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CLOSED MINIMAL WILLMORE HYPERSURFACES OF S5(1)
WITH CONSTANT SCALAR CURVATURE*

TSASA LUSALAT, MIKE SCHERFNER!, AND LUIZ AMANCIO M. SOUSA, JR.§

Abstract. We consider minimal closed hypersurfaces M* C S%(1) with constant scalar curva-
ture. We prove that, if M* is additionally a Willmore hypersurface, then it is isoparametric. This
gives a positive answer to the question made by Chern about the pinching of the scalar curvature
for closed minimal Willmore hypersurfaces in dimension 4.
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1. Introduction. S. S. Chern proposed the following question (see [7] and [8]):
Let M™ C S™*1(1) be an n-dimensional closed minimally immersed hypersurface of
S"*t1(1) (n > 2) with constant scalar curvature. Let A be the set of possible values for
the (constant) scalar curvature of M™. Question: Is A a discrete set of real numbers?

First non-trivial case is n = 3. This case has been completely solved combining results
from [2] and [6] in the more general context of local constant mean curvature. The
answer is: for fixed H (constant mean curvature), A is finite.

For n > 4 the problem remains open. In this note we study the subclass of closed
minimal Willmore hypersurfaces of S?(1) with constant scalar curvature. Precisely,
we prove the following:

THEOREM 1. Let M* C S5(1) be a closed minimal Willmore hypersurface of S°(1)
with constant scalar curvature, then M* is isoparametric.

An immediate consequence of Theorem 1 is the following corollary which gives the
possible values for squared length of the second fundamental form of closed minimal
Willmore hypersurface with constant scalar curvature in S5(1).

COROLLARY 1. Let M* C S?(1) be a closed minimal Willmore hypersurface of
S5(1) with constant scalar curvature. If S denotes the squared norm of the second
fundamental form, then S = 0,4 or 12.

REMARK 1. In dimension n = 2, the minimality implies the Willmore condi-
tion, in other words, minimal surfaces are examples of Willmore surfaces in S*(1). In
dimension n = 3, it was proved in [3] that every closed minimally immersed hypersur-
face of S*(1) with identically zero Gaufs-Kronecker curvature and nowhere zero second

fundamental form is the boundary of a tube of a minimally immersed 2-dimensional

surface in S*(1), whose geodesic radius is 5 and whose second fundamental form in
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each normal direction is never zero. This means, by taking a non-isoparametric sur-
face (close to the veronese surface), one can build a non-isoparametric minimal Will-
more hypersurface of S*(1). This shows that the condition S = const. is essential to
proving that in dimension n = 4, minimal Willmore hypersurfaces are isoparametric
in S°(1).

2. Preliminaries. Let M* be a 4-dimensional hypersurface in a unit sphere
S5(1). We choose a local orthonormal frame field {e1, ..., e5} in S3(1), so that restricted
to M4, eq,...,eq are tangent to M*. Let wi, ...,ws denote the dual co-frame field in
S5(1). We use the following convention for the indices: A, B,C, D range from 1 to 5
and 14, j, k range from 1 to 4. The structure equations of S°(1) as a hypersurface of
the Euclidean space R®, are given by

dwa = —ZWAB Awp, waB +wpa =0,
B
1 _
dwap = — ;WAC ANweB + 3 CZDRABCDWC Awp,

where R is the Riemannian curvature tensor
Rapcep =6acdsp —dapdse.

The contractions Rac = Y. Rapcs and R = Y Rapap are the Ricci curvature
B AB

tensor and the scalar curvature of S?(1), respectively. Next, we restrict all the tensors
to M*. First of all, ws = 0 on M*, then Y ws; A w; = dws = 0. By Cartan’s lemma,
i

we can write

(2.1) wsi = hijws, hij = hyi.
j

Here h = ) h;jw;w; denotes the second fundamental form of M 4 and the principal

.3
curvatures \; are the eigenvalues of the matrix (h;;). Furthermore, the mean curvature
is given by H = > h;; = $ >\ and K = det(h;;) = [[A; is the GauB-Kronecker

curvature. On M* we have

dwl-:— E wij/\wj, Wij +Wji:0;
J

1
dwij = — Zwik Nwgj + 3 ZRijklwk N wy,
k k,l

where R is the Riemannian curvature tensor on M* with components satisfying
0 = Rijl + Rijik-
These structure equations imply the following integrability condition (Gauf equation):

Rijki = (0ik051 — 0ad51) + (hiwhji — hithjk).
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For the scalar curvature we have
k=124 16H* — S,
where S =" hfj is the square norm of h.
2%
From now on we will consider minimal hypersurfaces, that is the mean curvature H

is identically zero on M*. In this situation, its Ricci curvature and scalar curvature
are given by, respectively,

(2.2) Rij =36 — > hahj,
k

(2.3) k=12- 8.

