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Abstract

Symmetric kernel estimators of an unknown density function on a partial
or totally bounded support suffer from edge effects and several authors consid-
ered specific asymmetric kernels, belonging in the large class of continuous as-
sociated kernels. Asymptotic properties of the corresponding estimators have
been examined on a case-by-case basis. In this paper, it is proposed general
asymptotic results for continuous associated kernel estimators; in particular,
weak and strong global convergences are shown with respect to both uniform
and L1 norms. Three lognormal kernel estimators have used for illustrations
and discussions. Finally, some concluding remarks are made.
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1 Introduction

Let X1, . . . ,Xn be independent and identically distributed (i.i.d.) random variables
with an unknown density function f with respect to the Lebesgue measure on its
supportT⊂R. The supportTwill be supposed to be a convex set ofR and it might
be partially or totally bounded. Because of symmetry, the classical or symmetric
kernels, not depending on any parameter, are not appropriate smoothers for this
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density. Our scope in this work is to investigate the consistency of the following
continuous associated kernel estimator,

f̂n(x) =
1
n

n∑
i=1

Kx,h(Xi), x ∈ T := support( f ), (1.1)

where h = hn > 0 is an arbitrary sequence of smoothing parameters that fulfills
limn→∞ hn = 0, while Kx,h(·) is a suitably chosen continuous kernel function which
intrinsically depends on the bandwidth h and on the target point x where the density
f is estimated. This estimator has been proposed in [11] for discrete functions (see
also [1], [10], [21], [22]) and extended to the continuous functions in [9] which
generalizes the particular cases of Cheng ([4], [5]) for beta kernels with T = [0,1]
and gamma kernels with T = (0,∞). The reader can refer to [8], [13] and [18] for
other special continuous cases and also to [7] for a family of asymmetric kernels. It
is known in the previous papers that the estimators (1.1) are without of edge effect;
however, it is necessary to reduce the pointwise bias inside of T. Several authors
have investigated and compared their performances; e.g., [2], [19] and [20].

More precisely, for any x ∈T and h> 0, a continuous associated kernel Kx,h is also
a probability density function (uniformly bounded) with respect to the Lebesgue
measure on its support Sx,h ⊆ T ⊂R satisfying the following three conditions:

x ∈ Sx,h, E
(
Zx,h

)
= x+A(x,h) and Var

(
Zx,h

)
= B(x,h), (1.2)

where Zx,h is a real random variable with density Kx,h, both A(x,h) and B(x,h)
tend to 0 when h = hn goes to 0 (as n→∞ afterward). Generally built in a ”Do
It Yourself” way (e.g., [4], [5], [8], [13] and [18]), a continuous associated kernel
can be now constructed through the mode-dispersion method introduced in [14].
Indeed, starting from a suitable parametric probability density function (so-called
type of continuous kernel) Kθ on Sθ with θ ∈Θ ⊆Rk for k ≥ 2, the use of the mode-
dispersion method for constructing an appropriate associeted kernel Kx,h := Kθ(x,h)
on Sx,h := Sθ(x,h) that matches with the support T of the target density consists to
solve the following system of two equations: x=M(a,b) and h=D(a,b) where M(a,b)
and D(a,b) are, respectively, the only mode and a dispersion parameter of Kθ(a,b).
Allowing that T is partially or totally bounded (e.g., [t1, t2], (t1,∞), (−∞, t2) with
t1 < t2), one of choices of the continuous associated kernel Kx,h is such that Sx,h
matches with T for all x and h or ∪x,hSx,h ⊆ T. This is the case of kernels from
beta and its extension, gamma and its inverse, inverse Gaussian and its reciprocal
version, Weibull, lognormal and so on. See also Figure 1 and [12] for a multivariate
version of the mode-dispersion approach. Note that the symmetric kernel estimator
of f introduced by Rosenblatt [17] and Parzen [16] can be obtained from (1.1) with

Kx,h(·) = (1/h)K {(· −x)/h} , x ∈ T :=R, h > 0,

where K is the so-called classical kernel function of bounded variation on its support
Swith zero mean and unit variance: Sx,h = x−hS, A(x,h) = 0 and B(x,h) = h2 in (1.2).

