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NUMERICAL ALGORITHM FOR FINDING BALANCED METRICS

ON VECTOR BUNDLES∗

REZA SEYYEDALI†

Abstract. In [D5], Donaldson defines a dynamical system on the space of Fubini-Study metrics
on a polarized compact Kähler manifold. Sano proved that if there exists a balanced metric for the
polarization, then this dynamical system always converges to the balanced metric ([S]). In [DKLR],
Douglas, et. al., conjecture that the same holds in the case of vector bundles. In this paper, we give
an affirmative answer to their conjecture.
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1. Introduction. In [NS], Narasimhan and Seshadri prove that a holomorphic
vector bundle over a compact Riemann surface is stable if and only if it arises from an
irreducible projective unitary representation of the fundamental group of the Riemann
surface. Later, Donaldson proves that a holomorphic vector bundle over a smooth
compact algebraic surface is poly-stable if and only if it admits a Hermitian-Einstein
metric ([D1]). Uhlenbeck and Yau generalize Donaldson’s result to compact Kähler
manifolds of arbitrary dimension ([D2], [UY]).

Closely related to stability is the notion of balanced embeddings and balanced
metrics. The idea of balanced embeddings appeared in the work of Bourguignon, Li
and Yau ([BLY]). They use balanced embeddings to prove an upper bound for the
first eigenvalue of the laplacian on a Kähler manifold. Also in [Zh], Zhang proves that
a smooth projective variety admits a balanced embedding into some projective space
if and only if it is Chow semi-stable. Later, Donaldson defines the concept of balanced
metric for holomorphic vector bundles ([D3]). By a theorem of Wang, we know that
a holomorphic vector bundle E admits a unique (up to a positive constant) balanced
metric if and only if the Gieseker point of E is stable (([W, Theorem 1.1]), [PS]). On
the other hand, there exists at most one balanced metric (up to a constant) provided
the bundle is simple (cf. Lemma 2.7 below).

In [D5], Donaldson defines a dynamical system on the space of Fubini-Study
metrics on a polarized compact Kähler manifold. Sano proved that if there exists a
balanced metric for the polarization, then this dynamical system always converges to
the balanced metric ([S]). In [DKLR], Douglas, et. al., conjecture that the same holds
in the case of vector bundles. In this paper, we give an affirmative answer to their
conjecture.

Let (X, ω) be a Kähler manifold of dimension m and E be a very ample holo-
morphic vector bundle on X . Let h be a Hermitian metric on E. We can define a
L2-inner product on H0(X, E) by

〈s, t〉 =

∫

X

h(s, t)
ωm

m!
.
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Let s1, ..., sN be an orthonormal basis for H0(X, E) with respect to this L2-inner
product. The Bergman kernel of h is defined by

B(h) =
∑

si ⊗ s∗h

i .

Note that B(h) does not depend on the choice of the orthonormal basis s1, ..., sN . A
metric h is called balanced if B(h) is a constant multiple of the identity.

Let K and M be the space of Hermitian metrics on E and Hermitian inner product
on H0(X, E) respectively. Following Donaldson ([D4]), one can define the following
maps

•

Hilb : K → M, h 7→ Hilb(h)

〈s, t〉Hilb(h) =
N

V r

∫
〈s(x), t(x)〉h

ωm

m!
,

where N = dim(H0(X, E)) and V = Vol(X, ω). Note that Hilb only depends
on the volume form ωm/m!.

• For the metric H ∈ M , FS(H) is the unique metric on E such that∑
si ⊗ s

∗F S(H)

i = I, where s1, ..., sN is an orthonormal basis for H0(X, E)
with respect to H . This gives the map FS : M → K.

• Define

T : M → M

T (H) = Hilb ◦ FS(H). This map T is called the generalized T -operator in
[DKLR].

It is easy to see that a metric h is balanced if and only if Hilb(h) is a fixed point
of the map T . The main theorem of this paper is the following

Theorem 1.1. Suppose that E is simple and admits a balanced metric. Then

for any hermitian inner product H0 on H0(X, E), the sequence T n(H0) converges to

H∞ as n → ∞, where H∞ is a balanced metric on E.

Our proof follows Sano’s argument in [S] with the necessary modifications for the
bundle case.

