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Abstract

A locally asymptotically optimal test is constructed for log-return processes. The
behavior of the test statistic is studied under the null and under a sequence of local
alternatives. A local asymptotic normality (LAN) result is previously established. Ap-
plying the test to log-return data, one rejects the hypothesis that they are independent
and identically distributed (iid).
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1 Introduction

Several phenomena in biology, physics and finance are modelled by time series models. In
order to discriminate between the possible competing models, various statistical tests are
proposed. For a review, see, among others, [29], [12], [16], [13] and references therein.

Many of the proposed tests are likelihood-based and their power is generally not studied.
For local alternatives contiguous to the null hypothesis, the study of the theoretical power
can be possible if the LAN property is established. For details on the notions of contiguity
and LAN, see for instance [8] or [19].

Since Le Cam [18], several versions of LAN have been developed, amongst which those
of [30], [11], [14] and [15]. However, except perhaps the works in [2], [20], [3], [4] and
[6], LAN has not been much considered in the context of non-linearity.

In [14] is studied an efficient test of linearity against contiguous alternatives. The au-
thors study its local power after establishing a modified version of the Le Cam’s LAN.
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However, they assume the parameters of the model to be known. Their work is extended
by Chebana and Laı̈b [7] to a larger class of non-linear models with the assumption that the
parameter vector is unknown. The proposed test statistic is then based on an estimator of
the parameter. Unfortunately, this complicates the study of its local asymptotic optimality
and the authors do not investigate this problem. In an effort to solve it, Lounis [24] pro-
poses a new estimator for which the asymptotic optimality of the test is obtained. His idea
consists in making inference on a sub-sample of the observed sample which is assumed to
be large enough. In practice, such a technique can work well in financial markets where
large numbers of the data are often avalaible.

In the present work, we study a log-likelihood ratio test for checking the iid hypothesis
of log-return processes. In discrete time, these processes play an important role in the
statistical analysis of financial prices (see, e.g., [9]). Precisely, we aim at testing a particular
and simple form of the linearity of log-return processes. In this purpose, following the idea
of [24], we construct a likelihood ratio test. We study its local asymptotic power using the
LAN property given in [14], also considered in [7].

The remaining of this paper is structured as follows. In Section 2, we list our assump-
tions. In Section 3, testing the iid hypothesis of log-return processes is studied. In Section
4, our results are applied to testing the iid hypothesis of the daily, weekly and monthly
log-returns processes. The proof of the results are relegated to the Section 5.

2 Notation and general assumptions

Let (Xi : i ∈ Z) be a sequence of second-order random variables solutions of the stochastic
equation

Xi = T (Xi−1)+V(Xi−1)εi, i ∈ Z, (2.1)

where (εi : i ∈ Z) is a sequence of standard iid random variables with density f > 0 and for
all i ≥ 1, εi is independent of the σ-field Fi = σ(X j, j < i); T (·) and V(·) are real-valued
functions assumed to be unkown; Xi = (Xi−1, . . . ,Xi−d)> with the superscript ”>” denoting
the transpose.

Consider the parametric class of functions

M =
{(

mθ(·),σρ(·)
)
, (θ,ρ)> ∈ Θ1×Θ2

}
,

where both functions mθ(·) and σρ(·) have known forms and (ρ>, θ>)> ∈ Θ1 ×Θ2, with Θ1
and Θ2 standing for open sets of Rq and R` respectively, equipped with the Euclidian norm
”‖ ·‖”. It is further assumed that interior sets int(Θ1) and int(Θ2) ofΘ1 andΘ2 are not empty.

A problem of interest is that of testing H0 [(T (·),V(·)) ∈M] versus H1 [(T (·),V(·)) <M].
As already observed in [25], this is equivalent to testing

H0 [T (·),V(·)] =
(
mθ0(·),σρ0(·)

)
,

against

H1 [T (·),V(·)] ,
[
mθ0(·),σρ0(·)

]
,
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for some true, but unkown (θ0,ρ0)> ∈ Θ1×Θ2.

