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CLOSED MINIMAL WILLMORE HYPERSURFACES OF S5(1)
WITH CONSTANT SCALAR CURVATURE∗

TSASA LUSALA† , MIKE SCHERFNER‡ , AND LUIZ AMANCIO M. SOUSA, JR.§

Abstract. We consider minimal closed hypersurfaces M
4
⊂ S5(1) with constant scalar curva-

ture. We prove that, if M
4 is additionally a Willmore hypersurface, then it is isoparametric. This

gives a positive answer to the question made by Chern about the pinching of the scalar curvature
for closed minimal Willmore hypersurfaces in dimension 4.

Key words. Chern’s conjecture, Willmore hypersurfaces, constant scalar curvature, minimal
hypersurfaces in spheres.
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1. Introduction. S. S. Chern proposed the following question (see [7] and [8]):
Let Mn ⊂ Sn+1(1) be an n-dimensional closed minimally immersed hypersurface of
Sn+1(1) (n ≥ 2) with constant scalar curvature. Let A be the set of possible values for
the (constant) scalar curvature of Mn. Question: Is A a discrete set of real numbers?

First non-trivial case is n = 3. This case has been completely solved combining results
from [2] and [6] in the more general context of local constant mean curvature. The
answer is: for fixed H (constant mean curvature), A is finite.

For n ≥ 4 the problem remains open. In this note we study the subclass of closed
minimal Willmore hypersurfaces of S5(1) with constant scalar curvature. Precisely,
we prove the following:

Theorem 1. Let M4 ⊂ S5(1) be a closed minimal Willmore hypersurface of S5(1)
with constant scalar curvature, then M4 is isoparametric.

An immediate consequence of Theorem 1 is the following corollary which gives the
possible values for squared length of the second fundamental form of closed minimal
Willmore hypersurface with constant scalar curvature in S5(1).

Corollary 1. Let M4 ⊂ S5(1) be a closed minimal Willmore hypersurface of
S5(1) with constant scalar curvature. If S denotes the squared norm of the second
fundamental form, then S = 0, 4 or 12.

Remark 1. In dimension n = 2, the minimality implies the Willmore condi-
tion, in other words, minimal surfaces are examples of Willmore surfaces in S3(1). In
dimension n = 3, it was proved in [3] that every closed minimally immersed hypersur-
face of S4(1) with identically zero Gauß-Kronecker curvature and nowhere zero second
fundamental form is the boundary of a tube of a minimally immersed 2-dimensional
surface in S4(1), whose geodesic radius is π

2 and whose second fundamental form in
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each normal direction is never zero. This means, by taking a non-isoparametric sur-
face (close to the veronese surface), one can build a non-isoparametric minimal Will-
more hypersurface of S4(1). This shows that the condition S ≡ const. is essential to
proving that in dimension n = 4, minimal Willmore hypersurfaces are isoparametric
in S

5(1).

2. Preliminaries. Let M4 be a 4-dimensional hypersurface in a unit sphere
S5(1). We choose a local orthonormal frame field {e1, ..., e5} in S5(1), so that restricted
to M4, e1, ..., e4 are tangent to M4. Let ω1, ..., ω5 denote the dual co-frame field in
S5(1). We use the following convention for the indices: A,B,C,D range from 1 to 5
and i, j, k range from 1 to 4. The structure equations of S5(1) as a hypersurface of
the Euclidean space R

6, are given by

dωA = −
∑

B

ωAB ∧ ωB, ωAB + ωBA = 0,

d ωAB = −
∑

C

ωAC ∧ ωCB +
1

2

∑

C,D

R̄ABCDωC ∧ ωD,

where R̄ is the Riemannian curvature tensor

R̄ABCD = δACδBD − δADδBC .

The contractions R̄AC =
∑

B

R̄ABCB and R̄ =
∑

A,B

R̄ABAB are the Ricci curvature

tensor and the scalar curvature of S5(1), respectively. Next, we restrict all the tensors
to M4. First of all, ω5 = 0 on M4, then

∑

i

ω5i ∧ ωi = dω5 = 0. By Cartan’s lemma,

we can write

(2.1) ω5i =
∑

j

hijωi, hij = hji.