In order to prove the theorem, we consider the functional Z that is used by Wang
([W]) and Phong, Sturm ([PS]) in order to study the existence and uniqueness of
balanced metrics on holomorphic vector bundles. The key property of this functional
is that its critical points are balanced metrics. In the second section we recall some
properties of the functionals Z and Z̃. In the second section, we give an appropriate
notion of boundedness for subsets of M , defined in [S]. With this definition, any
bounded sequence has a convergent subsequence after a suitable rescaling of the se-
quence. Therefore in order to prove that the sequence Hn = T n(H) converges , we
need to show that Hn is bounded. On the other hand, existence of a balanced metric
implies that Z̃ is bounded from below and proper in a suitable sense. Hence it shows
that Z̃(Hn) is bounded. Now properness of Z̃ implies that Hn is bounded.

Acknowledgements. I am sincerely grateful to Richard Wentworth for intro-
ducing me the subject and many helpful discussions and suggestions on the subject.
I would also like to thank him for all his help, support and encouragement.
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2. Balanced metrics on vector bundles. As before, let (X, ω) be a Kähler
manifold and E be a very ample holomorphic vector bundle on X . Using global
sections of E, we can map X into G(r, H0(X, E)∗). Indeed, for any x ∈ X , we have the
evaluation map H0(X, E) → Ex, which sends s to s(x). Since E is globally generated,
this map is a surjection. So its dual is an inclusion of E∗

x →֒ H0(X, E)∗, which
determines a r-dimensional subspace of H0(X, E)∗. Therefore we get an embedding
i : X →֒ G(r, H0(X, E)∗). Clearly we have i∗Ur = E∗, where Ur is the tautological
vector bundle on G(r, H0(X, E)∗), i.e. at any r-plane in G(r, H0(X, E)∗), the fibre
of Ur is exactly that r-plane. A choice of basis for H0(X, E) gives an isomorphism
between G(r, H0(X, E)∗) and the standard G(r, N), where N = dimH0(X, E). We
have the standard Fubini-Study hermitian metric on Ur, so we can pull it back to E
and get a hermitian metric on E. Using i∗hFS and ω, we get an L2 inner product
on H0(X, E). The embedding is called balanced if

∫
X 〈si, sj〉

ωm

m! = Cδij . We can
formulate this definition in terms of maps Hilb and FS.

Definition 2.1. A balanced metric on E is a pair (h∗, H∗) so that

Hilb(h∗) = H∗ , FS(H∗) = h∗

Fixing a nonzero element Θ ∈
∧N

H0(X, E), We can define the determinant of
any element in M . Thus we can define a map

log det : M → R

A different choice of Θ only changes this map by an additive constant. Also, we define
a functional I : K → R again unique up to an additive constant. Fix a background
metric h0 and consider a path ht = eφth0 in K then

dI

dt
=

∫

X

tr(φ̇) dVolω (2.1)

This functional is a part of Donaldson’s functional. We define:

Z = −I ◦ FS : M → R (2.2)

We have the following scaling identities:

Hilb(eαh) = eαHilb(h),

FS(eαh) = eαFS(h),

I(eαh) = I(h) + αrV,

where α is a real number.
Following Donaldson, define:

Z̃ = Z +
rV

N
log det . (2.3)

So Z̃ is invariant under constant scaling of the metric.
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This functional Z is studied by Wang in [W] and Phong and Sturm in [PS]. They
consider this as a functional on SL(N)/SU(N). In order to see this, we observe that
there is a correspondence between M and GL(N)/U(N). Fix an element H0 ∈ M
and an orthonormal basis s1, ..., sN for H0(X, E) with respect to H0. Now for any
H ∈ M we assign [H(si, sj)] ∈ GL(N). Notice that a change of the orthonormal basis
only changes this matrix by multiplication by elements of U(N). So we get a well
define element of GL(N)/U(N). The subset

M0 = {H ∈ M | det[H(si, sj)] = 1}

corresponds to SL(N)/SU(N).
Recall the definition of the Gieseker point of the bundle E. We have a natural

map

T (E) :
r∧

H0(X, E) → H0(X, det(E))

which for any s1, ..., sr in H0(X, E) is defined by

T (E)(s1 ∧ ... ∧ sr)(x) = s1(x) ∧ ... ∧ sr(x).