It follows from (2.3) that x is constant if and only if S is constant. The covariant
derivative Vh with components h;j;, is given by

(2.4) Z hijrwr = dhgj + Z hjrwir + Z Rigwik.
k k k
Then the exterior derivative of (2.2) together with the structure equations yields
the following Codazzi equation
(2.5) hijk = hikj = hjik.

For any fixed point on M*, we can choose a local orthonormal frame {e1, ..., e4}, such
that

hij = /\iéij'
We define the symmetric functions f3 and f4 on M? as follows:
(2.6) 3= hijhjihy; = Z)‘17 fa = Z hijhjehrihi =Y AL,
.5,k 1,5,k i

and additionally

(2.7) A= "AhZ, and Bi=» XAl

i,k i,k

The following formulas are taken from Peng and Terng [14] (see also [15]):

1
SAS =) h+ (4= 5)8,
N
1 1
3 > hij(fs)ij=Sfa—f3 —S*+2B— A+ 3 > hikhjiSij.
i,j .5,k

In particular, if S and f3 are assumed to be constant, using the equations above, we
have

(2.8) > Bl =(S-4)S,

i,k
(2.9) A—2B=Sfy— f2—



68 T. LUSALA, M. SCHERFNER AND L. A. M. SOUSA JR.
Because hyji is totally symmetric, we have

1
(2.10) A+2B=23 N+ A+ M) hiy > 0.
1,5,k

3. Willmore hypersurfaces of spheres. Willmore hypersurfaces in spheres
are known to be the critical points of the variational problem of the following Willmore
functional (see [9]):

/M(S’ —nH*)%0.

H. Li computed the Euler-Lagrange equation for the Willmore functional. He obtained
the following characterization of Willmore hypersurfaces (see [9]).

THEOREM 2. Let M™ C S"*1(1) be an n-dimensional compact hypersurface in
an (n + 1)-dimensional unit sphere S*™(1). Then M™ is a Willmore hypersurface if
and only if

0= _p"*2(2HS —nl? =Y hijhjkhki) +(n— 1)A(p"2H)

0,5,k

= (0" )i (nHi; — hij),
i

where p?> = S —nH?, A is the Laplacian and (.);; is the covariant derivative with
respect to the induced connection.

An immediate consequence of Theorem 2 is the following characterization of Will-
more hypersurfaces of spheres with constant mean curvature and constant scalar cur-
vature:

COROLLARY 2. Let M™ C S"*1(1) be an n-dimensional compact hypersurface
with constant mean curvature and constant scalar curvature in an (n+1)-dimensional
unit sphere S*T1(1). Then M™ is a Willmore hypersurface if and only if

fs=Y_ hijhjchg; = 2HS — 4H®,
.5,k
In particular, the Willmore condition for minimal hypersurfaces with constant scalar
curvature is equivalent to the condition f3 = 0.
In dimension n = 4, we have the following examples:

EXAMPLE 1. The totally geodesic great sphere S*(1) C S°(1) is a minimal Will-
more hypersurface with S = 0;

ExXAMPLE 2. The Clifford torus Wa o = S%@) X 82(4) is the only closed mini-
mal Willmore hypersurface which is isoparametric in S?(1) with two distinct principal
curvature;

EXAMPLE 3. (Cartan’s minimal hypersurface of S°(1)).
Let S°(1) = {z € C3 = R®xR3: ||z|| = 1} and consider the real function F: S°(1) —
R defined by

F(z)= (||:1c||2 — Hy||2)2 +d<z,y>2 for z=z+iy.
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Then for every t, 0 <t < %, the level hypersurface of F' given by
M} ={zeS%(1): F(z)=cos®(2t)} = F~! (0052(215))

is an isoparametric hypersurface with principal curvatures

1 +sin(2¢)

- Ny — —1 + sin(2t)

cos(2t) 77 cos(2t)  7? an(t) - an * cot(t)

The hypersurfaces M} constitute the Cartan family of isoparametric hypersurfaces
with four distinct principal curvatures. Among these isoparametric hypersurfaces, only
the minimal one, M% (Cartan’s minimal hypersurface), is a Willmore hypersurface.
Its principal curvatures are

1+v2, 1-V2, —1+vV2 and -1-V2.