Following [1] and [3], this paper focuses on some convergences in the family of
continuous associated kernel estimators (1.2) for the unknown density function f
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onT⊂R. The assumption of uniform continuity of f onT=R is relaxed to a simple
continuity of f on any compact set of T. The following Section 2 is devoted to the
main results for which we show two kinds of weak and strong consistencies (point-
wise and global) of these estimators in the sense of both uniform andL1 norms. We
also present some remarks related to some well-known situations. Finally, Section
3 provides illustrations on three different lognormal kernel estimators forT= (0,∞)
which is partially bounded to the left.

2 Results and remarks

Let us first show some pointwise properties of the estimator (1.1).

Proposition 2.1. Under assumptions (1.1) and (1.2), for any fixed x in T and h = hn > 0,
one has

E{ f̂n(x)} = E
{

f (Zx,h)
}
. (2.1)

Furthermore, for f in the class C 2(T), we have

Bias
{

f̂n(x)
}
= A(x,h) f ′(x)+

1
2

{
A2(x,h)+B(x,h)

}
f ′′(x)+ o(h2) (2.2)

and, for f bounded on T,

Var
{

f̂n(x)
}
=

1
n

f (x)
∥∥∥Kx,h

∥∥∥2
2+ o

( 1
nhr2

)
, (2.3)

where r2 = r2

(
Kx,h

)
> 0 is a real largest number such that

∥∥∥Kx,h

∥∥∥2
2 =

∫
Sx,h∩T

K2
x,h(u)du ≤

c2(x)h−r2
n and 0 < c2(x) <∞.

P. The first result (2.1) is straightforward obtained as follows:

E
{

f̂n(x)
}
=

∫
Sx,h∩T

Kx,h(t) f (t)dt =
∫
Sx,h∩T

f (t)Kx,h(t)dt = E
{

f (Zx,h)
}
.

From (2.1) and by using the Taylor-Lagrange formula successively around E
(
Zx,h

)
and x, the second result (2.2) can be shown as:

Bias
{

f̂n(x)
}
= E{ f̂n(x)}− f (x) = E

{
f (Zx,h)

}
− f (x)

= f
{
E(Zx,h)

}
+

1
2

Var(Zx,h) f ′′
{
E(Zx,h)

}
− f (x)+ o

(
E

{
Zx,h−E(Zx,h)

}2
)

= f {x+A(x,h)}+
1
2

B(x,h) f ′′ {x+A(x,h)}− f (x)+ o {B(x,h)}

= A(x,h) f ′(x)+
1
2

{
A2(x,h)+B(x,h)

}
f ′′(x)+ o(h2).
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In fact, the rest o(h2) comes from (1.2) and o
(
E

{
Zx,h−E(Zx,h)

}2
)
=E

(
oP

{
Zx,h−E(Zx,h)

}2
)

where oP(·) is the probability rate of convergence. Concerning the variance (2.3) we
have

Var
{

f̂n(x)
}
=

1
n
E

{
K2

x,h(X1)
}
−

1
n

[
E

{
Kx,h(X1)

}]2

'
1
n

∫
Sx,h∩T

K2
x,h(u) f (u)du =: I1.

By using the Taylor-Lagrange expansion around x, the term I1 gives

I1 :=
1
n

∫
Sx,h∩T

K2
x,h(u) f (u)du =

1
n

f (x)
∫
Sx,h∩T

K2
x,h(u)du+R(x,h),

with

R(x,h) =
1
n

∫
Sx,h∩T

K2
x,h(u)

[
(u−x) f ′(x)+

(u−x)2

2
f ′′(x)+ o{(u−x)2

}

]
du.

Under the assumption of
∥∥∥Kx,h

∥∥∥2
2 ≤ c2(x)h−r2

n we deduce successively

0 ≤ R(x,h) ≤
1

nhr2

∫
Sx,h∩T

c2(x)
{

(u−x) f ′(x)+
(u−x)2

2
f ′′(x)

}
du ' o(n−1h−r2).�

The first consistency results concern two pointwise convergences of f̂n almost
surely (a.s.) and by mean square error (i.e., L2) implying in probability (P).

Theorem 2.2. Let f ∈ C 2 (T) and f̂n its estimator defined by (1.1). For any fixed x in
T then one has f̂n(x) a.s.

−→ f (x) as n→∞; furthermore, if there is a real largest number
r2 = r2(Kx,hn) > 0 such that

hr2
n

∥∥∥Kx,hn

∥∥∥2
2 ≤ c2(x) <∞ and lim

n→∞
nhr2

n =∞

then f̂n(x) L
2

−→ f (x) as n→∞.