Since E is globally generated, T (E) is surjective. We can view T (E) as an
element of Hom(

∧r H0(X, E), H0(X, det(E))). This is called the Gieseker point
of E ([G]). Notice that fixing a basis for H0(X, E) gives an isomorphism be-
tween

∧r
H0(X, E) and

∧r
CN . Hence, there is a natural action of GL(N) on

Hom(
∧r

H0(X, E), H0(X, det(E))). Phong-Sturm ([PS]) and Wang ([W]) prove that
Z is convex along geodesics of SL(N)/SU(N) and its critical points are corresponding
to balanced metrics on E. Phong and Sturm prove the following

Theorem 2.1 ([PS, Theorem 2]). There exists a SU(N)- invariant norm ||.|| on

Hom(
∧r

H0(X, E), H0(X, det(E))) such that for any σ ∈ SL(N)

Z(σ) = log
||σ.T (E)||2

||T (E)||2

Remark 2.2. In [W], Wang proves a slightly weaker version of Theorem 2.1.
He proves that for any norm ||.|| on Hom(

∧r
H0(X, E), H0(X, det(E))), there exists

positive constants c and c′ such that

Z(σ) ≥ c log ||σ.T (E)||2 + c′.

Theorem 2.3 ([W, Lemma 3.5], [PS, Lemma 2.2]). The functional Z is convex

along geodesics of M .

The Kempf-Ness theorem ([KN]) shows that Z is proper and bounded from below
if T (E) is stable under the action of SL(N).

The following is an immediate consequence of the above theorem and the fact
that balanced metrics are critical points of Z. Also notice that Z̃ is invariant under
the scaling of a metric by a positive real number.
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Theorem 2.4. Assume that H0 is a balanced metric on E. Then Z̃|M0 is proper

and bounded from below. Moreover Z̃(H) ≥ Z̃(H0) for any H ∈ M .

Lemma 2.5. For any H ∈ M , we have

Tr(T (H)H−1) = N

Proof. Let h = FS(H) and let s1, ..., sN be an H-orthonormal basis. We have,

∑
si ⊗ s∗h

i = I

Therefore,

r = Tr
(∑

si ⊗ s∗h

i

)
=

∑
|si|

2
h.

Integrating the above equation implies the result.

Lemma 2.6. For any H ∈ M ,

• Z(H) ≥ Z(T (H)).
• log det(H) ≥ log det(T (H)).

• Z̃(H) ≥ Z̃(T (H)).

Proof. Put h = FS(H) , H ′ = Hilb ◦ FS(H) and h′ = FS(H ′) = eϕh. Let
s1, ..., sN be an H ′-orthonormal basis. We have,

∑
si ⊗ s∗h

i = e−ϕ.

Hence,

∫

X

tr(−ϕ) =

∫

X

log det(e−ϕ) ≤

∫

X

log
( tr(e−ϕ)

r

)r

= r

∫

X

log(tr(e−ϕ)) − rV log r

≤ rV log
( 1

V

∫

X

tr(e−ϕ)
)
− rV log r

= rV log
( 1

V

∫

X

∑
|si|

2
h

)
− rV log r = 0

This shows the first inequality. For the second one, Lemma 2.5 implies that
tr(H ′H−1) = N . Using the arithmetic -geometric mean inequality, we get

det(H ′H−1)
1
N ≤

tr(H ′H−1)

N
= 1.

This implies that log det(H ′H−1) ≤ 0. The third inequality is obtained by summing
up the first two.

A bundle E is called simple if Aut(E) ≃ C∗. We will need the following

Lemma 2.7. Suppose that E is simple and admits a balanced metric. Then the

balanced metric is unique up to a positive constant.

