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Abstract

The well-known Hilali conjecture stated in [9] is one claiming that if X is a simply
connected elliptic space, then dimπ∗(X)⊗Q ≤ dim H∗(X;Q). In this paper we pro-
pose that if f : X → Y is a continuous map of simply connected elliptic spaces, then
dimKer π∗( f )Q ≤ dimKer H∗( f ;Q)+1, and we prove this for certain reasonable cases.
Our proposal is a relative version of the Hilali conjecture and it includes the Hilali
conjecture as a special case.
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1 Introduction

We let π∗(X)⊗Q :=
⊕

i≥1πi(X)⊗Q and H∗(X;Q) =
⊕

i≥0 Hi(X;Q). A simply connected
CW complex X is said to be elliptic if dim(π∗(X)⊗Q) and dim H∗(X;Q) are both finite. In
[9] M. R. Hilali conjectures that for a simply connected elliptic space X

dimπ∗(X)⊗Q ≤ dim H∗(X;Q). (HC)

That is, the total sum of the Betti numbers of an elliptic space is bigger than or equal to the
total sum of the homotopy ranks of it. The conjecture holds for many spaces ([1], [4], [9],
[10], [11], [12], [13]).

Let f : X→ Y be a continuous map between two simply connected elliptic spaces. We
define

1. Ker π∗( f )Q :=
⊕

i≥1 Ker
(
πi( f )Q : πi(X)⊗Q→ πi(Y)⊗Q

)
.
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2. Ker H∗( f ;Q) :=
⊕

i≥0 Ker
(
Hi( f ;Q) : Hi(X;Q)→ Hi(Y;Q)

)
.

We propose the following relative Hilali conjecture (abbr. RHC):

dimKer π∗( f )Q ≤ dimKer H∗( f ;Q)+1, (RHC)

which is in fact a generalization of the above Hilali conjecture (HC). Indeed, let us consider
(RHC) for the case when Y = ∗ is a point. Then we have

Ker π∗( f )Q = π∗(X)⊗Q and Ker H∗( f ;Q)⊕Q = H∗(X;Q), (1.1)

from which we get (HC) by taking the dimension of them. Here we note that f∗ : H0(X;Q)=
Q � H0(∗;Q) = Q, thus Ker( f∗ : H0(X;Q)→ H0(∗;Q)) = {0}, hence ⊕Q is needed in (1.1),
namely, +1 is needed in (RHC).

Theorem 1.1. When f : X→ Y is a spherical fibration, it satisfies (RHC).

Example 1.2. Let us consider the Hopf fibration S 1→ S 3 f
→ S 2. Since π1(S 3) = π1(S 2) =

{0}, it suffices to look at πi(−) for i ≥ 2. First we note

π2( f )Q : π2(S 3)⊗Q = {0} → π2(S 2)⊗Q = Q.

Since πi(S 1) = {0} for i ≥ 2, it follows from the homotopy long exact sequence that for j ≥ 3
we have

π j( f )Q : π j(S 3)⊗Q � π j(S 2)⊗Q.

Therefore dimKer π∗( f )Q = 0, hence it satisfies (RHC), because we have dimKer H∗( f ;Q)+
1 ≥ 1.

Remark 1.3. By the above homotopy exact sequence argument we see that if f : X→ Y is
a fibration with a fiber F such that any homotopy group πi(F) is a finite group (thus πi(F)⊗
Q = {0}), then (RHC) holds since πi( f )Q is an isomorphism for i ≥ 1, thus dimKer π∗( f )Q =
0.

A simply connected elliptic space F is said to be an F0-space if

H∗(F;Q) � Q[x1, .., xn]/( f1, .., fn)

where |xi| are even and f1, .., fn is a regular sequence. S. Halperin [8] conjectures that

the Serre spectral sequence (Er,dr) of any fibration F → X
f
→ Y with fibre F an F0-space

collapses at E2-level. It is equivalent to saying that

H∗(X;Q) � H∗(F;Q)⊗H∗(Y;Q)

as H∗(Y;Q)-modules. Such a fibration f : X→ Y is said to be totally non-cohomologous to
zero (abbr. TNCZ).

Remark 1.4. The notion of TNCZ is usually defined on an orientable fibration f : X→ Y
with fiber F, i.e., a fibration satisfying that the fundamental group π1(Y) acts trivially on the
cohomology group H∗(F) of the fiber F (e.g., see [3, Definition 4.38]). We note that since
we consider a fibration of simply connected elliptic spaces, the fibration is automatically
orientable.
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Proposition 1.5. Suppose that a fibration f : X→ Y is TNCZ. Then, if the fibre F satisfies
(HC), the fibration f : X→ Y satisfies (RHC).

Corollary 1.6. Suppose that the Halperin conjecture is true. If the fibre of a fibration
f : X→ Y is an F0-space, the fibration f : X→ Y satisfies (RHC).

Due to [14], we obtain

Example 1.7. If the fibre of a fibration f : X → Y is a homogeneous space G/H with
rankG = rankH, then the fibration f : X→ Y satisfies (RHC).