Here we are interested to the particular forms of H1 given by

H(n)
1 [(T (·),V(·)] =

(
mθ0(·)+hn−

1
2 G(·),σ(ρ0, ·)+h′ n−

1
2 S (·)

)
,

where G(·) and S (·) are given real-valued functions, h and h′ are non-zero real numbers.
As can be seen, the H(n)

1 ’s are close to H0 for larger values of n. They belong to a large
class of local alternatives to H0. The advantage of considering them lies in the fact that the
statistical asymptotic theory of Le Cam (see, e.g., [18, 19]) can allow for the study of the
asymptotic power.

We make the following assumptions, also made in [7] :

(C.1) For all (a,b) ∈ R×R∗, there exists a measurable and positive function M, and two
positives real numbers γ and δ, with max(|a|, |b−1|) < δ and E[M1+γ(εd)] <∞, such that for
all x ∈ R, ∣∣∣∣∣∣ 1

f (x)
∂2

∂a j∂bk

[
1
b

f
( x−a

b

)]∣∣∣∣∣∣ ≤ M(x), i, j ∈ N, j+ k = 2.

(C.2) There exists a positive real number γ′ such that

max

E ∣∣∣∣∣∣ G(Xd)
σρ0(Xd)

∣∣∣∣∣∣2+γ
′

; E
∣∣∣∣∣∣ S (Xd)
σρ0(Xd)

∣∣∣∣∣∣2+γ
′ <∞.

(C.3) There exists a positive real number γ′′ such that for k = 0,1,

E
∣∣∣M f (εd)εd

k
∣∣∣2+γ′′ <∞.

where M f (x) =
f ′(x)
f (x)

, x ∈ R.

(C.4)

•

∫
M f (x) f (x)dx =

∫ [
Ṁ f (x)+M2

f (x) f (x)
]
dx =

∫ [
Ṁ f (x)+M2

f (x)
]

f (x)dx = 0

•

∫
xM f (x) f (x)dx = −1,

∫
x2

[
Ṁ f (x)+M2

f (x)
]

f (x)dx = 2

Note that assumption (C.1) is also done in [14], and that assumptions (C.3) and (C.4) are
satisfied by a large class of density functions, including the standard normal distribution.

We recall that if (C.1)-(C.4) hold, then a LAN property is etablished under H0 (see Theorem
2.1 of [7]) and the logarithm of the likelihood ratio, Λn, decomposes into

Λn = Λn(θ0,ρ0) =Vn(θ0,ρ0)−
τ2(θ0,ρ0)

2
+oP(1),

where the central sequence (Vn(θ0,ρ0) : n ≥ 1) converges in distribution to a zero-mean
Gaussian random variable with variance τ2 (θ0,ρ0).
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In the present setting we have,

Vn(θ0,ρ0) = −
1
√

n

n∑
t=1

h
G(X0)M f (εt)
σρ0(Xt)

−
1
√

n

n∑
t=1

h′
S (X0)

(
1+εt M f (εt)

)
σρ0(Xt)

(2.2)

τ2(θ0,ρ0) = h2I0E
[

G(X0)
σρ0(X0)

]2

+h′2(I2−1)E
[

S (X0)
σρ0(Xd)

]2

+ hh′I1E
G(X0)S (X0)
σ2
ρ0(X0)

 (2.3)

I j = E
[
ε

j
0M2

f (ε0)
]
, j ∈ {0,1,2}.

For α ∈ (0,1), the Neyman-Pearson test we study is defined by

Tn = Tn(θ0,ρ0) = I
[
Vn(θ0,ρ0)
τ(θ0,ρ0)

≥ cα

]
, (2.4)

where cα is the (1−α)-quantile of the standard normal distribution.
Recall that the test consists in rejecting H0 whenever Tn = 1. It is known from [14] that

whenever the parameter (ρ0, θ0) is assumed to be known, the test Tn is locally asymptoti-
cally optimal with local asymptotic power function 1−Φ

[
cα−τ(θ0,ρ0)

]
, where Φ and cα

are respectively the cumulative distribution function and the (1−α)-quantile of a standard
Gaussian distribution. Also, from [7], if (ρ0, θ0) is no more known the optimality is not
insured, as the power is affected by the substitution of the parameter for an estimator. This
problem is solved in [22] and [24] by constructing a new estimator based on a discrete esti-
mator (see [18] and [17]). It is shown there that the difference between the central sequence
with the true parameter and its estimated version obtained by plugging in the new estimator,
is asymptotically negligible.