Here h =
∑

i,j

hijωiωj denotes the second fundamental form ofM4 and the principal

curvatures λi are the eigenvalues of the matrix (hij). Furthermore, the mean curvature
is given by H = 1

4

∑

i

hii = 1
4

∑

i

λi and K = det(hij) =
∏

i

λi is the Gauß-Kronecker

curvature. On M4 we have

dωi = −
∑

j

ωij ∧ ωj, ωij + ωji = 0,

dωij = −
∑

k

ωik ∧ ωkj +
1

2

∑

k,l

Rijklωk ∧ ωl,

where R is the Riemannian curvature tensor on M4 with components satisfying

0 = Rijkl +Rijlk.

These structure equations imply the following integrability condition (Gauß equation):

Rijkl = (δikδjl − δilδjk) + (hikhjl − hilhjk).
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For the scalar curvature we have

κ = 12 + 16H2 − S,

where S =
∑

i,j

h2
ij is the square norm of h.

From now on we will consider minimal hypersurfaces, that is the mean curvature H
is identically zero on M4. In this situation, its Ricci curvature and scalar curvature
are given by, respectively,

(2.2) Rij = 3δij −
∑

k

hikhjk,

(2.3) κ = 12 − S.

It follows from (2.3) that κ is constant if and only if S is constant. The covariant
derivative ∇h with components hijk is given by

(2.4)
∑

k

hijkωk = dhij +
∑

k

hjkωik +
∑

k

hikωjk.

Then the exterior derivative of (2.2) together with the structure equations yields
the following Codazzi equation

(2.5) hijk = hikj = hjik.

For any fixed point on M4, we can choose a local orthonormal frame {e1, ..., e4}, such
that

hij = λiδij .

We define the symmetric functions f3 and f4 on M4 as follows:

(2.6) f3 :=
∑

i,j,k

hijhjkhki =
∑

i

λ3
i , f4 :=

∑

i,j,k

hijhjkhklhli =
∑

i

λ4
i ,

and additionally

(2.7) A :=
∑

i,j,k

λ2
i h

2
ijk and B :=

∑

i,j,k

λiλjh
2
ijk.

The following formulas are taken from Peng and Terng [14] (see also [15]):

1

2
∆S =

∑

i,j,k

h2
ijk + (4 − S)S,

1

3

∑

i,j

hij(f3)ij = Sf4 − f2
3 − S2 + 2B −A+

1

2

∑

i,j,k

hikhjkSij .

In particular, if S and f3 are assumed to be constant, using the equations above, we
have

∑

i,j,k

h2
ijk = (S − 4)S,(2.8)

A− 2B = Sf4 − f2
3 − S2.(2.9)
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Because hijk is totally symmetric, we have

(2.10) A+ 2B =
1

3

∑

i,j,k

(λi + λj + λk)2h2
ijk ≥ 0.

3. Willmore hypersurfaces of spheres. Willmore hypersurfaces in spheres
are known to be the critical points of the variational problem of the following Willmore
functional (see [9]):

∫

M

(S − nH2)
n

2 ν.

H. Li computed the Euler-Lagrange equation for the Willmore functional. He obtained
the following characterization of Willmore hypersurfaces (see [9]).

Theorem 2. Let Mn ⊂ Sn+1(1) be an n-dimensional compact hypersurface in
an (n+ 1)-dimensional unit sphere Sn+1(1). Then Mn is a Willmore hypersurface if
and only if

0 = −ρn−2
(

2HS − nH3 −
∑

i,j,k

hijhjkhki

)

+ (n− 1)∆(ρn−2H)

−
∑

i,j

(ρn−2)ij(nHδij − hij),

where ρ2 = S − nH2, ∆ is the Laplacian and (.)ij is the covariant derivative with
respect to the induced connection.

An immediate consequence of Theorem 2 is the following characterization of Will-
more hypersurfaces of spheres with constant mean curvature and constant scalar cur-
vature:

Corollary 2. Let Mn ⊂ Sn+1(1) be an n-dimensional compact hypersurface
with constant mean curvature and constant scalar curvature in an (n+1)-dimensional
unit sphere Sn+1(1). Then Mn is a Willmore hypersurface if and only if

f3 =
∑

i,j,k

hijhjkhki = 2HS − 4H3.

In particular, the Willmore condition for minimal hypersurfaces with constant scalar
curvature is equivalent to the condition f3 ≡ 0.