P. Since typically the continuous associated kernels Kx,hn(·) are uniformly
bounded in hn > 0 and x ∈ T, and by the Hoeffding inequality, one has

P


∣∣∣∣∣∣∣

n∑
i=1

[
Kx,hn(Xi)−E{Kx,hn(Xi)}

]∣∣∣∣∣∣∣ > ε
 6 2exp

(
−2ε2/n

)
and, hence, P(| f̂n(x)−E{ f̂n(x)}| > ε) 6 2exp

(
−2nε2

)
. Then, | f̂n(x)−E{ f̂n(x)}| → 0 as

n→∞ by applying the Borel-Cantelli lemma. Since |E{ f̂n(x)} − f (x)| = O(hn) from
(1.2) and (2.2), the result f̂n(x) a.s.

−→ f (x) as n→∞ follows by the triangular inequality.
The second convergence is immediate from (2.2), (2.3) and assumptions.�

In what follows, our idea of soft global convergence is related to the continuity
of f on any compact set of T; thus, the continuity on T denoted by C 0(T) implies
uniform continuity on all compact subsets ofT. Before showing the first soft global
convergences of f̂n by uniform norm, we need the following result on a global bias.
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Proposition 2.3. Let f be in C 0 (T) and bounded, f̂n its estimator given in (1.1). For any
compact set I included in T, one has: supx∈I |E{ f̂n(x)}− f (x)| → 0 as n→∞.

P. Let us fix an ε > 0. From (1.2) and for δ > 0, there exist n0,n1 ∈N such
that: n > n0⇒ |E(Zx,h)−x| < δ/2 and n > n1⇒ Var(Zx,h) < δ2/4. Writing∣∣∣∣E{ f̂n(x)}− f (x)

∣∣∣∣ 6 ∫
Sx,h∩T

∣∣∣ f (u)− f (x)
∣∣∣Kx,hn(u)du 6 J1+ J2

and since
{
x ∈ T; |E

(
Zx,h

)
−x| 6 δ/2

}
⊆ Sx,h with f uniformly continu on I, one has

for n > n0

J1 =

∫
|u−E(Zx,h)|6δ/2

∣∣∣ f (u)− f (x)
∣∣∣Kx,hn(u)du 6

ε
2

∫
|u−E(Zx,h)|6δ/2

Kx,hn(u)du 6
ε
2
.

On the other hand, the Bienaymé-Tchebychev inequality allows to obtain, for n> n1,

J2 =

∫
|u−E(Zx,h)|>δ/2

∣∣∣ f (u)− f (x)
∣∣∣Kx,hn(u)du

6 sup
u∈I

∣∣∣ f (u)− f (x)
∣∣∣∫
|u−E(Zx,h)|>δ/2

Kx,hn(u)du 6
2ε
δ2 Var

(
Zx,h

)
6
ε
2
.

Consequently, for n >max(n0,n1) one gets supx∈I |E{ f̂n(x)}− f (x)| 6 ε.�
Here we show the results of weak (P) and strong (a.s.) soft global convergences

with uniform norm.

Theorem 2.4. Let f ∈ C 0 (T) and bounded, f̂n its estimator given in (1.1). Assume that
there is a real largest number r0 = r0(K) > 0 such that, for all x ∈ T,

hr0
n

∫
Sx,h

|dKx,hn(s)| ≤ c0

with c0 bounded on any compact containing x. For any compact set I included in T, one
has:

(i) if lim
n→∞

nh2r0
n =∞ then sup

x∈I

∣∣∣∣ f̂n(x)− f (x)
∣∣∣∣ P−→ 0 as n→∞;

(ii) if lim
n→∞

nh2r0
n / logn =∞ then sup

x∈I

∣∣∣∣ f̂n(x)− f (x)
∣∣∣∣ a.s.
−→ 0 as n→∞.

P. The triangular inequality and Proposition 2.3 lead to: for all ε > 0, there
exists n0 ∈N such that for n > n0 we have

sup
x∈I

∣∣∣∣ f̂n(x)− f (x)
∣∣∣∣ 6 sup

x∈I

∣∣∣∣ f̂n(x)−E{ f̂n(x)}
∣∣∣∣+ ε2 . (2.4)

From F and Fn = (1/n)
∑n

i=1 δXI the theoretical and empirical distribution functions
of Xi, one can express:

f̂n(x) =
∫
Sx,h∩T

Kx,hn(u)dFn(u) = Kx,hn(u)Fn(u)
∣∣∣
Sx,h∩T

−

∫
Sx,h∩T

Fn(u)dKx,hn(u)
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and then

E{ f̂n(x)} = Kx,hn(u)F(u)
∣∣∣
Sx,h∩T

−

∫
Sx,h∩T

F(u)dKx,hn(u).