Note that isoparametric hypersurfaces with four distinct principal curvatures in S®(1)
and S°(1) were constructed by E. Cartan [5], with the property that all the princi-
pal curvatures have the same multiplicity. Such hypersurfaces are homogeneous and
do ezist only in S5(1) and S°(1). Nomizu (see[12] and [13] for details) generalized
Cartan’s construction to higher odd dimension.

4. Proof of Theorem 1. Obviously, if S = 0 (trivial case), then M* is the
totally geodesic great sphere S*(1). Suppose from now on that S > 0. Because the
hypersurface is assumed to be minimal and by the Willmore condition f3 = 0, the
characteristic polynomial of the matrix (h;;) corresponding to the second fundamental
form is given by

(4.1) p(A) =\ — gv + K.

It is clear that this fourth order polynomial p()) has real roots (principal curvatures
of M*) if and only if S? > 16 K everywhere and M* has non-negative GauB-Kronecker
curvature function, i.e, K > 0.

REMARK 2. To get the condition S? > 16K under Willmore condition for mini-
mal hypersurfaces in S*(1) with constant scalar curvature, one can use Lagrange mul-

tipliers method to minimize the functional fy = %2 — 4K under H = 0, S? = const.
and f3 =0.

Renumbering the vector fields eq, es, e3, €4 if necessary, we may assume that the
pincipal curvatures satisfy Ay < Ao < 0 < A3 < A\4. More precisely we have

A =3(5+VS?—16K)* =X\ and
A3 =3(5—VS?—16K)2 = -\,

It is clear that X\;(p) = A;j(p) for arbitrary 1 <4 < j < 4 at some point p € M* if and
only if at that point p one has K(p) = 0 or f—;.

N[ D=
Nl =

In order to prove Theorem 1, we have to distinguish the following cases:

(i) there exists a point p € M* such that K(p) = f—;

(ii) 0 <K < f—g everywhere on M*.
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The following result will play a crucial role in the proof of our main result.

THEOREM 3. Let M* C S5(1) be a closed minimal Willmore hypersurface with

constant scalar curvature. If there exists a point p of M* such that K(p) = f—g > 0,
where K denotes the GaufS-Kronecker curvature function and S the squared length of
the second fundamental form, then M?* is isoparametric with two distinct principal

curvatures; in this case, M* is the Clifford torus 82(4) X S%@).

Proof. Suppose that at a point p € M* we have K(p) = f—g > 0. At such a point
p the principal curvatures are given by

(42) —“AM == =A3 =M\ = ? > 0.

Using the Codazzi equations (see integrability conditions from section 2), we obtain
the following at p:

(4.3) hi2s = hi24 = h134 = ha34 = h112 = ho21 = h334 = haaz = 0.

Since M* is minimal and has constant scalar curvature, we have for 1 < k <4
(4.4) > hik =Y Aihiir = 0.
It follows from (4.2), (4.3) and (4.4) that

Another consequence of the Willmore condition for minimal hypersurfaces with con-

stant scalar curvature, i.e., f3 = 0, is that f; = %2 — 4K. Therefore, inserting this

expression of fy into the equation (2.9) with f3 = 0, we get

52

(4.6) A-2B=—

(S — 4).

Because Of (43), the only eventual non-zero hijk are h,113, h,114, h223, h,224, h331, h332,
haa1 and hyqo, and we use (4.2) to get

S
B(A+2B) = (Ai+ A+ M)*hiy = 7 > b
1,4,k ijk
Therefore, by (2.8) we have
S2
(4.7) 3(A+2B) = Z(S —4).
From the equations (4.6) and (4.7), we deduce that
(4.8) A+4B =0.

On the other hand, we use again (4.2), (4.3) and (4.5) to compute the expressions of
A and B at p explicitly. We get the following:

S 2
A+4B = —ZZhiij.