In dimension n = 4, we have the following examples:

Example 1. The totally geodesic great sphere S4(1) ⊂ S5(1) is a minimal Will-
more hypersurface with S = 0;

Example 2. The Clifford torus W2,2 = S2
(

√
2

2

)

×S2
(

√
2

2

)

is the only closed mini-
mal Willmore hypersurface which is isoparametric in S5(1) with two distinct principal
curvature;

Example 3. (Cartan’s minimal hypersurface of S5(1)).
Let S5(1) = {z ∈ C3 = R3×R3 : ‖z‖ = 1} and consider the real function F : S5(1) −→
R defined by

F (z) = (‖x‖2 − ‖y‖2)2 + 4 < x, y >2, for z = x+ iy.
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Then for every t, 0 < t < π
4 , the level hypersurface of F given by

M4
t = {z ∈ S

5(1) : F (z) = cos2(2t)} = F−1
(

cos2(2t)
)

is an isoparametric hypersurface with principal curvatures

λ1 =
1 + sin(2t)

cos(2t)
, λ2 =

−1 + sin(2t)

cos(2t)
, λ3 = tan(t) and λ4 = − cot(t).

The hypersurfaces M4
t constitute the Cartan family of isoparametric hypersurfaces

with four distinct principal curvatures. Among these isoparametric hypersurfaces, only
the minimal one, M4

π

8

(Cartan’s minimal hypersurface), is a Willmore hypersurface.

Its principal curvatures are

1 +
√

2, 1 −
√

2, −1 +
√

2 and − 1 −
√

2.

Note that isoparametric hypersurfaces with four distinct principal curvatures in S5(1)
and S

9(1) were constructed by E. Cartan [5], with the property that all the princi-
pal curvatures have the same multiplicity. Such hypersurfaces are homogeneous and
do exist only in S5(1) and S9(1). Nomizu (see[12] and [13] for details) generalized
Cartan’s construction to higher odd dimension.

4. Proof of Theorem 1. Obviously, if S = 0 (trivial case), then M4 is the
totally geodesic great sphere S4(1). Suppose from now on that S > 0. Because the
hypersurface is assumed to be minimal and by the Willmore condition f3 = 0, the
characteristic polynomial of the matrix (hij) corresponding to the second fundamental
form is given by

(4.1) p(λ) = λ4 − S

2
λ2 +K.

It is clear that this fourth order polynomial p(λ) has real roots (principal curvatures
of M4) if and only if S2 ≥ 16K everywhere and M4 has non-negative Gauß-Kronecker
curvature function, i.e, K ≥ 0.

Remark 2. To get the condition S2 ≥ 16K under Willmore condition for mini-
mal hypersurfaces in S4(1) with constant scalar curvature, one can use Lagrange mul-

tipliers method to minimize the functional f4 = S2

2 − 4K under H = 0, S2 ≡ const.

and f3 = 0.

Renumbering the vector fields e1, e2, e3, e4 if necessary, we may assume that the
pincipal curvatures satisfy λ1 ≤ λ2 ≤ 0 ≤ λ3 ≤ λ4. More precisely we have

{

λ4 = 1
2

(

S +
√
S2 − 16K

)
1

2 = −λ1 and

λ3 = 1
2

(

S −
√
S2 − 16K

)
1

2 = −λ2

It is clear that λi(p) = λj(p) for arbitrary 1 ≤ i < j ≤ 4 at some point p ∈M4 if and

only if at that point p one has K(p) = 0 or S2

16 .

In order to prove Theorem 1, we have to distinguish the following cases:

(i) there exists a point p ∈M4 such that K(p) = S2

16 ;

(ii) 0 ≤ K < S2

16 everywhere on M4.
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The following result will play a crucial role in the proof of our main result.

Theorem 3. Let M4 ⊂ S
5(1) be a closed minimal Willmore hypersurface with

constant scalar curvature. If there exists a point p of M4 such that K(p) = S2

16 > 0,
where K denotes the Gauß-Kronecker curvature function and S the squared length of
the second fundamental form, then M4 is isoparametric with two distinct principal

curvatures; in this case, M4 is the Clifford torus S2
(

√
2

2

)

× S2
(

√
2

2

)

.

Proof. Suppose that at a point p ∈M4 we have K(p) = S2

16 > 0. At such a point
p the principal curvatures are given by

(4.2) −λ1 = −λ2 = λ3 = λ4 =

√
S

2
> 0.