3 Testing log-returns

In order to test the iid assumption of the log-returns, we apply the results of [7], [22] and
[24] to the particular case where

mθ0(Xi−1) = m(µ0,σ0)(Xi−1) = µ0− (σ0
2)/2 and σρ0(Xi−1) = σ0, (3.1)

with θ0 = (µ0,σ0), ρ0 = σ0 > 0, q = 2 and ` = 1.
We first introduce some preliminary concepts and results used to modelling prices in finan-
cial markets. Next, we present our testing problem and prove our main thoeretical results.

3.1 The log-returns process

The price of a stock (exchanged) is modelized in the thesis of Bachelier [1] by the following
continuous-time stochastic model

S̃ t = S̃ 0+µ0t+σ0Bt,
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where µ0 and σ0 are two constants and (Bt : t ≥ 0) is a Brownian motion (BM). A more
important model proposed in [27] is

S̃ t = S̃ 0 exp
[(
µ0−
σ0

2

2

)
t+σ0Bt

]
. (3.2)

Also, based on (3.2), and assuming that there exists some constant r such that S̃ t = exp(rt)
for all t = 0, . . . ,n, using Itô calculus, Black and Scholes [5] derived an explicit formula for
price S̃ t in the pay-off of European call options.

The process S̃ t driven by the BM, also called geometric Brownian motion, is the unique
solution of the following stochastic differential equation

dS̃ t = µ0S̃ tdt+σ0S̃ tdBt, (3.3)

where µ0 and σ0 are respectively the drift and the volatility.

Under the conditions of [5], taking the logarithms of both sides of (3.2) gives

log(S̃ t) = log(S̃ 0)+
(
µ0−
σ0

2

2

)
t+σ0Bt, t = 1, . . . ,n. (3.4)

From (3.4), one finds

log(S̃ t/S̃ t−1) = µ0−
σ0

2

2
+σ0Wt, t = 1 . . . ,n, (3.5)

where the Wt = Bt −Bt−1’s are the zero-mean iid Gaussian increments of the BM.

The process
(
Xt = log(S̃ t/S̃ t−1) : t ≥ 0

)
is called log-returns discrete time process. In the

past, there has been a great interest in estimating the parameters of this model. This esti-
mation is often based on the historical data (see [26]). A natural estimator for (µ0,σ

2
0) is

(µn,σ
2
n), with

µn = X̄n+σ
2
n/2 (3.6)

σ2
n =

1
n

n∑
t=1

[
log(S̃ t/S̃ t−1)− X̄n

]2 (3.7)

X̄n =
1
n

n∑
t=1

log
(
S̃ t/S̃ t−1

)
=

1
n

n∑
t=1

Xt.

Note that both µn and σ2
n converge almost surely to µ0 and σ2

0 respectively.

3.2 Testing the iid property of a log-returns process

From Wiener’s (or BM’s) processes properties, one easily sees that under H0, the log-returns
are iid. With the above definition, rewrite (3.5) as

Xt = µ0−
σ0

2

2
+σ0Wt, t = 1, . . .n. (3.8)
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Consider the alternative models defined by

Xt = µ0−
σ0

2

2
+

hG(Xt)
√

n
+

[
σ0+

h′S (Xt)
√

n

]
Wt, t = 1, . . .n. (3.9)

Note that in the last two models, (Wt) plays the role of (εt) in the models of the preceding
sections. Since it represents the sequence of the increments of the BM which are stationary,
independent and zero-mean normally distributed with variance 1, the models (3.8) and 3.9)
are particular hypotheses of those presented in Section 2, with εt ∼ N(0,1). Then, testing
H0 versus Hn

1 where

H0 : (h,h′) = (0,0) and H(n)
1 : (h,h′) , (0,0) (3.10)

can be understood as testing the iid property of the Xi’s given by (3.8), against some possible
and particular close form of non iid property given for instance by (3.9).