4,J
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So by (4.8), we conclude that h;;, = 0, for all ¢, j,k. Thus 0 = l;k h?jk +S5(S—4),

ie, S=4.
In this case, by applying a result of Chern, do Carmo and Kobayashi (see Theorem
2, [8]), we infer that M* is isometric to the Clifford torus S%@) X S%@). a

. 2
Now we consider the case K < f—ﬁ everywhere on M* and prove

THEOREM 4. Let M* C S%(1) be a closed minimal Willmore hypersurface with
constant scalar curvature. If K < f—; everywhere on M*, then M* is isoparamet-
ric with four distinct principal curvatures; in this case, M* is the Cartan minimal
hypersurface as described in Example 3.

Proof. If 0 < S < 4, our result follows immediately using a result of Chern, do
Carmo and Kobayashi [8]. Assume now that S > 4. In this case we want to prove
that S =12, i.e., k = 0. Suppose that S # 12, i.e., || > 0.

Choose p € M* such that C; = K(p) = max K. If K(p) = 0 then K vanishes
identically on M*. Consequently, the characteristic polynomial (4.1) has constant
coefficients, i.e., the hypersurface M* is isoparametric. Since S > 0, M* then is an
isoparametric hypersurface of S°(1) with three distinct principal curvatures. This is
a contradiction as it is well known from Cartan’s classification result [4] that isopara-
metric hypersurfaces of S*T1(1) with three distinct principal curvatures do exist only
if n = 3,6,12,24. This proves that the open subset of M* defined by

X = K*l(o, ‘f—;)

is non-empty. We say that the pair (U,w) is admissible if
(i) U is an open subset of X,
(il) w = (w1, w2, ws,wy) is a smooth orthonormal co-frame field on U,
(iii) w1 Awa Aws Awy = vol,
(IV) h = E )\iwiwi.
From [1], we know that there is one and only one 3-form ¢ on X such that if (U,w)
is admissible, then such a 3-form 1 is given on U by

P =wy ANwa Awsg + w3 Awi Awag + w1 Awg Awas + ws Aws Awig
Fwyq A wo AN wiz +ws A wyg A wio.
Define D:= [] (\j—X\) and g(w,z,y,2) := 1 (w—2)*(w —y)(w - z))_l.
1<i<j<4
LEMMA 1. Denote by K; the ith component of the covariant derivative dK with
respect to the co-frame field w = (w1, w2, ws,wq), i.e., dK = 24: K;w;. Then on X we
i=1

k2
have:

di A = —4( (00 At Az, da) +(h, A da, M) + g0z, Ar Ay M) KT

+(g(Ag, Az, AL, Az) + q(As, A, A, Ag) + (A, Az, A, Ag) ) K3
+(g(Ag, Az, AL, A2) + (A2, Az, A, Ag) + (A, Az, Ao, Ag) ) K3
+(a(

q(A3, A1, A1, A2) + q(A2, gy A1, Az) 4+ q(Ar, Mg, Ag, As))Kf)UOZ-

(4.9)
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Proof. Differentiating our curvature conditions

A+ X+ A3+ =0,
M A2+ A2+ N\ =S = const,
MA+A+A+ A =0

with respect to the direction field e;, we obtain:

0 = hi11 + ho21 + hsz1 + haai,
0 = Ahi11 + Aohoor 4+ Aghszt + Ashaai,
0= AThi11 + Ashaor + A3hazt + Afhaar.

Because the four principal curvatures are distinct at every point, we can express hj;1,
i=2,3,4, in terms of hy11:

';lré_'[l()\j — A1)
hing = — = ————hi11.
[T (A=)
i

This implies

4
K
K= Z yhm = —(A1 = A2) (A1 — A3) (A1 — Ag)hans;

i=1
and
Ky
(4.10) hiin =
H (/\j - )‘1)
J#i
for ¢ = 2,3 or 4.

Using the equation (2.4), we deduce

1
4.11 i = h1j .
( ) Wiy N — M (Zk: 15k wk)

To compute dK Ay = | D K; wi) A1, we just need to compute wi A ¥; the other

terms can be determined by analogy. Using the equations (4.10) and (4.11), we get

w1 /\’Q/J:ujl/\(WQ/\W3/\W14+W4/\QJQ/\W13 +W3/\W4/\W12)

L o
i#1 Ai — A1

Ky
Z (A =) T =) vol

i#1 j#i
= — 41 (g0, M1, 22, As) + 4, At Ao, ) + g0, A As, M) ) vl
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LEMMA 2. The exterior differential dv of the form v on X is given by

_ i 2 2 Kk
(4.12) d¢—<D2(S 16K)|VK]| +2)vol.