Using the Codazzi equations (see integrability conditions from section 2), we obtain
the following at p:

(4.3) h123 = h124 = h134 = h234 = h112 = h221 = h334 = h443 = 0.

Since M4 is minimal and has constant scalar curvature, we have for 1 ≤ k ≤ 4

(4.4)
∑

i

hiik =
∑

i

λihiik = 0.

It follows from (4.2), (4.3) and (4.4) that

(4.5) hiii = 0 for all i at p.

Another consequence of the Willmore condition for minimal hypersurfaces with con-

stant scalar curvature, i.e., f3 = 0, is that f4 = S2

2 − 4K. Therefore, inserting this
expression of f4 into the equation (2.9) with f3 = 0, we get

(4.6) A− 2B =
S2

4
(S − 4).

Because of (4.3), the only eventual non-zero hijk are h113, h114, h223, h224, h331, h332,
h441 and h442, and we use (4.2) to get

3(A+ 2B) =
∑

i,j,k

(λi + λj + λk)2h2
ijk =

S

4

∑

ijk

h2
ijk.

Therefore, by (2.8) we have

(4.7) 3(A+ 2B) =
S2

4
(S − 4).

From the equations (4.6) and (4.7), we deduce that

(4.8) A+ 4B = 0.

On the other hand, we use again (4.2), (4.3) and (4.5) to compute the expressions of
A and B at p explicitly. We get the following:

A+ 4B = −S
4

∑

i,j

h2
iij .
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So by (4.8), we conclude that hijk = 0, for all i, j, k. Thus 0 =
∑

i,j,k

h2
ijk + S(S − 4),

i.e., S = 4.

In this case, by applying a result of Chern, do Carmo and Kobayashi (see Theorem

2, [8]), we infer that M4 is isometric to the Clifford torus S2
(

√
2

2

)

× S2
(

√
2

2

)

.

Now we consider the case K < S2

16 everywhere on M4 and prove

Theorem 4. Let M4 ⊂ S5(1) be a closed minimal Willmore hypersurface with

constant scalar curvature. If K < S2

16 everywhere on M4, then M4 is isoparamet-
ric with four distinct principal curvatures; in this case, M4 is the Cartan minimal
hypersurface as described in Example 3.

Proof. If 0 ≤ S ≤ 4, our result follows immediately using a result of Chern, do
Carmo and Kobayashi [8]. Assume now that S > 4. In this case we want to prove
that S = 12, i.e., κ = 0. Suppose that S 6= 12, i.e., |κ| > 0.

Choose p ∈ M4 such that C1 = K(p) = max K. If K(p) = 0 then K vanishes
identically on M4. Consequently, the characteristic polynomial (4.1) has constant
coefficients, i.e., the hypersurface M4 is isoparametric. Since S > 0, M4 then is an
isoparametric hypersurface of S5(1) with three distinct principal curvatures. This is
a contradiction as it is well known from Cartan’s classification result [4] that isopara-
metric hypersurfaces of Sn+1(1) with three distinct principal curvatures do exist only
if n = 3, 6, 12, 24. This proves that the open subset of M4 defined by

X := K−1
(

0,
S2

16

)

is non-empty. We say that the pair (U, ω) is admissible if
(i) U is an open subset of X ,
(ii) ω = (ω1, ω2, ω3, ω4) is a smooth orthonormal co-frame field on U ,
(iii) ω1 ∧ ω2 ∧ ω3 ∧ ω4 = vol,
(iv) h =

∑

i

λiωiωi.

From [1], we know that there is one and only one 3-form ψ on X such that if (U, ω)
is admissible, then such a 3-form ψ is given on U by

ψ = ω1 ∧ ω2 ∧ ω34 + ω3 ∧ ω1 ∧ ω24 + ω1 ∧ ω4 ∧ ω23 + ω2 ∧ ω3 ∧ ω14

+ω4 ∧ ω2 ∧ ω13 + ω3 ∧ ω4 ∧ ω12.

Define D :=
∏

1≤i<j≤4

(λj − λi) and q(w, x, y, z) := 1
4

(

(w − x)2(w − y)(w − z)
)−1

.