Since Fn(u) a.s.
−→ F(u) as n→∞ by Glivenko-Cantelli, one has∣∣∣∣ f̂n(x)−E{ f̂n(x)}

∣∣∣∣ 6 ∫
Sx,h∩T

|Fn(u)−F(u)|dKx,hn(u).

By (2.4) and assumption hr0
n

∫
Sx,h
|dKx,hn(s)| 6 c0(x), one gets

sup
x∈I⊆T

∣∣∣∣ f̂n(x)− f (x)
∣∣∣∣ 6 (

sup
x∈I⊆T

|Fn(x)−F(x)|
) sup

x∈I⊆T

∫
Sx,h∩T

∣∣∣dKx,hn(u)
∣∣∣

6 C0h−r0
n sup

x∈I⊆T
|Fn(x)−F(x)|

with C0 = supx∈I⊆T c0 < ∞. For given hn > 0 and adapting now the Massart [15]
inequality (which is an extension of the Dvoretzky-Kiefer-Wolfowitz inequality)
one has, for all ε > 0, P(supx∈I⊆T |Fn(x)−F(x)| > ε) 6 2exp

(
−2ε2nh2r0

n /C2
0

)
→ 0; and

Part (i) ensues from it. According to the previous proof of Part (i), we have∑
n>1

P

(
sup

x∈I⊆T
| f̂n(x)− f (x)| > ε

)
6 2

∑
n>1

exp
(
−2ε2nh2r0

n /C
2
0

)
.

For an appropriate choice of ε> 0 and n large (i.e., n>n0), one gets
∑

n>1 exp(−2ε2nh2r0
n /C2

0)'
o(n−(1+δ)),∀δ > 0. Thus, one has the almost complete convergence and Part (ii) is
deduced.�

Concerning the second soft global convergences through L1 norm with respect
to the Lebesgue measure, we first prove that the bias of f̂n converges.

Proposition 2.5. Let f ∈ C 0 (T) and f̂n its estimator given in (1.1). Then:∫
T

∣∣∣∣E{ f̂n(x)}− f (x)
∣∣∣∣dx→ 0 as n→∞.

P. In a similar way to Devroye [6], we use the following decomposition∥∥∥∥E(
f̂n
)
− f

∥∥∥∥
1
≤

∥∥∥∥E(
f̂n
)
−E

(
f̂?n

)∥∥∥∥
1
+

∥∥∥∥E(
f̂?n

)
− f?

∥∥∥∥
1
+

∥∥∥ f?− f
∥∥∥

1 ,

where f? is continue and such that
∥∥∥( f − f?)1I

∥∥∥
1 < ε,∀ε > 0 and f? = 0 on Ic :=Tr I.

For any given event A, 1A denotes the indicator function of A that takes the value
1 if the event A occurs and 0 otherwise. By considering f̂?n = 1I f̂n one has, on one
hand ∥∥∥∥E(

f̂n
)
−E

(
f̂?n

)∥∥∥∥
1
=

∫
T

∣∣∣∣∣∣
∫
Sx,h∩T

Kx,hn(u)
{
f (u)−1I(x) f (u)

}
du

∣∣∣∣∣∣dx

≤Λn

∫
Sx,h∩T

∣∣∣ f (u)− f?(u)
∣∣∣du ≤Λnε
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with the total mass Λn =
∫
T

Kx,hn(u)dx ' 1,∀u, and on the other hand

∥∥∥∥E(
f̂?n

)
− f?

∥∥∥∥
1
≤

∫
I

∣∣∣∣∣∣
∫
Sx,h∩T

Kx,hn(u)
{

f?(u)− f?(x)
}
du

∣∣∣∣∣∣dx

≤ ε

∫
I

∫
Sx,h∩T

Kx,hn(u)dxdu ≤Λn`(I)ε,

where `(I) denotes the length of I. Since
∥∥∥ f?− f

∥∥∥
1 =

∥∥∥( f − f?)1I
∥∥∥

1 < ε, one deduces∥∥∥∥E(
f̂n
)
− f

∥∥∥∥
1
≤ [Λn{1+ `(I)}+1]ε.�

Finally, we only state the last soft global convergences of f̂n because the proofs
are similar to those of Theorem 2.4, and we omit them.