Proof.

dv =d(w; Awa Awsg) + ...
=dwi Nwa ANw3g — w1 ANdwa Awszg +wi Awas Adwsg + - - -

From the structure equations, we have:
dwy = —(wlg Nwo +wiz ANws +wiga A (AJ4)
= () N wg —

1
———(h h A wy.
SVESY (h11aw1 + h13aws) A wy

1
h h A
N — (h113w1 + hi3aws) A ws

So

hi13haas
(A3 = A1) (Ad — A3)

hi14h
- 11477334 w1 ANwg N wa A\ ws

(A3 = A2) (A1 — A3)

- _ < h’ll3h443 + h’ll4h334 ) VOl
Az =A)(Aa—Az3)  (Aa—A3)(Aa — A1) '

dwl/\wz/\w34:— wl/\wg/\wg/\w4

In the same way (interchanging the role of w; and ws), we have

haash hazah
w1 A dws Awss = < 22311443 22411334 )> vol.

(A3 — A2) (Mg — A3) * (A1 = A3) (Mg — A2

We also have

dwsy = —w31 A wig — w32 A wag + R3g34 w3 Awy
h3z1haar h3az2has2 )
= — + MM+ 1wz Aw
((Al ) — A1) e =) —hg) s

+( ) Awr 4+ () Awa.
So

h3z1haa
(A1 = A3)(Ad — A1)

_ hss2haaz ) vol
(A2 = A3) (A1 — A2) '

w1 /\WQ/\u}g/\dW34: ()\3/\44’1-

Similarly one computes
d(w:; A wi /\(.UQ4), d(wl N wy /\(.UQg) and d(WQ /\u}g /\w14)

to get that

4
1
dip = <§n - kzlfk> vol,
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where

Riiielvjji

I = .
¥ e — )k — A

k#i<j#k (

Recall that the principal curvatures satisfy A\; = —A4 and Ay = —\3. Thus S?—16K =
4(A2 — M2)? and D = 4A3)4(A] — A2)2. Now using (4.10) to compute I7, we get

1 2

L= K=

—(S? - 16K)K?2.
Doz e = el Ha

Similarly, we have
I; = ——(8* —16K)K?, for i=2,34.

Therefore,
4 1 4 1
I = ﬁ(sz’ —16K)Y K} = ﬁ(S2 —16K)|VK|%.
k=1 =1

This establishes the formula (4.12). O

Now we are in position to continue the proof of Theorem 4. From Sard’s theorem,
we can obtain € > 0 such that C7 — ¢ is a regular value of K. Take 0 < ¢1 < ¢
sufficiently small such that D(p) # 0 for all p € W, U W,,, where W, and W,, are
compact subsets of M* defined by

WEZK_l[Ol—E,Cl] and WEIZK_l[Cl—(El—l—E),Cl—E].

Now we consider a smooth function 7, , : (—o0, C1+¢] — [0, 1] with compact support
such that
(1) 0< ey (1) < 1 for all ¢
(ii) Nee, (1) =0t <Cy—(e1+€)and e, (t) =1if C1 —e <t < Cy +¢,
(iil) nZ ., (t) >0 for all ¢.

In fact the function 7., can be defined by 7. ., (t) = §(t —(Cy—(e1+ 8))), where

0, if t<0
E(t) =< exp (%‘51 exp(;ilt)) if 0<t<e
1 if e <t<eq+2e.

Applying Stoke’s theorem to integrate

d(ns,sl (K)¢) = MNe,er (K) dy) + 77;,51 (K) dK Ny

on the closed hypersurface M4, we have

(4.13) o:/ %amw+/ o (K)AK A,
W.UW,, w,

€1

Define the numbers C' := max (52 —16 K) and C' := max |g;| on W. UW,,, where
b 1<i<4 !

q; is the factor of K? in the expression (4.9) of dK A 9 (see Lemma 1). It follows that
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|dK A )| < C'|[VK|? on W, UW,,. The equation (4.13) implies

| / e ex (K
W.UW.,

- | / 7o (K)AK A
W,

< [ e (WK ol
W.

€1

= C’/ ngﬂsl(K)|VK|vol.