Lemma 1. Denote by Ki the ith component of the covariant derivative dK with

respect to the co-frame field ω = (ω1, ω2, ω3, ω4), i.e., dK =
4
∑

i=1

Kiωi. Then on X we

have:

dK ∧ ψ = −4
(

(

q(λ4, λ1, λ2, λ3) + q(λ3, λ1, λ2, λ4) + q(λ2, λ1, λ3, λ4)
)

K2
1

+
(

q(λ4, λ2, λ1, λ3) + q(λ3, λ2, λ1, λ4) + q(λ1, λ2, λ3, λ4)
)

K2
2(4.9)

+
(

q(λ4, λ3, λ1, λ2) + q(λ2, λ3, λ1, λ4) + q(λ1, λ3, λ2, λ4)
)

K2
3

+
(

q(λ3, λ4, λ1, λ2) + q(λ2, λ4, λ1, λ3) + q(λ1, λ4, λ2, λ3)
)

K2
4

)

vol.



72 T. LUSALA, M. SCHERFNER AND L. A. M. SOUSA JR.

Proof. Differentiating our curvature conditions

λ1 + λ2 + λ3 + λ4 = 0,
λ2

1 + λ2
2 + λ2

3 + λ2
4 = S = const,

λ3
1 + λ3

2 + λ3
3 + λ3

4 = 0

with respect to the direction field e1, we obtain:

0 = h111 + h221 + h331 + h441,

0 = λ1h111 + λ2h221 + λ3h331 + λ4h441,

0 = λ2
1h111 + λ2

2h221 + λ2
3h331 + λ2

4h441.

Because the four principal curvatures are distinct at every point, we can express hii1,
i = 2, 3, 4, in terms of h111:

hii1 = −

∏

j 6=i,1

(λj − λ1)

∏

j 6=i,1

(λj − λi)
h111.

This implies

K1 =

4
∑

i=1

K

λi

hii1 = −(λ1 − λ2)(λ1 − λ3)(λ1 − λ4)h111;

and

(4.10) hii1 =
K1

∏

j 6=i

(λj − λi)

for i = 2, 3 or 4.
Using the equation (2.4), we deduce

(4.11) ω1j =
1

λj − λ1

(

∑

k

h1jk ωk

)

.

To compute dK ∧ ψ =

(

∑

i

Ki ωi

)

∧ ψ, we just need to compute ω1 ∧ ψ; the other

terms can be determined by analogy. Using the equations (4.10) and (4.11), we get

ω1 ∧ ψ = ω1 ∧
(

ω2 ∧ ω3 ∧ ω14 + ω4 ∧ ω2 ∧ ω13 + ω3 ∧ ω4 ∧ ω12

)

=





∑

i6=1

hii1

λi − λ1



 vol

=







∑

i6=1

K1

(λi − λ1)
∏

j 6=i

(λj − λi)






vol

= −4K1

(

q(λ4, λ1, λ2, λ3) + q(λ3, λ1, λ2, λ4) + q(λ2, λ1, λ3, λ4)
)

vol.
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Lemma 2. The exterior differential dψ of the form ψ on X is given by

(4.12) dψ =

(

1

D2
(S2 − 16K)|∇K|2 +

κ

2

)

vol.

Proof.

dψ = d (ω1 ∧ ω2 ∧ ω34) + ...

= dω1 ∧ ω2 ∧ ω34 − ω1 ∧ dω2 ∧ ω34 + ω1 ∧ ω2 ∧ dω34 + · · ·

From the structure equations, we have:

dω1 = −(ω12 ∧ ω2 + ω13 ∧ ω3 + ω14 ∧ ω4)

= (...) ∧ ω2 −
1

λ3 − λ1
(h113ω1 + h134ω4) ∧ ω3

− 1

λ4 − λ1
(h114ω1 + h134ω3) ∧ ω4.

So

dω1 ∧ ω2 ∧ ω34 = − h113h443

(λ3 − λ1)(λ4 − λ3)
ω1 ∧ ω2 ∧ ω3 ∧ ω4

− h114h334

(λ3 − λ2)(λ4 − λ3)
ω1 ∧ ω4 ∧ ω2 ∧ ω3

= −
(

h113h443

(λ3 − λ1)(λ4 − λ3)
+

h114h334

(λ4 − λ3)(λ4 − λ1)

)

vol.

In the same way (interchanging the role of ω1 and ω2), we have

ω1 ∧ dω2 ∧ ω34 =

(

h223h443

(λ3 − λ2)(λ4 − λ3)
+

h224h334

(λ4 − λ3)(λ4 − λ2)

)

vol.