We define under H0 the process of residuals by

Wt(µ0,σ0) =
1
σ0

[
Xt −

(
µ0−
σ0

2

2

)]
, t ∈ Z. (3.11)

From (3.6) and (3.7), a natural estimator Ŵt of Wt(µ0,σ0) is

Ŵt =Wt(µn,σn) =
1
σn

[
Xt −

(
µn−
σ2

n

2

)]
, t ∈ Z. (3.12)

For the study of the testing problem (3.10), we use the test (2.4) based on the Neyman-
Pearon statistic and described by the central sequence (2.2) with the estimators given by
(3.6), (3.7) and (3.12).

3.3 Main results

In order to present the theoretical results derived for this particular testing problem. We
firstly remind some small results of independent interest on the stationarity and the ergod-
icity of the model (3.8). Secondly, we give an explicit form for the central sequence Vn.
Finally, we state our main results. In a sequel, it assumed that σ2

0 < +∞.

Observe that the equality (3.8) can be rewritten as

Xt = µ0−
σ2

0

2
+Zt

Zt = σ0Wt, t = 1, . . .n. (3.13)

From Weiner’s processes properties, it is immediate that {Zt : t = 1, . . .n} is an iid zero-mean
Gaussian process with unit variance. It is then an easy matter to see that {Xt : t = 1, . . .n}
is an iid Gaussian process with mean µ0 −σ

2
0/2 and finite variance σ2

0. Consequently, the
process (Xt : t ∈ Z) solution of (3.8) is strictly stationary and ergodic.
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Under H0, assuming that (C.1)-(C.4) are satisfied, the expression of the central se-
quenceVn was given in (2.2). Since (Wt : t = 1, . . . ,n) is a sequence of zero-mean Gaussian
random variables with unit variance, the density function of the Wt’s is that of a standard
Gaussian distribution. Hence, for all real number x, f ′(x) = −x f (x), from which it is easy
to check that M f (Wi) = −Wi. With this, the central sequence can be rewritten as

Vn(µ0,σ0) =
1
√

n

n∑
t=1

h
G(Xt)Wt

σ0
−

1
√

n

n∑
t=1

h′
S (Xt)

(
1−W2

t

)
σ0

. (3.14)

To state our results, we make the following additional assumptions

(C.5) 0 < σ2
n < +∞.

(C.6) max {E(X0),E [X0G(X0)] ,E [X0S (X0)]} <∞.

Remark 3.1. Assumption (C.5) generally holds. Indeed, if σ2
n = 0 from (3.7) one has that

for each t = 1, . . . ,n, log(S̃ t/S̃ t−1) = 1
n
∑n

t=1 log
(
S̃ t/S̃ t−1

)
. Since σ > 0, this contradicts the

fact that (Wt) is a Gaussian process.
Since the second-order moment are assumed to be finite, assumption (C.6) is readily satis-
fied by a large class of functions G and S including bounded functions as those considered
in Section 4.

Proposition 3.2. Assume that (C.1)-(C.6) are satisfied. Then, under H0,

Vn(µ0,σ0) =Vn(µn,σn)+Dn(µ0,σ0,µn,σn)+oP(1) (3.15)

Dn(µ0,σ0,µn,σn) = (µ0−µn)

 1
√

n

n∑
t=1

hd1(µn,σn)G(Xt)−
1
√

n

n∑
t=1

h′d5(µn,σn,Xt)S (Xt)


+(σ0−σn)

 1
√

n

n∑
t=1

hd2(µn,σn,Xt)G(Xt)−
1
√

n

n∑
t=1

h′d7(µn,σn,Xt)S (Xt)


d1(µn,σn) = −

1
σn

2

d2(µn,σn,Xt) =
−2µn−2Xt

σ3
n

d5(µn,σn,Xt) =
1
σn
−

2µn

σ3
n
+

2Xt

σ3
n

d7(µn,σn,Xt) = −
1
4
−
µn

σ2
n
+

Xt

σ2
n
+

3µn
2

σ4
n
−

1
σ2

n
−
σnµn

σ3
n
. (3.16)

Proof. The proof of this result and the next are given in Section 6.