€1

Because of the expression (4.13) of di) where « is constant, we have

1 K
|/ Te.e1 (K)dd) = |/ e &1 (K) <ﬁ(82 — 16K>|VK|2 + 5) vol
WeUWe,y WeUWe,
K 1 ) )
2|5 Ne,er (K) vol| — —57e,e, (K) (5% — 16K)|VK|* vol
2 Jw.uw., w.ow., D
|

> |i/ vol—C/ |VK|?vol.
2 Jw., W.UW.,

This provides the following inequality:

I}

(4.14) vol < C |VK |[*vol + C’/ 1t ., (K)|VEK|*vol.

W WeUW., Wey

The following result is well known from Analysis and Measure Theory (see for
example the book [10], pp. 461):

LEMMA 3. Let w be a differential form on M* and F C M* a closed subset with
zero measure. Then for all € > 0, there exists an open subset Z C M?* such that
FcZand|[,w <e.

From Lemma 3 and Sard’s theorem we can obtain 0 < €5 < €1, such that the number
to = C1 — (g2 + ¢) is a regular value of K and

1
(4.15) / 1t o, (K)|VE[*vol </ 1t o, (K)|VE[*vol + 3
€1 Y
where Yo = K71[C] — (1 + €), ta].
Notice that lim Yo = K~ '(t3) := X5, lim gl _ (K) =n._ (K) and lim W, =
E£1—E€2 ’ ’

€1 €2 €1—¢€2

We, := K~ '[t2, 1 —¢]. Moreover [y 0., (K)[VEK[*vol = 0, hence (4.15) yields

N =

[ e OV ol <
W,

€1

Therefore, we can define inductively a sequence (g;), 0 < &; < €;—1 , such that the
number t; = C; — (¢; + ¢) is a regular value of K and

(4.16) [ VKRl < 1.
] 1

€4
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where Wsi = Kﬁl[ti, Ch — E].
It follows from (4.14) and (4.16) that

1
5l vol < C |VK|*vol + ~.
2 Jw. W.UW,, v

And since lim W,, = K=1(C; —¢), we get

11— 00

(4.17) 5l vol < C |VK|2v01§Csup|VK|2/ vol.
2 Jw. W. W W

Note that [}, vol > 0 and lin% sup |[VK|? = 0, thus (4.17) implies that
e £— w.

L < limsup [VK|* = 0,
2 e—=0 w,

which contradicts our assumption that x # 0. Hence k = 0 on M*.

Now we want to prove that the Gaufl-Kronecker curvature function K is constant
on M* to conclude that M? is an isoparametric hypersurface. The proof essentially
follows the pattern of de Sousa ([16], [17]). We only stress the points which may lead
to some differences. We proceed as above while proving that x is constant.

Given a small non-zero positive real number &, we choose a smooth function

Ne: (—00,C1 + €] — R with compact support such that:
(1) 0 <7.(t) <1 for all ¢,

(i) (1) = 0 if t € (—oc, 5],

(iii) n(t) =1ift € (¢,C1 + €],

(iv) n(t) > 0 for all t € (5,¢).
Althought there does not exist a unique extension of the form ¢ on K~1(0) because
of ne(K) = 0 on K~1(0), we may consider the 3-form ¢ = n.(K )1 which is globally
defined on M*?. Since x = 0, by Stoke’s theorem and (4.12), we have

oz/ d(p:/ ng(K)d@b—i—/ () K A
M4 K*l[g,Cl—i-a] K*l[g,a‘]

52— 16K
(4.18) = / e (1) K)ol 4 / . (K)d K A
K=1[5.Cate] D K=1[5.e]

Let a1 be a real number such that

(4'19) max{|Q1|,|Q2|,|Q3|,|Q4|} < ai,
where @; is the factor of —4K? (1 < i < 4) in the equation (4.9).

It follows from (4.9), (4.18) and (4.19) for sufficiently small € > 0 that

S? — 16K
/ nE(K)(72)|VK|2V01
K-1[5,C1+e] D

(4.20) <a / . (K)|VK [*vol.
K-1[£e

3
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Let &: (—o0,Cy + €] — R be the smooth function given by &(t) := n-(t) — 1. Notice
that £'(¢t) = n.(t). By applying Stoke’s theorem to

div((§ o K)VK) = 0l (K)|VK]? + £(K)AK,

we get
0= / div((§ o K)VK)vol - / 1L (K)|V K| ?vol + / £(K)AKvol,
M# K-1]5.¢] K=1[0,¢]
which implies the following integral inequality:
(4.21) / n.(K)|VK|*vol < / |AK|vol.
K-1[5.¢] K=10.e]
Combining the inequalities (4.20) and (4.21), we get
216K
(4.22) 0 g/ ns(K)(Sif)WKFvol < a1/ |AK|vol.
K-1[£,C;+e] D K-1[0,e]
The following lemma was proved in [2] for n = 3 and still holds for n > 3.
LEMMA 4. Let u: M* — R be a smooth function and m = minypau. If D. =
u™ ([m,m +¢€]), then
lim |Au|vol = 0.
e—0 D.
In particular,

lim |Au|vol = 0.
e=0 JKk-1[0,¢]

