ∼= Z̄δ for some degree-like
function δ on K[Z] (Proposition 2.8). Let δ̃ be a normalization of δ with minimal
presentation δ̃ = maxNi=1 δi. Proposition 5.2 implies that there exists i such that
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δi = −
d
q
ν for some positive integer d. W.l.o.g. assume i = 1. Pick g1 ∈ K[Z] \ {0}

such that δ̃(g1) = δ1(g1) > δi(g1) for all i > 1. Finally, pick g2, . . . , gs ∈ K[Z] \ {0}

such that (g1)δ̃(g1), . . . , (gs)δ̃(gs) generate K[Z]δ̃ as a K-algebra. We claim that for all

g ∈ K[Z] \ {0},

δ1(g) = max{δ′(g) : δ′ is a semidegree on K[Z], δ′(gi) = δ1(gi) for 1 ≤ i ≤ s}.(∗̃)

Indeed, pick a semidegree δ′ on K[Z] such that δ′(gi) = δ1(gi) for all i, 1 ≤ i ≤ s. Since
δ1 ≤ δ̃, it follows from the choice of gj ’s that δ

′ ≤ δ̃. Now pick any g ∈ K[Z]\{0}. Then

for all sufficiently large k, we have that δ1(gg
k
1 ) = δ̃(ggk1 ) ≥ δ

′(ggk1 ), and consequently,
δ1(g) ≥ δ

′(g). This proves identity (∗̃).
Let g0 ∈ K[Z] \ {0} such that Z \ V (g0) ⊆ X and let f1, . . . , fr ∈ K[X ] \ {0}

such that for each i, 0 ≤ i ≤ s, gi = fj/fk for some j, k. We show that f1, . . . , fr
satisfies the claim of the theorem. Indeed, pick any ν′ as in the right hand side of the
identity (∗′) and an arbitrary f ∈ K[X ] \ {0}. Then f = g/gk0 for some k ≥ 0 and
g ∈ K[Z]. Since ν′(gj) = ν(gj) = −

q
d
δ1(gj) for all j, 0 ≤ j ≤ s, applying identity (∗̃)

to δ′ := − d
q
ν′ yields that ν(f) ≤ ν′(f), as required.

6. Divisor at infinity. Associated to every degree-like function δ there is a
canonical ample Q-Cartier divisor supported at infinity on the corresponding com-
pletion. In this section we study this divisor for the case that δ is a subdegree and
establish a formula for its pull-back under a dominant morphism. As an application
we compute the matrix of intersection numbers of the curves at infinity on a class
of completions of certain affine surfaces. We also compute the nef cone of the latter
completions and as a consequence give a positive answer to Question 1.10 in the case
of surfaces under the additional hypothesis that each δj is strictly positive on every
non-constant regular function on X (Corollary 6.9).

6.1. Pull-back formula.

Remark-Definition 6.1. LetX be an affine variety and δ be a finitely generated
degree-like function on K[X ]. The divisor at infinity Dδ

∞ on X̄δ is the Q-Cartier
divisor defined by (1)1. D

δ
∞ is Cartier iff there is a subset S of K[X ]δ consisting of

homogeneous elements of degree one such that the radical of the ideal generated by
S is the irrelevant ideal of K[X ]δ. It follows from Proposition 2.8 that Dδ

∞ is ample
and supported at infinity, i.e. suppDδ

∞ = X̄δ \X =: Xδ
∞.

Notation. Let Z be an algebraic variety. For a Cartier divisor D on Z (resp.
an irreducible codimension one subvariety V of Z), we denote the corresponding Weil
divisor by [D] (resp. [V ]). Moreover, given a Q-Weil or Q-Cartier divisor D on Z, we
write D ≥ 0 if D′ is effective. For convenience of the reader we recall the definition
of ‘effectiveness’ of Q-Weil and Q-Cartier divisors: if D is a Q-Weil divisor, then D
is effective iff for each irreducible codimension one subvariety V of Z, the coefficient
of [V ] in D is zero. On the other hand, if D is Cartier, then D is said to be effective
iff all the local equations of D are regular functions. Finally, a Q-Cartier divisor is
effective iff it has a multiple which is an effective Cartier divisor.