The random variable Dn(µ0,σ0,µn,σn) defined in Proposition (3.2) depends on the
unknown (µ0,σ0). One would like to substitute this parameter for an appropriate known
(µ̄n, σ̄n) such that Dn(µ0,σ0,µn,σn)−Dn(µ̄n, σ̄n,µn,σn) = oP(1). This is possible using the
following result from [23].

Proposition 3.3. Let µ be a positive real number. For all integer n, let N = [1+nµ+1]. Then
√

n(θn− θ) =
√

n(θn− θN)+oP(1).
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Proposition 3.4. Assume that (C.1)-(C.6) hold. Then, under H0,

Vn(µ0,σ0) =Vn(µn,σn)+Dn(µN ,σN ,µn,σn)+oP(1), (3.17)

Dn(µN ,σN ,µn,σn) =

(µN −µn)

 1
√

n

n∑
t=1

hd1(µn,σn)G(Xt)−
1
√

n

n∑
t=1

h′d5(µn,σn,Xt)S (Xt)


+(σN −σn)

 1
√

n

n∑
t=1

hd2(µn,σn,Xt)G(Xt)−
1
√

n

n∑
t=1

h′d7(µn,σn,Xt)S (Xt)

 .
Now we are ready to state our fundamental result.

Proposition 3.5. Assume that (C.1)-(C.6) hold. Then, under H0, there exists an estimator
θ̄n = (µ̄n, σ̄n) of θ0 = (µ0,σ0) such that

Vn(µ0,σ0) = Vn(µ̄n; σ̄n)+oP(1). (3.18)

The constructed estimator (µ̄n, σ̄n) enables obtaining the equivalence between the central
sequence and its estimated version. The following theorem shows that this insures the
optimality of our test.

Theorem 3.6. Assume that (C.1)-(C.6) hold. Then, under Hn
1 , the local asymptotic power

of the test T̄n = Tn(µ̄n, σ̄n) is 1−Φ
[
cα−τ(µ,σ)

]
, Φ and cα are respectively the cumulative

distribution function and the (1−α)-quantile of the standard Gaussian distribution. This
test is locally asymptotically optimal.

4 Application to financial data

In this section, we apply our theoretical results to testing the iid hypothesis of the daily,
weekly and monthly log-returns. Our numerical results are listed in the tables below.

The data avalaible are from Forex Capital Market France (FXCM). They contain daily
returns of length 500 collected from 11th may 1993 to 7th november 1995. They also
contain weekly returns of lengths 500 collected from may 1993 to november 2002 and
monthly returns of lengths 263 collected from 1rst may 1993 to 1rst march 2015.

We use the test statistic T̄n with nominal level α = 0.05. For the daily data, we take λ =
0.07. and N = 140,154,169,184,214,291,369 corresponding to sub-samples of lengths n =
100,110,120,130,150,200,250 from the latest consecutive indexes in the original samples.
We consider S (Xi) = sin(Xi−1)/500, for i = 2, . . . ,N and S (X1) = 0, G(Xi) = 0 and h =

h′ = 1. It is easy to check that max
[∣∣∣∣ G(Xd)
σρ0 (Xd)

∣∣∣∣ ; ∣∣∣∣ S (Xd)
σρ0 (Xd)

∣∣∣∣] < ∞ and then assumption (C.2) is
satisfied. The estimators µn and σn can be derived easily from (3.6) and (3.7). In this setting
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and from the Proposition 3.4, we have

Dn(µN ,σN ,µn,σn) = (µN −µn)

− 1
√

n

n∑
t=2

{
1
σn
−

2µn

σ3
n
+

2Xt

σ3
n

}
sin(Xt−1)

500

 (4.1)

+ (σN −σn)

− 1
√

n

n∑
t=2

{
−

1
4
−
µn

σ2
n
+

Xt

σ2
n
+

3µn
2

σ4
n
−

1
σ2

n
−
σnµn

σ3
n

}
sin(Xt−1)