Theorem 2.6. Let f ∈ C 0 (T) and bounded, f̂n its estimator (1.1). Suppose that there is a
real largest number r1 = r1(K) > 0 such that, for all x ∈ T,

hr1
n

∫
Sx,h

|dKx,hn(s)| ≤ c1

with c1 in L1 on any compact set containing x. Then one has:

(i) if lim
n→∞

nh2r1
n =∞ then

∫
T

∣∣∣∣ f̂n(x)− f (x)
∣∣∣∣dx P
−→ 0 as n→∞;

(ii) if lim
n→∞

nh2r1
n / logn =∞ then

∫
T

∣∣∣∣ f̂n(x)− f (x)
∣∣∣∣dx a.s.
−→ 0 as n→∞.

The following remark completes our idea to make a study for pointing out
the sensibility of the continuous associated kernel, which depends on the target of
estimation.

Remark 2.7. Let x ∈ T. (i) If c0 of Theorem 2.4 garanteeing a kind of the pointwise
bounded variation of the associated kernel is integrable on all compact containing
x then r1 = r0, where r1 is given in Theorem 2.6. (ii) The function c2 of Theorem 2.2
means the pointwise square integrability of the continuous associated kernel.

We conclude this section by the four following observations.

[A] For classical (continuous associated) kernels K, one easily checks that c j are
constants for j = 0,1,2 in Theorems 2.2, 2.4 and 2.6; they provide the same
sense to the respective hypothesis of square integrable of K for j = 2, bounded
variation of K for j = 0, and integrable variation of K for j = 1. Moreover, one
has r0 = r1 = r2 = 1.

[B] As regards the (non-classical and well-known) beta and gamma kernels, one
has r0 = r1 = 2r2 = 1 for their first versions and r̃0 = r̃1 = r̃2,−1 = 2̃r2,0 = 1 for their
modified versions in the sense of Chen ([4], [5]), where r̃2,−1 and r̃2,0 represent
r2 for the left boundary (−1) and inside (0) points respectively; see also [3].
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[C] Figure 1 illustrates two behaviours of some continuous associated kernels
on T = (0,∞): (a) at the left boundary with x = 0.5 = h and (b) inside area
with x = 1.5 and h = 0.3. Lognormal, gamma and reciprocal inverse Gaussian
kernels appear here to be interesting smoothers on this positive real line, while
inverse gamma and inverse Gaussian can be used only for a left boundary
area of T = (0,∞). In general, the choice of any continuous associated kernel
for the boundary part (left or right) must be crucial. However, we can require
a classical one such as Gaussian or Epanechnikov for inside points.

0 1 2 3 4

0.
0

0.
5

1.
0

1.
5

Kernels on positive real line for h=x=0.5

u
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Reciprocal Inverse Gaussian
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Kernels on positive real line for h=0.3 and x=1.5
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K
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Reciprocal Inverse Gaussian
lognormal

Figure 1. Some continuous associated kernels on positive real line for a given h and x

[D] The practical selection of bandwidth in this family of continuous associated
kernel estimators must be done through an adaptative (like Lepski) method
(e.g., [2]) or a Bayesian procedure (e.g., [22]). Because the cross-validation
method is so slow at boundary regions. Work in this direction by simulations
and an application is in progress.

3 Applications to lognormal kernel estimators

We now examine three families of (associated) lorgnormal kernel estimators.
First, we recall the basical properties of lognormal distribution (or type of kernel)

that we need. The density function of lognormal with two parameters a ∈ R and
b > 0 is defined as follows:

LNθ(a,b)(u) =
1

ub
√

2π
exp

−1
2

(
logu− a

b

)2
1(0,∞)(u).

Since its mode and a dispersion parameter are given by exp(a−b2) and b respectively,
the mode-dispersion method provides

θ(x,h) =
(
logx+h2,h

)
for all x ∈ (0,∞) and h > 0.
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Note also that its mean exp(a+ b2/2) and its variance
(
expb2

−1
)
exp(2a+ b2) allow

to calculate

Aθ(x,h) = x
(
exp(3h2/2)−1

)
and Bθ(x,h) = x2 exp(3h2)

(
exph2

−1
)

as introduced in (1.2) with SLNθ(x,h) = (0,∞) = SLNθ(a,b) .
Then, to estimate an unknown density function f with supportT= (0,∞) we can

first consider the lognormal kernel LNθ(x,h) obtained by the above mode-dispersion
method and used in Figure 1:

LNθ(x,h)(u) =
1

uh
√

2π
exp

(
−1
2h2

[
logu− log

{
xexp

(
h2

)}])
1u>0, x > 0,h > 0.