Proof. Since det(H)−1/NH ∈ M0 for any H ∈ M , it suffices to prove that a
balanced metric in M0 is unique. Let H∞ ∈ M0 be a balanced metric on E and
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s1, ..., sN be an orthonormal basis of H0(X, E) with respect to H∞. This basis gives
an embedding ι : X → Gr(r, N) such that ι∗Ur = E, where Ur → Gr(r, N) is the
universal bundle over the Grassmannian. Assume that H is another element of M0.
Therefore, there exists an element a ∈ su(N) such that eia.H∞ = H . Then {eita}
gives a one parameter family of automorphism of (Gr(r, N), Ur) and therefore a one
parameter family in Aut(X, E). From lemma 3.5 in [W], we have

d2

dt2
Z(eita) =

∫

ι(X)

||ã||2dvolX , (2.4)

where ã is the vector field on Gr(r, N) generated by the infinitesimal action of a and
||ã|| is the Fubini-Study norm of ã. Suppose that H is a balanced metric. Therefore
it is a minimum for the functional Z. This implies that

d2

dt2
Z(eita) = 0,

and hence by (2.4) that ã
∣∣
ι(X)

≡ 0. This implies that the one parameter family {eita}

fixes ι(X) pointwise and therefore the one parameter family {eita} is a one parameter
family of endomorphisms of E. By the simplicity of E, eia as an endomorphism of E
must be a constant scalar of the identity. Therefore H is a constant multiple of H∞.
It implies that H = H∞ since H ∈ M0.

3. Proof of Theorem 1.1. In this section, we closely follow Sano’s argument
in ([S, Section 3]). Let s1, ..., sN be a basis for H0(E). With this basis, we can view
elements of M as N×N matrices. Now using this identification, we state the following
definition introduced in Sano ([S]).

Definition 3.1. A subset U ⊆ M is called bounded if there exists a number
R > 1, satisfying the following: For any H ∈ U , there exists a positive number γH so
that

γH

R
≤ min

|H(ξ)|

|ξ|
≤ max

|H(ξ)|

|ξ|
≤ γHR (3.1)

Note that boundedness does not depend on the choice of the basis. Also no-
tice that min |H(ξ)|/|ξ| is the smallest eigenvalue of the matrix [H(si, sj)] and
max |H(ξ)|/|ξ| is the largest eigenvalue of the matrix [H(si, sj)].

From the definition, one can see that U is bounded if and only if there exists
R > 1 satisfying the following: For any H ∈ U , there exists a positive number γH so
that

||[H(si, sj)]||op ≤ γHR,

||[H(si, sj)]
−1||op ≤ γ−1

H R.

Proposition 3.1. Any bounded sequence Hi has a subsequence Hni
such that

γ−1
ni

Hni
converges to some point in M . Here γi = γHi

in Definition 3.1.

Proof. The sequence γ−1
ni

Hni
is a bounded sequence in the space of N×N matrices

with respect to the standard topology. Hence the proposition follows from the fact
that the closure of bounded sets are compact.
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Notice that the standard topology on the space of N ×N matrices is induced by
the standard Euclidean norm. Since all norms on a finite dimensional vector space are
equivalent, we can use the operator norm. Therefore a sequence {Hα} in M converges
to H ∈ M if and only if

∣∣[Hα(si, sj)] − [H(si, sj)]
∣∣
op

→ 0 as α → 0.

Lemma 3.2. The set U ⊆ M is bounded if and only if there exists a number

R̃ > 1 so that for any H ∈ U , we have

1

R̃
≤ min

|H̃(ξ)|

|ξ|
≤ max

|H̃(ξ)|

|ξ|
≤ R̃,

where H̃ = (det(H))−
1
N H.

Proof. Assume that U is bounded. By definition there exists a number R > 1,
satisfying (3.1). Let H be an element of U . Without loss of generality we can assume
that H(si, sj) = eλiδij and λ1 ≤ ... ≤ λN . For any i, we have

γH

R
≤ eλi ≤ γHR.

This implies that γH ≤ Reλi and γH ≥ R−1eλi . Therefore

eλN ≤ γHR ≤ R2eλi ,

and

eλ1 ≥ γHR−1 ≥ R−2eλi ,

for any 1 ≤ i ≤ N. Hence

(det(H))
−1
N eλN = eλN−

P
λi

N =
(∏

eλN−λi

) 1
N

≤ R2.

and

(det(H))
−1
N eλ1 = eλ1−

P
λi

N =
(∏

eλ1−λi

) 1
N

≥ R−2.

Put R̃ = R2.
The converse is followed by letting γH = det(H)−1/N .

Let H0 be an element in M . Define the sequence {Hn} by Hn = T (Hn−1).

Lemma 3.3. If {Hn} is a bounded sequence in M , then det(Hn) is bounded and

det(Hn+1H
−1
n ) → 1 as n → ∞.