Lemma 6.2. Let X be an irreducible affine variety, δ be a finitely generated
subdegree on K[X ], and δ1, . . . , δN be the non-zero semidegrees associated to δ. Then
the Q-Weil divisor associated to Dδ

∞ is

[Dδ
∞] =

N∑

j=1

1

dj
[Vj ]
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where for each j, 1 ≤ j ≤ N , dj := gcd{δj(g) : g ∈ K(X), δj(g) > 0} and Vj is the
irreducible component of Xδ

∞ corresponding to δj.

Proof. Fix j, 1 ≤ j ≤ N and g ∈ K[X ] such that d := δ(g) = δj(g). Let
U := X̄δ \ V ((g)d). Assertion 1 of Lemma 4.1.1 implies that U ∩ Vj 6= ∅. Recall
that for each f ∈ K(X) \ {0}, the order of vanishing of f at Vj is precisely −δj(f)/dj
(Proposition 5.2). Since 1/g is a local equation of dDδ

∞ on U , it follows that the
coefficient of [Vj ] in the expression for [dDδ

∞] is − 1
dj
δj(1/g) = d/dj , as required to

prove the lemma.

Example 6.3. Let P be an n-dimensional convex rational polytope as in Example
3.5 and XP be the corresponding toric variety. We use the notation of Example 3.5.
With X := (K∗)n and δ := eδP , it follows that [D

δ
∞] =

∑
Q
cQ
e
[XQ], where the sum

is over all facets Q of P and XQ are the components of XP \ X corresponding to
δQ (see Example 4.5). In particular, Dδ

∞ = 1
e
DP , where DP is the divisor on XP

corresponding to P [Ful93, Section 3.4].

Next we establish the pull-back formula for the divisor at infinity. To state it we
use from [Ful98, Section 1.2] the notion of order of vanishing ordW (f) of a non-zero
rational function f on an arbitrary irreducible variety Z along a codimension one
irreducible subvariety W .

Proposition 6.4. Let X be an irreducible affine variety, δ be a finitely generated
non-negative (non-zero) subdegree on K[X ] and φ : Z → X̄δ be a dominant morphism
from an irreducible variety Z. Then

[φ∗(Dδ
∞)] =

∑

W

lφ∞(δ, poleW )[W ],(13)

where the sum is over codimension one irreducible subvarieties W of Z, and for each
such W , the function poleW is the negative of ordW , and

lφ∞(δ, poleW ) := max

{
poleW (φ∗(f))

δ(f)
: f ∈ K[X ], δ(f) > 0

}
.

Remark 6.5. Recall (from Remark-Definition 1.7) that lφ∞(δ, poleW ) is the link-
ing number at infinity (relative to φ) of δ and poleW .

Proof. Let δ1, . . . , δN be the non-zero semidegrees associated to δ. For each j, 1 ≤
j ≤ N , let Vj be the component of the hypersurface at infinity on X̄δ corresponding
to δj and dj := gcd{δj(g) : g ∈ K(X), δj(g) > 0}. Pick f ∈ K[X ] such that δ(f) > 0
and let divX̄δ(f) be the principal Cartier divisor of f on X̄δ. Then Proposition 5.2
implies that

[divX̄δ(f)] +

N∑

j=1

δj(f)

dj
[Vj ] ≥ 0

⇒[divX̄δ(f)] + δ(f)

N∑

j=1

1

dj
[Vj ] ≥ 0 (since δ(f) ≥ δj(f) for all j, 1 ≤ j ≤ N)

⇒ divX̄δ (f) + δ(f)Dδ
∞ ≥ 0 (due to Lemma 6.2 and Claim 5.6.1).(14)
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Let W be an irreducible codimension one subvariety of Z and cW be the coefficient
of [W ] in [φ∗(Dδ

∞)]. Since the pull-back (under a dominant map) of an effective Q-
Cartier divisor is also effective, inequality (14) implies that ordW (φ∗(f))+δ(f)cW ≥ 0,
or in other words, cW ≥ poleW (φ∗(f))/δ(f). It follows that cW ≥ lφ∞(δ, poleW ).