We also have

dω34 = −ω31 ∧ ω14 − ω32 ∧ ω24 +R3434 ω3 ∧ ω4

= −
(

h331h441

(λ1 − λ3)(λ4 − λ1)
+

h332h442

(λ2 − λ3)(λ4 − λ2)
+ λ3λ4 + 1

)

ω3 ∧ ω4

+(· · · ) ∧ ω1 + (· · · ) ∧ ω2.

So

ω1 ∧ ω2 ∧ ω3 ∧ dω34 =

(

λ3λ4 + 1 − h331h441

(λ1 − λ3)(λ4 − λ1)

− h332h442

(λ2 − λ3)(λ4 − λ2)

)

vol.

Similarly one computes

d (ω3 ∧ ω1 ∧ ω24), d (ω1 ∧ ω4 ∧ ω23) and d (ω2 ∧ ω3 ∧ ω14)

to get that

dψ =

(

1

2
κ−

4
∑

k=1

Ik

)

vol,
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where

Ik =
∑

k 6=i<j 6=k

hiikhjjk

(λk − λi)(λk − λi)
.

Recall that the principal curvatures satisfy λ1 = −λ4 and λ2 = −λ3. Thus S2−16K =
4(λ2

4 − λ2
3)

2 and D = 4λ3λ4(λ
2
4 − λ2

3)
2. Now using (4.10) to compute I1, we get

I1 = − 1

4λ2
3λ

2
4(λ

2
4 − λ2

3)
2
K2

1 =
1

D2
(S2 − 16K)K2

1 .

Similarly, we have

Ii = − 1

D2
(S2 − 16K)K2

i , for i = 2, 3, 4.

Therefore,

4
∑

k=1

Ik =
1

D2
(S2 − 16K)

4
∑

i=1

K2
i =

1

D2
(S2 − 16K)|∇K|2.

This establishes the formula (4.12).

Now we are in position to continue the proof of Theorem 4. From Sard’s theorem,
we can obtain ε > 0 such that C1 − ε is a regular value of K. Take 0 < ε1 < ε

sufficiently small such that D(p) 6= 0 for all p ∈ Wε ∪Wε1
, where Wε and Wε1

are
compact subsets of M4 defined by

Wε = K−1[C1 − ε, C1] and Wε1
= K−1[C1 − (ε1 + ε), C1 − ε].

Now we consider a smooth function ηε,ε1
: (−∞, C1+ε] −→ [0, 1] with compact support

such that
(i) 0 ≤ ηε,ε1

(t) ≤ 1 for all t,
(ii) ηε,ε1

(t) = 0 if t ≤ C1 − (ε1 + ε) and ηε,ε1
(t) = 1 if C1 − ε ≤ t ≤ C1 + ε,

(iii) η′ε,ε1
(t) ≥ 0 for all t.

In fact the function ηε,ε1
can be defined by ηε,ε1

(t) = ξ
(

t−
(

C1 − (ε1 + ε)
)

)

, where

ξ(t) =











0, if t ≤ 0

exp
(

−ε1

t
exp( −ε1

ε1−t
)
)

if 0 < t < ε1

1 if ε1 ≤ t ≤ ε1 + 2ε.

Applying Stoke’s theorem to integrate

d
(

ηε,ε1
(K)ψ

)

= ηε,ε1
(K) dψ + η′ε,ε1

(K) dK ∧ ψ

on the closed hypersurface M4, we have

(4.13) 0 =

∫

Wε∪Wε1

ηε,ε1
(K)dψ +

∫

Wε1

η′ε,ε1
(K)dK ∧ ψ.

Define the numbers C := max 1
D2 (S2−16K) and C′ := max

1≤i≤4
|qi| on Wε∪Wε1

, where

qi is the factor of K2
i in the expression (4.9) of dK ∧ ψ (see Lemma 1). It follows that
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|dK ∧ ψ| ≤ C′|∇K|2 on Wε ∪Wε1
. The equation (4.13) implies

∣

∣

∣

∣

∣

∫

Wε∪Wε1

ηε,ε1
(K)dψ

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫

Wε1

η′ε,ε1
(K)dK ∧ ψ

∣

∣

∣

∣

∣

≤
∫

Wε1

η′ε,ε1
(K)|dK ∧ ψ| vol

= C′
∫

Wε1

η′ε,ε1
(K)|∇K| vol.