500


Vn(µ0,σ0) = −

1
√

n

n∑
t=2

(
1−W2

t

)
σ0

sin(Xt−1)
500

. (4.2)

Then, we obtain

∂Vn(µn,σn)
∂µ

=
2
√

n

n∑
t=2

Wt

σ2
n

sin(Xt−1)
500

, (4.3)

with σ̄n = σn, µ̄n = µn+ x(n), where x(n) defined in (5.19) is computed from (4.1) and (4.3).
Note that by the ergodicity and the stationarity of model (3.8), τ2(µ0,σ0) defined in (2.3)
can almost surely be approximated by

Un,h,h′(µ0,σ0) =
1
n

n∑
t=2

(
1−W2

t

)2

σ2
0

(
sin(Xt−1)

500

)2

. (4.4)

For more details about this, see for instance the proof of Theorem 1 of [14]. Then using the
expression of Tn given by (2.4), the ratioVn(θ0,ρ0)/τ(θ0,ρ0) can be approximated by

Bn = −

∑n
t=2(1−W2

t ) [sin(Xt−1)/500]√∑n
t=2(1−W2

t )2 [sin(Xt−1)/500]2
. (4.5)

Substuting (µ0,σ0) for (µ̄n, σ̄n), one gets T (µ̄n, σ̄n). Then, with our computations, our test
rejects the null hypothesis of the iid property of the daily log-returns in either case.

Proceeding the same way with weekly and monthly log-returns leads to the same conclu-
sion. Note that for the monthly log-returns, since the sample size is smaller than the others,
we considered N = 154, 169, 184, 214, 229, 245 and the corresponding n = 110, 120, 130,
150, 160, 170.

The above results suggest that the following model

Xt = µn−
σ2

n

2
+

[
σn+

sin(Xt−1)
500
√

n

]
εt, t = 1, . . . ,n, (4.6)

where (εt) is a sequence of iid standard Gaussian random variables, is a possible model that
can be fitted to the tree log-returns data studied.

Lounis [23] studied the cases S (x)=G(x)= 0.008 and S (x)=G(x)= 0.05 and concluded
that the alternative models were preferable to the null model. This means that (4.6) is not
the only model that can be ajusted to our log-returns data. However, looking for the more
suitable of all the candidate models is a work beyond the scope of this paper.
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Daily Log-returns
n N Data size T̄n Decision Power

100 139 500 10.0420 Hn
1 0.8289439

110 154 500 10.4963 Hn
1 0.8289439

120 169 500 10.9636 Hn
1 0.8289439

130 184 500 11.4021 Hn
1 0.8289439

150 214 500 12.2469 Hn
1 0.8289439

200 291 500 14.2137 Hn
1 0.8289439

250 369 500 15.8113 Hn
1 0.8289439

Weekly Log-returns
n N Data size T̄n Decision Power

100 139 500 10.0000 Hn
1 0.8289439

110 154 500 10.4881 Hn
1 0.8289185

120 169 500 14.5401 Hn
1 0.8289185

130 184 500 11.4018 Hn
1 0.8289185

150 214 500 12.2473 Hn
1 0.8289185

200 291 500 14.1430 Hn
1 0.8289185

250 369 500 15.8111 Hn
1 0.8289185

Monthly Log-returns
n N Data size T̄n Decision Power

100 139 263 10.9548 Hn
1 0.8289185

110 154 263 10.9714 Hn
1 0.8289185

120 169 263 12.4795 Hn
1 0.8289185

130 184 263 11.0653 Hn
1 0.8289185

150 214 263 13.1369 Hn
1 0.8289185

160 229 263 14.8550 Hn
1 0.8289185

170 245 263 16.9266 Hn
1 0.8289185

5 Proof of the results

5.1 Proof of Proposition 3.2

By simple computations, one shows that

∂
(

Wt
σ0

)
∂µ

= −
1
σ02 = d1(µ0,σ0), (5.1)

∂
(

Wt
σ0

)
∂σ

=
−2µ0−2Xt

σ30
= d2(µ0,σ0,Xt), (5.2)