Due to Lemma 4 and the integral inequality (4.22), we infer that

S? — 16K
(4.23) lim ﬁs(K)(72)|VK|2vol = 0.
=0 JK-1[2,C1+e] D
For 0 < & < &/, we have
216K 216K
0< / (8726)|VK|2V01 < / (‘9726)|VK|%01
K-1[e’,C1+€] D K—1[e,C1+e¢] D

($% — 16K)
§/7 ng(K)T|VK|2V01
K=1[§,C1+¢]

So (4.23) yields [VK| = 0 identically on M*\ K~1(0). Since VK = 0 on K~1(0),
we conclude that K is a constant function on M*. Therefore, M* is an isoparametric
hypersurface. This completes the proof.

Our main result (Theorem 1) is proved combining Theorem 3 and Theorem 4. O

Acknowledgments. The authors would like to express their thanks to Prof.
Fabiano Brito (IME- USP, Sao Paulo, Brazil) who suggested to consider the subject
of this paper.



78

[1]
2]

3]

T. LUSALA, M. SCHERFNER AND L. A. M. SOUSA JR.

REFERENCES

S. ALMEIDA AND A. BRASIL, Hypersurfaces with constant scalar curvature in S®(1), Mat. Con-
temp., 17 (1999), pp. 29-44.

S. ALMEIDA AND F. Brito, Closed 3-dimensional hypersurfaces with constant mean curvature
and constant scalar curvature, Duke Math. J., 61 (1990), pp. 195-206.

, Minimal hypersurfaces of S* with constant Gaufi-Kronecker curvature, Math. Z., 195
(1987), pp. 99-107.

E. CARTAN, Sur des familles remarquables d’hypersurfaces isoparamétriques des espaces
sphériques, Math. Z., 45 (1939), pp. 335-367.

, Sur des familles remarquables d’hypersurfaces isoparamétriques des espaces sphériques
a5 et a9 dimensions, Revista Univ. Tucuman, 1 (1968), pp. 5-22.

S. CHANG, A closed hypersurface with constant scalar curvature and constant mean curvature
in §* is isoparametric, Comm. Anal. Geom., 1 (1993), pp. 71-100.

S. S. CHERN, Minimal submanifolds in a Riemannian manifold, Mimeographed Lecture Note,
Univ. of Kansas (1968).

S. S. CHERN, M. DO CARMO AND S. KOBAYASHI, Minimal submanifolds in a sphere with second
fundamental form of constant length., in functional analysis and related fields, edited by
F. Browder, Springer-Verlag, Berlin (1970).

H. L1, Willmore hypersurfaces in a sphere, Asian J. Math., 3 (2001), pp. 365-377.

E. L. LimA, Curso de Andlise, vol 11, Projeto Euclides, Impa, Rio de Janeiro, 1981.

H. F. MUNZNER, Isoparametrische Hyperflichen in Sphdren I, Math. Ann., 251 (1980), pp.
57-71.

K. NoMmizu, Some results in E. Cartan’s theory of isoparametric families of hypersurfaces, Bull.
Amer. Math. Soc., 79 (1973), pp. 1184-1188.

, E. Cartan’s work on isoparametric families of hypersurfaces, Proc. Symposia in Pure
Math., Amer. Math. Soc., 27 (1975), pp. 191-200.

C. K. PENG AND C. L. TERNG, Minimal hypersurfaces of spheres with constant scalar curvature,
Seminar on Minimal Submanifolds (E. Bombieri, ed.), Ann. of Math. Studies, 103 (1983),
Princeton, NY, pp. 179-198.

, The scalar curvature of minimal hypersurfaces in spheres, Math. Annalen, 266 (1983),
pp. 62-105.

L. A. M. Sousa JRr., Hipersuperficies isoparamétricas na esfera euclidiana, Ph.D. Thesis at
Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro (2001).

, A new characterization of minimal isoparametric hypersurfaces in S®, preprint.