To complete the proof of the proposition, it suffices to show that there exists
f ∈ K[X ] such that δ(f) > 0 and cW = poleW (φ∗(f))/δ(f). We divide the proof into
two cases:

Case 1: φ(W ) ⊆ X. In this case cW = 0, since φ(W ) ∩ suppDδ
∞ = ∅. On the

other hand, for all g ∈ K[X ], φ∗(g) is regular on a neighbourhood of W , so that
poleW (φ∗(g)) ≤ 0. Pick any g ∈ K[X ] such that δ(g) > 0. Then setting f := g − α
for generic α ∈ K yields that poleW (φ∗(f))/δ(f) = 0, as required.

Case 2: φ(W ) ( X. In this case there exists w ∈ W and j, 1 ≤ j ≤ N , such
that φ(w) ∈ Vj . Since Dδ

∞ is ample, there exists d > 0 such that OX̄δ (dDδ
∞) is

globally generated. Note that the global sections of OX̄δ (dDδ
∞) are precisely {f ∈

K[X ] : δ(f) ≤ d}. In particular, there exists f ∈ K[X ] such that δ(f) ≤ d and
fh is invertible near φ(w), where h is a local equation for dDδ

∞ near φ(w). Then
δj(f) = −dj ordVj

(f) = dj ordVj
(h) = d. Since δ(f) ≥ δj(f), it follows that δ(f) =

d; in particular, δ(f) > 0. Moreover, since φ∗(fh) is invertible near w, it follows
that 0 = ordW (φ∗(fh)) = ordW (φ∗(f)) + ordW (φ∗(h)) = − poleW (φ∗(f)) + dcW .
Taken together, the preceding two sentences imply that cW = poleW (φ∗(f))/δ(f), as
required.

6.2. Applications of the pull-back formula. Throughout this subsection we
set X to be an affine surface such that the only invertible regular functions on X are
(non-zero) constants (the most typical example being X = K2). Let X̄1, . . . , X̄k be
non-isomorphic normal projective completions of X such that the complement Cj of
X in each X̄j is an irreducible curve and let X̄ be the normalization of the closure in
X̄1×· · ·× X̄k of the image of X under the diagonal mapping. As the first application
of Proposition 6.4, we compute the matrix of intersection numbers of the curves at
infinity on X̄ .

The complement of X in X̄ has precisely k irreducible components C̃1, . . . , C̃k,
where C̃j is the unique curve in X̄\X which maps onto Cj under the natural projection

πj : X̄ → X̄j . The intersection numbers (C̃i, C̃j) are well defined (according to Mum-
ford’s intersection theory for normal complete surfaces [Mum61]). Let δj : K[X ]→ N
be the order of pole along Cj . Then each δj is a projective semidegree. Define three
k × k matrices L, I,D as follows:

L := matrix of linking numbers at infinity of δj ’s with (i, j)-th entry being l∞(δi, δj),

D := the diagonal matrix with i-th diagonal entry being (Ci, Ci),

I := matrix of intersection numbers C̃j ’s with (i, j)-th entry being (C̃i, C̃j).

Lemma 6.6. LI = D.

Proof. Pick i, j, 1 ≤ i, j ≤ k. If i 6= j, then πi(C̃j) is a point and therefore

(π∗
i (Ci), C̃j) = 0. Since intersection numbers are preserved by pull-backs under bi-

rational morphisms, it follows that (Ci, Ci) = (π∗
i (Ci), π

∗
i (Ci)) = (π∗

i (Ci), C̃i). The

lemma now follows from Proposition 6.4 which implies that π∗
i (Ci) =

∑k

l=1 likC̃k.
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As an application of Lemma 6.6 we compute the intersection theory of a class of
toric completions of K2. Let P be a convex rational polygon in R2 with

1. one vertex at the origin,
2. two edges along the axes, and
3. the other edges being line seg-

ments with negative rational
slopes.

y

x
v1

v2

vk

P

List the non-axis edges of P counter-clockwise by e1, . . . , ek and for each j, 1 ≤
j ≤ k, let vj := (vj1, vj2) be the smallest integral vector on the outward pointing

normal to ej and C̃j be the torus invariant curve associated to ej on the toric surface

XP corresponding to P . Let I be the k × k matrix of intersection numbers (C̃i, C̃j)
for 1 ≤ i, j ≤ k. Each vj corresponds to a toric surface X̄j corresponding to a triangle
Pj which has two edges along the positive axes and the other edge is parallel to ej.
Then an application of Lemma 6.6 to X̄1, . . . , X̄k and X̄ := XP yields:

Corollary 6.7.