Because of the expression (4.13) of dψ where κ is constant, we have

∣

∣

∣

∣

∣

∫

Wε∪Wε1

ηε,ε1
(K)dψ

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫

Wε∪Wε1

ηε,ε1
(K)

(

1

D2
(S2 − 16K)|∇K|2 +

κ

2

)

vol

∣

∣

∣

∣

∣

≥
∣

∣

∣

∣

∣

κ

2

∫

Wε∪Wε1

ηε,ε1
(K) vol

∣

∣

∣

∣

∣

−
∣

∣

∣

∣

∣

∫

Wε∪Wε1

1

D2
ηε,ε1

(K)(S2 − 16K)|∇K|2 vol

∣

∣

∣

∣

∣

≥ |κ|
2

∫

Wε1

vol − C

∫

Wε∪Wε1

|∇K|2 vol.

This provides the following inequality:

(4.14)
|κ|
2

∫

Wε

vol ≤ C

∫

Wε∪Wε1

|∇K|2vol + C′
∫

Wε1

η′ε,ε1
(K)|∇K|2vol.

The following result is well known from Analysis and Measure Theory (see for
example the book [10], pp. 461):

Lemma 3. Let ω be a differential form on M4 and F ⊂M4 a closed subset with
zero measure. Then for all ε > 0, there exists an open subset Z ⊂ M4 such that
F ⊂ Z and |

∫

Z
ω| < ε.

From Lemma 3 and Sard’s theorem we can obtain 0 < ε2 < ε1, such that the number
t2 = C1 − (ε2 + ε) is a regular value of K and

(4.15)

∫

Wε1

η′ε,ε1
(K)|∇K|2vol <

∫

Y2

η′ε,ε1
(K)|∇K|2vol +

1

2
,

where Y2 = K−1[C1 − (ε1 + ε), t2].

Notice that lim
ε1→ε2

Y2 = K−1(t2) := X2, lim
ε1→ε2

η′ε,ε1
(K) = η′ε,ε2

(K) and lim
ε1→ε2

Wε1
=

Wε2
:= K−1[t2, C1 − ε]. Moreover

∫

X2
η′ε,ε2

(K)|∇K|2vol = 0, hence (4.15) yields

∫

Wε1

η′ε,ε1
(K)|∇K|2vol ≤ 1

2
.

Therefore, we can define inductively a sequence (εi), 0 < εi < εi−1 , such that the
number ti = C1 − (εi + ε) is a regular value of K and

(4.16)

∫

Wεi

η′ε,εi
(K)|∇K|2vol ≤ 1

i
,
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where Wεi
= K−1[ti, C1 − ε].

It follows from (4.14) and (4.16) that

|κ|
2

∫

Wε

vol ≤ C

∫

Wε∪Wεi

|∇K|2vol +
1

i
.

And since lim
i→∞

Wεi
= K−1(C1 − ε), we get

(4.17)
|κ|
2

∫

Wε

vol ≤ C

∫

Wε

|∇K|2vol ≤ C sup
Wε

|∇K|2
∫

Wε

vol.

Note that
∫

Wε

vol > 0 and lim
ε→0

sup
Wε

|∇K|2 = 0, thus (4.17) implies that

|κ|
2

≤ lim
ε→0

sup
Wε

|∇K|2 = 0,

which contradicts our assumption that κ 6= 0. Hence κ = 0 on M4.

Now we want to prove that the Gauß-Kronecker curvature function K is constant
on M4 to conclude that M4 is an isoparametric hypersurface. The proof essentially
follows the pattern of de Sousa ([16], [17]). We only stress the points which may lead
to some differences. We proceed as above while proving that κ is constant.

Given a small non-zero positive real number ε, we choose a smooth function
ηε : (−∞, C1 + ε] −→ R with compact support such that:

(i) 0 ≤ ηε(t) ≤ 1 for all t,
(ii) ηε(t) = 0 if t ∈ (−∞, ε

3 ],
(iii) ηε(t) = 1 if t ∈ (ε, C1 + ε],
(iv) η′ε(t) ≥ 0 for all t ∈ ( ε

3 , ε).
Althought there does not exist a unique extension of the form ψ on K−1(0) because
of ηε(K) = 0 on K−1(0), we may consider the 3-form ϕ = ηε(K)ψ which is globally
defined on M4. Since κ = 0, by Stoke’s theorem and (4.12), we have

0 =

∫

M4

dϕ =

∫

K−1[ ε

3
,C1+ε]

ηε(K) dψ +

∫

K−1[ ε

3
,ε]

η′ε(K)dK ∧ ψ

=

∫

K−1[ ε

3
,C1+ε]

ηε(K)
(S2 − 16K)

D2
|∇K|2vol +

∫

K−1[ ε

3
,ε]

η′ε(K)dK ∧ ψ(4.18)

Let α1 be a real number such that

(4.19) max{|Q1|, |Q2|, |Q3|, |Q4|} ≤ α1,

where Qi is the factor of −4K2
i (1 ≤ i ≤ 4) in the equation (4.9).