In particular det(Hn) converges to a positive number.

Proof. Z̃(Hn) is bounded since the sequence {Hn} is bounded. On the other
hand, lemma 2.6 implies that the sequences Z(Hn) and log det(Hn) are decreasing.
So, log det(Hn) is bounded and decreasing. Hence, it converges to some real number.
This implies that det(Hn+1H

−1
n ) → 1 as n → ∞.
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Lemma 3.4. Assume {Hn} is a bounded sequence in M . Let H be a fixed element

of M and s
(l)
1 , ..s

(l)
N be an orthonormal basis with respect to Hl so that the matrix

[H(s
(l)
i , s

(l)
j )] is diagonal. Then

N

V r

∫

X

∣∣sl
i

∣∣2
hl

dvolX → 1 as l → ∞,

where hn = FS(Hn).

Proof. Let ŝ
(l)
1 , ..ŝ

(l)
N be an orthonormal basis with respect to Hl so that

Hl+1(ŝ
(l)
i , ŝ

(l)
j ) is diagonal. Hence

det
[
Hl+1(ŝ

(l)
i , ŝ

(l)
j )

]
=

N∏

i=1

Hl+1(ŝ
(l)
i , ŝ

(l)
1 ).

Lemma 3.3 implies that

det
[
Hl+1(ŝ

(l)
i , ŝ

(l)
j )

]
→ 1.

On the other hand Lemma 2.6 implies that

tr
[
Hl+1(ŝ

(l)
i , ŝ

(l)
j )

]
= N.

We define Al(i) = Hl+1(ŝ
(l)
i , ŝ

(l)
i ). Therefore,

N∏

i=1

Al(i) → 1 as l → ∞, (3.2)

N∑

i=1

Al(i) = N, for any 1 ≤ l ≤ N. (3.3)

We claim that for any i,

Al(i) → 1 as l → ∞. (3.4)

Suppose not, then there exist an α, 1 ≤ α ≤ N , a positive number ǫ > 0 and a
subsequence {Alq(α)} such that

∣∣Alq(α) − 1
∣∣ ≥ ǫ. (3.5)

On the other hand, (3.3) implies that Al(i) ≤ N since Al(i) ≥ 0 and therefore the
sequences {Alq(i)} are bounded for any 1 ≤ i ≤ N . Hence there exist nonnegative
numbers A(1), ...A(N) and a subsequence {lqj

} so that

Alqj
(i) → A(i) as j → ∞. (3.6)

Therefore, (3.2), (3.3) and (3.6) imply that

N∏

i=1

A(i) = 1 and

N∑

i=1

A(i) = N.
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By arithmetic-geometric mean inequality, we always have

( N∏

i=1

A(i)
) 1

N ≤
1

N

N∑

i=1

A(i)

and equality holds if and only if all Ai’s are equal. Since equality holds in this case,
we conclude that A(1) = ... = A(N) = 1. In particular

Alqj
(α) → 1 as j → ∞,

which contradicts (3.5). This implies that Hl+1(ŝ
(l)
i , ŝ

(l)
i ) → 1 for all i.

On the other hand, there exists [al
ij ] ∈ U(N) such that s

(l)
i =

∑N
j=1 aij ŝ

l
j . Since

U(N) is compact, we can find a subsequence of [al
ij ] which converges to an element of

U(N). Without loss of generality, we can assume that there exists [aij ] ∈ U(N) such
that al

ij → aij as l → ∞. We have,

Hl+1(s
(l)
i , s

(l)
i ) =

∑
al

ija
l
ikHl+1(ŝ

(l)
j , ŝ

(l)
k ) →

N∑

j=1

|aij |
2 = 1.

Proposition 3.5 (cf. [S, Proposition 3.2]). If {Hn} is a bounded sequence in

M , then for any H ∈ M and any ǫ > 0,

Z̃(H) ≤ Z̃(Hn) − ǫ, (3.7)

for sufficiently large n.