2 Sullivan models

We use the Sullivan minimal model M(X) of a simply connected CW complex X of finite
type [2]. It is a free Q-commutative differential graded algebra (ΛV,d) with a Q-graded
vector space V =

⊕
i≥2 V i where dimV i <∞ and a decomposable differential; i..e., d(V i) ⊂

(Λ+V ·Λ+V)i+1 and d◦d = 0. HereΛ+V is the ideal ofΛV generated by elements of positive
degree. The degree of a homogeneous element x of a graded algebra is denoted by |x|. Then
xy = (−1)|x||y|yx and d(xy) = d(x)y+ (−1)|x|xd(y). Recall that M(X) determines the rational
homotopy type of X. In particular there are isomorphisms

V i � Hom(πi(X)⊗Q,Q) and H∗(ΛV,d) � H∗(X;Q).

Thus we have
dimV <∞, dim H∗(ΛV,d) <∞

when X is elliptic and the Hilali conjecture is equivalent to the inequality

dimV ≤ dim H∗(ΛV,d). (HC’)

A map f : X→ Y has a minimal model, which is a DGA-map

M( f ) : M(Y)→ M(X).

It is induced by a relative or Koszul-Sullivan (KS-)model

j : M(Y) = (ΛW,dY )→ (ΛW ⊗ΛV,D),

where D|ΛW = dY , (ΛV,D) = (ΛV,d) is the minimal model of the homotopy fibre of f and
there is a quasi-isomorphism

ρX : M(X)
∼
→ (ΛW ⊗ΛV,D)

such that ρX ◦M( f )' j (see [8]). Note that the differential D is not decomposable in general.
Let j : (ΛW,dY )→ (ΛW ⊗ΛV,D) be the KS-model of f . The dual of π∗( f )Q : π∗(X)⊗

Q→ π∗(Y)⊗Q is given by

H∗( j,D1) : W → H∗(W ⊕V,D1),
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where D1 is the linear part of D. Then

Coker H∗( j,D1) � Hom(Ker π∗( f )Q,Q).

On the other hand, we have that

Coker H∗( j) � Hom(Ker H∗( f ;Q),Q)

for H∗( j) : H∗(ΛW,dY )→ H∗(ΛW ⊗ΛV,D). Thus (RHC) is equivalent to

dimCoker H∗( j,D1) ≤ dimCoker H∗( j)+1. (RHC’)

Notice that Coker H∗( j,D1) is in general identified as a subspace of V .

3 Proofs

Proof of Theorem 1.1. Let j : M(Y) = (ΛW,dY )→ (ΛW ⊗ΛV,D) be the KS-model of f .

1. When the fibre is an odd-sphere S n, V = Q{v} with |v| = n.

(a) When Dv < Λ>1W, Coker H∗( j,D1) = 0. Thus (RHC’) holds.

(b) When Dv ∈ Λ>1W, dimCoker H∗( j,D1) = dimV = 1. Thus (RHC’) holds.

2. When the fibre is an even-sphere S n,

V = Q{v,z} with dv = 0, dz = v2, |v| = n and |z| = 2n−1.

Then Dv = 0 from D ◦D = 0, therefore Coker H∗( j) ⊃ Q{v}. On the other hand,
dimCoker H∗( j,D1) ≤ dimV = 2. Thus (RHC’) holds. �

Proof of Proposition 1.5. From the assumption we have

Coker H∗( j) � H∗(ΛW,dY )⊗H+(ΛV,d).

Thus it satisfies (RHC’) if dimV ≤ dim H∗(ΛV,d). �

Proof of Corollary 1.6. Let H∗(F;Q) = H∗(ΛV,d) � Q[x1, .., xn]/( f1, .., fn) for the fibre F.
Since we get from [7] the following inequality

dim H∗(ΛV,d) =
| f1| · · · | fn|
|x1| · · · |xn|

≥ 2n ≥ 2n = dimV,

the F0-space F satisfies (HC’) as a special case of [9]. Thus this corollary follows from
Proposition 1.5. �
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Example 3.1. Let S U(n) be the n-th special unitary group. The homogeneous space G/H =
S U(6)/S U(3)× S U(3) is not an F0-space since rankG = 5 > 4 = rankH. Let a non-trivial

fibration G/H→ X
f
→ Y = S 3 be given by the KS-model

(Λw,0)→ (Λ(w,v1,v2,v3,v4,v5),D)

with
|w| = 3, |v1| = 4, |v2| = 6, |v3| = 7, |v4| = 9, |v5| = 11,
D(v1) = 0, D(v2) = wv1, D(v3) = v2

1, D(v4) = v1v2+wv3 and D(v5) = v2
2+2wv4.

Here M(G/H) = (Λ(v1,v2,v3,v4,v5),d) with d(v1) = d(v2) = 0, d(v3) = v2
1, d(v4) = v1v2 and

d(v5) = v2
2 (see [6]). Then since Coker H∗( j,D1) = Q{v1,v2,v3,v4,v5} and

dim H∗(Λ(w,v1,v2,v3,v4,v5),D) = 8 with ImH∗( j) = Q{1,w}, we have

dimCoker H∗( j,D1) = 5 < 7 = 6+1 = dimCoker H∗( j)+1.

Thus the map f satisfies (RHC’), though it is not TNCZ.
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