It follows from (4.9), (4.18) and (4.19) for sufficiently small ε > 0 that

∫

K−1[ ε

3
,C1+ε]

ηε(K)
(S2 − 16K)

D2
|∇K|2vol

≤ α1

∫

K−1[ ε

3
,ε]

η′ε(K)|∇K|2vol.(4.20)
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Let ξ : (−∞, C1 + ε] −→ R be the smooth function given by ξ(t) := ηε(t) − 1. Notice
that ξ′(t) = η′ε(t). By applying Stoke’s theorem to

div
(

(ξ ◦K)∇K
)

= η′ε(K)|∇K|2 + ξ(K)∆K,

we get

0 =

∫

M4

div
(

(ξ ◦K)∇K
)

vol =

∫

K−1[ ε

3
,ε]

η′ε(K)|∇K|2vol +

∫

K−1[0,ε]

ξ(K)∆Kvol,

which implies the following integral inequality:

(4.21)

∫

K−1[ ε

3
,ε]

η′ε(K)|∇K|2vol ≤
∫

K−1[0,ε]

|∆K|vol.

Combining the inequalities (4.20) and (4.21), we get

(4.22) 0 ≤
∫

K−1[ ε

3
,C1+ε]

ηε(K)
(S2 − 16K)

D2
|∇K|2vol ≤ α1

∫

K−1[0,ε]

|∆K|vol.

The following lemma was proved in [2] for n = 3 and still holds for n > 3.

Lemma 4. Let u : M4 −→ R be a smooth function and m = minM4u. If Dε =
u−1

(

[m,m+ ε]
)

, then

lim
ε→0

∫

Dε

|∆u|vol = 0.

In particular,

lim
ε→0

∫

K−1[0,ε]

|∆u|vol = 0.

Due to Lemma 4 and the integral inequality (4.22), we infer that

(4.23) lim
ε→0

∫

K−1[ ε

3
,C1+ε]

ηε(K)
(S2 − 16K)

D2
|∇K|2vol = 0.

For 0 < ε < ε′, we have

0 ≤
∫

K−1[ε′,C1+ε]

(S2 − 16K)

D2
|∇K|2vol ≤

∫

K−1[ε,C1+ε]

(S2 − 16K)

D2
|∇K|2vol

≤
∫

K−1[ ε

3
,C1+ε]

ηε(K)
(S2 − 16K)

D2
|∇K|2vol.

So (4.23) yields |∇K| ≡ 0 identically on M4 \ K−1(0). Since ∇K = 0 on K−1(0),
we conclude that K is a constant function on M4. Therefore, M4 is an isoparametric
hypersurface. This completes the proof.

Our main result (Theorem 1) is proved combining Theorem 3 and Theorem 4.
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57–71.
[12] K. Nomizu, Some results in E. Cartan’s theory of isoparametric families of hypersurfaces, Bull.

Amer. Math. Soc., 79 (1973), pp. 1184–1188.
[13] , E. Cartan’s work on isoparametric families of hypersurfaces, Proc. Symposia in Pure

Math., Amer. Math. Soc., 27 (1975), pp. 191–200.
[14] C. K. Peng and C. L. Terng, Minimal hypersurfaces of spheres with constant scalar curvature,

Seminar on Minimal Submanifolds (E. Bombieri, ed.), Ann. of Math. Studies, 103 (1983),
Princeton, NY, pp. 179–198.

[15] , The scalar curvature of minimal hypersurfaces in spheres, Math. Annalen, 266 (1983),
pp. 62–105.

[16] L. A. M. Sousa Jr., Hipersuperf́ıcies isoparamétricas na esfera euclidiana, Ph.D. Thesis at
Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro (2001).

[17] , A new characterization of minimal isoparametric hypersurfaces in S
5, preprint.