I =




1 v22
v12

v32
v12

· · · vk2

v12
v11
v21

1 v32
v22

· · · vk2

v22
...

...
...

...
...

v11
vk1

v21
vk1

v31
vk1

· · · 1




−1


1
v11v12

0 · · · 0

0 1
v21v22

· · · 0
...

...
. . .

...
0 0 · · · 1

vk1vk2




Let X and X̄ be as in the first paragraph of this subsection. Lemma 6.6 implies
that the cone NE(X̄) of curves on X̄ is generated by (the equivalence classes) of
C̃1, . . . , C̃k and consequently is simplicial of dimension k. The nef cone Nef(X̄) of X̄
is dual to NE(X̄) under the intersection product. We next give another description
of Nef(X̄).

Lemma 6.8. Nef(X̄) = {0}∪{
∑k

i=1mi[C̃i] : mi > 0 and there exist non-constant
regular functions fi on X such that δi(fi)/mi ≥ δj(fi)/mj for all i, j, 1 ≤ i, j ≤ k}.

Proof. Let C be the set of divisors on the right hand side of the equality to be
proved. Since δi’s are semidegrees, it follows that C is indeed a cone. At first we show
that C ⊆ Nef(X̄). Pick positive integersm1, . . . ,mk such that D :=

∑k

j=1mj [C̃j ] ∈ C.
Fix i, 1 ≤ i ≤ k, and fi ∈ K[X ] \ K such that δi(fi)/mi ≥ δj(fi)/mj for all j,

1 ≤ j ≤ k. The coefficient of [C̃j ] in Di := δi(fi)D + divX̄(fmi

i ) is zero for j = i and

non-negative for j 6= i, 1 ≤ j ≤ k. It follows that (D, C̃i) = (Di, C̃i)/δi(fi) ≥ 0 and
therefore D is nef, as required.

For the opposite inclusion, pick positive rational numbers m1, . . . ,mk such that
D :=

∑k

j=1mj [C̃j ] is in the interior of Nef(X̄). Then D is ample, and therefore,
replacing D by some of its multiple if necessary we may assume that each mi is an
integer and D is very ample. Since OX̄(D) is globally generated, for each i, 1 ≤ i ≤ k,
there exists fi ∈ K[X ] such that Di := [divX̄(f)] +D ≥ 0 and the coefficient of [C̃i]
in Di is zero. Then δi(fi) = mi and δj(fi) ≤ mj for all j 6= i, so that the interior of
Nef(X̄) is contained in C. Since C is closed, we see that Nef(X̄) ⊆ C.
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Using Lemma 6.8 we give a positive answer to Question 1.10 in a special case.
Recall that a degree-like function δ on a K-algebra is called projective if δ is finitely
generated and δ(f) > 0 for all f ∈ A \K.

Corollary 6.9. Let X be an affine surface and δ̃1, . . . , δ̃k be projective semide-
grees on K[X ]. Then δ̃ := max{δ̃1, . . . , δ̃k} is finitely generated (and therefore also
projective).

Remark 6.10. Not all affine varieties X admit projective semidegrees on K[X ];
a necessary condition for this to hold is the non-existence of any invertible regular
functions on X other than (non-zero) constants.

Proof. W.l.o.g. we may assume that δ̃ = max{δ̃1, . . . , δ̃k} is the minimal presen-
tation of δ̃. At first assume that X is normal and let X̄ be the normalization of the
closure in X̄1 × · · · × X̄k of the image of X under the diagonal mapping. For each j,
1 ≤ j ≤ k, define dj := gcd{δ̃(f) : f ∈ K[X ]}, δj := δ̃j/dj and mj := 1/dj. Lemma

6.8 then implies that D :=
∑k

j=1mjC̃j is in the interior of the nef cone of X̄, and

thereforeD is ample. Since D = Dδ̃
∞, it follows that δ̃ is finitely generated, as required

to prove the corollary in the case that X is normal. The general case follows (due to
Remark 5.13) via applying the corollary to the normalization of X .
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