Proof. Let s
(l)
1 , ..., s

(l)
N be an orthonormal basis with respect to Hl such that

H(s
(l)
i , s

(l)
j ) = δije

λ
(l)
i . Fix a positive integer l. Define Ht(s

(l)
i , s

(l)
i ) = δije

tλ
(l)
i . We

have H0 = Hl and H1 = H . Let fl(t) = f(t) = Z̃(Ht). We have

f(1) − f(0) =

∫ 1

0

f ′(t) dt =

∫ 1

0

(
f ′(0) +

∫ t

0

f ′′(s) ds
)

dt

= f ′(0) +

∫ 1

0

∫ 1

0

f ′′(s) ds dt ≥ f ′(0),

since Z̃ is convex along geodesics. On the other hand, we have

f ′(t) =
d

dt

(
− I(FS(Ht)) +

V r

N
log det(Ht)

)

= −

∫

X

d

dt

(
FS(Ht)

)
dvolX +

V r

N

∑
λ

(l)
i .

Therefore,

f ′
l (0) = −

∫

X

( ∑
λ

(l)
i |s

(l)
i |2hl

)
dvolX +

V r

N

∑
λ

(l)
i , (3.8)

where hl = FS(Hl).
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We have that e
−λ

(l)
1

2 s
(l)
1 , ..., e

−λ
(l)
N

2 s
(l)
N is an orthonormal basis with respect to H

for any l. Hence Lemma 3.2 implies that there exists R > 1 so that

(det(Hl))
1
N

R
< Hl(e

−λ
(l)
i

2 s
(l)
i , e

−λ
(l)
i

2 s
(i)
1 ) < (det(Hl))

1
N R,

for any i and l. Therefore

1

N
log(det(Hl)) − log R < −λ

(l)
i <

1

N
log(det(Hl)) + log R.

This implies that {λ
(l)
i } is bounded since {det(Hl)} is bounded by Lemma 3.3. Hence

(3.8) implies that f
′

l (0) −→ 0, as l −→ ∞.

Corollary 3.6. If {Hn} is a bounded sequence in M , then

Z̃(Hn) −→ inf{Z̃(H) | H ∈ M}.

Proof of Theorem 1.1. As before, fix H0 ∈ M and an orthonormal basis s1, ..., sN

for H0(X, E) with respect to the metric H0. As in Section 2, let

M0 =
{
H ∈ M | det[H(si, sj)] = 1

}
.

Assume that there exists a balanced metric H∞ on E. Since the balanced metric is
unique up to a positive constant, there exists a unique balanced metric H∞ ∈ M0. As
before, for any H ∈ M , we define

H̃ = (det H)−
1
N H.

Clearly H̃ ∈ M0 and

Z̃(H̃) = Z̃(H) = Z(H̃).

Since there exists a balanced metric on E, theorem 2.4 implies that the functional Z|M0

is proper and bounded from below. Hence the sequence Z(H̃n) is a bounded sequence

in R since the sequence Z̃(Hn) = Z(H̃n) is decreasing. Therefore the sequence {H̃n}
is bounded in M0 since Z|M0

is proper. We claim that

H̃n −→ H∞ as n → ∞.

Suppose that the sequence {H̃n} does not converge to H∞. Then there exists ǫ > 0
and a subsequence {Hnj

} such that

||H̃nj
− H∞||op ≥ ǫ. (3.9)

On the other hand, we know that the sequence {H̃nj
} is bounded. Therefore there

exist a subsequence {H̃njq
} and an element Ĥ ∈ M such that

H̃njq
→ Ĥ as q → ∞.

Therefore,

1 = det[H̃njq
(sα, sβ)] → det[Ĥ(sα, sβ)] as q → ∞,
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which implies that Ĥ ∈ M0. Now, corollary 3.6 implies that

Z̃(H̃njq
) = Z̃(Hnjq

) −→ inf{Z̃(H) | H ∈ M}.

Hence,

Z̃(Ĥ) = inf{Z̃(H) | H ∈ M}.

This implies that Ĥ is a balanced metric and therefore H∞ = Ĥ by lemma 2.7. This
contradicts (3.9). Thus H̃n −→ H∞ as q → ∞.

Now lemma 3.3 implies that log det(Hn) is bounded. The sequence {log det(Hn)}
is bounded and decreasing. Therefore there exists b ∈ R such that

log det(Hn) → b as n → ∞.

Hence det(Hn) converges to the positive real number eb. Thus

Hn −→ e
−b
N H∞ as n → ∞.
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