For α1(h) > 0 bounding both left edge and inside regions of T = (0,∞) = (0,α1(h)]∪
(α1(h),∞), a modified version LN

θ̃(x,h) := L̃Nθ(x,h) of LNθ(x,h) is given by

LN
θ̃(x,h) = LN

θ̃−1(x,h)+LN
θ̃0(x,h)

with the left boundary part

θ̃−1 (x,h) = θ
(
x−2α3

1(h)exp
(
−3h2/2

)
,h

)
for x ∈ (0,α1(h)] =: T−1

and the inside part

θ̃0 (x,h) = θ
(
xexp

(
−3h2/2

)
,h

)
for x ∈ (α1(h),∞) =: T0.

Let us mention here that, for both modified beta and gamma kernels, α1(h) = 2h
has been chosen by Chen ([4], [5]) and α1(h) = h by Zhang [19] and Zhang and
Karunamuni [20]. The third version of lognormal kernel defined as

LNθ∗(x,h) = LN
θ
(
xexph2,2

√
log(1+h)

)
has been considered by Jin and Kawczak [8]. From (1.1) we have three estimators
f̂n, f̃n and f ∗n of f corresponding to the above three lognormal kernels LNθ, LN

θ̃
and

LNθ∗ respectively. Thus, denoting by r̂ j = r j( f̂n), r̃ j = r j( f̃n) and r∗j = r j( f ∗n) the r j of
these lognormal kernel estimators as in Theorems 2.2, 2.4 and 2.6 for j = 0,1,2, we
have the following results:

r̂0 = r̃0 = r∗0 = r̂1 = r̃1 = r∗1 = 2, (3.1)

r̂2 = r̃2,0 = 2r∗0 = 1 and r̃2,−1 = r̃2,−1(α1); (3.2)

in particular, if α1(h) = a1hβ then r̃2,−1(α1) = (3β
√

2+2)/2 for β > −
√

2/3.
Finally, we show the two situations r̃0 = 2 of (3.1) and r̃2,−1 = r̃2,−1(α1) depending

on the bounding α1 := α1(h) of (3.2). Indeed, one has∫
|dLN

θ̃(x,hn)(u)| =
1

hn2

∫ ∣∣∣∣∣∣1u log
{

ux2

α1(hn)

}
LN
θ̃−1(x,hn)(u)+

1
u

log
(u

x

)
LN
θ̃0(x,hn)(u)

∣∣∣∣∣∣du

6
κ−1

hn2

∫ ∣∣∣∣∣2u log(x)+
1
u

log(u)
∣∣∣∣∣1u6α1(hn)du+

κ0

hn2

∫ ∣∣∣∣∣2u log(x)
∣∣∣∣∣1u>α1(hn)du

6 hn
−2 log2 (x)

{
(5κ−1/2)1x6α1(hn)+κ01x>α1(hn)

}
,
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where κ−1 and κ0 are positive constants; this leads to r̃0 = 2. As for r̃2,−1 = r̃2,−1(α1)
and since

E (Ym) = exp
[
m

{
h2+ log(x)

}
+ (mh)2 /2

]
, ∀m ∈R,

for any lognormal random variable Y ∼ LNθ(x,h), one gets

∥∥∥∥LN
θ̃−1(x,hn)

∥∥∥∥2

2
=

∫
{α1(hn)}

√
2

0

v−
√

2/2dv

vh2
nπ
√

8
exp

 −1
2h2

n

logv− log

 {α1(hn)}3
√

2

x2
√

2e
√

2h2
n/2




2
6

1

2hn
√

2π
E

(
Y−
√

2/2
?

)
=

1

2hn
√

2π

 x2

α3
1(hn)


√

2/2

exp
( √

2+1
4

h2
n

)

6
x
√

2/2
[
1+

{(√
2+1

)
/4

}
h2

n

]
2
√
πhn {α1(hn)}3

√
2/2

,

with Y? ∼ LNθ(x?,hn) such that x? = x−
√

2/2
{α1(hn)}3

√
2 exp(−

√
2h2

n/2−h2
n); and, there-

fore, r̃2,−1(α1) is the largest power in hn of hn {α1(hn)}3
√

2/2.
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