∂2
(

Wt
σ0

)
∂µ2 = 0, (5.3)
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∂2
(

Wt
σ0

)
∂σ2 =

2Xt −µ0

σ03 = d3(µ0,σ0), (5.4)

∂2
(

Wt
σ0

)
∂σ∂µ

=
∂2

(
Wt
σ0

)
∂µ∂σ

=
2
σ03 = d4(µ0,σ0), (5.5)

∂
(

1−W2
t

σ0

)
∂µ

=
1
σ0
−

2µ0

σ30
+

2Xt

σ30
= d5(µ0,σ0,Xt), (5.6)

∂2
(

1−W2
t

σ0

)
∂µ2 =

−2
σ30
= d6(µ0,σ0), (5.7)

∂
(

1−W2
t

σ0

)
∂σ

= −
1
4
−
µ0

σ2
0

+
Xt

σ2
0

+
3µ0

2

σ4
0

−
1
σ2

0

−
σ0µ0

σ3
0

= d7(µ0,σ0,Xt), (5.8)

∂2
(

1−W2
t

σ0

)
∂σ2 = −

1
σ2

0

+
6µ0

σ4
0

−
6Xt

σ4
0

= d8(µ0,σ0,Xt), (5.9)

∂2
(

1−W2
t

σ0

)
∂µ∂σ

=

∂2
(

1−W2
t

σ0

)
∂σ∂µ

= −
1
σ2

0

+
6µ0

σ4
0

−
6Xt

σ4
0

= d9(µ0,σ0,Xt). (5.10)

By a first-order Taylor expansion ofVn around (µn,σn), one finds,

Vn(µ0,σ0) = Vn(µn,σn)+Dn(µ0,σ0,µn,σn)+Rn

Dn(µ0,σ0,µn,σn) =
∂Vn(µn,σn)
∂µ

(µ0−µn)+
∂Vn(µn,σn)
∂σ

(σ0−σn), (5.11)

Rn =
∂2Vn(µ̃n, σ̃n)
∂µ2 (µ0−µn)2+

∂2Vn(µ̃n, σ̃n)
∂σ2 (σ0−σn)2

+
1
2
∂2Vn(µ̃n, σ̃n)
∂µ∂σ

(µ0−µn)× (σ0−σn)

+
1
2
∂2Vn(µ̃n, σ̃n)
∂σ∂µ

(µ0−µn)× (σ0−σn), (5.12)

where µ̃ ∈ [µ0;µn] and σ̃ ∈ [σ0;σn].

Using the expression of central sequence given by (3.14) and the equalities (5.1), (5.2),
(5.6), (5.8) and (5.11), one obtains

Dn(µ0,σ0,µn,σn) =

 1
√

n

n∑
t=1

hd1(µn,σn)G(Xt)−
1
√

n

n∑
t=1

h′d5(µn,σn,Xt)S (Xt)

× (µ0−µn)

+

 1
√

n

n∑
t=1

hd2(µn,σn,Xt)G(Xt)−
1
√

n

n∑
t=1

h′d7(µn,σn,Xt)S (Xt)

× (σ0−σn).
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Also, using the equalities (5.3), (5.4), (5.5), (5.7), (5.9), (5.10) and (5.12), it follows that

Rn =
1
2

− 1
√

n

n∑
t=1

h′d6(µ̃n, σ̃n)S (Xt)

× (µ0−µn)2

+
1
2

 1
√

n

n∑
t=1

hd3(µ̃n, σ̃n)G(Xt)−
1
√

n

n∑
t=1

h′d8(µ̃n, σ̃n,Xt)S (Xt)

× (σ0−σn)2

+

 1
√

n

n∑
t=1

hd9(µ̃n, σ̃n,Xt)G(Xt)−
1
√

n

n∑
t=1

h′d9(µ̃n, σ̃n,Xt)S (Xt)

× (µ0−µn)(σ0−σn)

=: Rn,1+Rn,2+Rn,3. (5.13)

Now, we have to show that Rn = oP(1). In this purpose, we study the asymptotic behavior
of Rn,1, Rn,2 and Rn,3. Starting with that of Rn,1, one can write

Rn,1 =
1

2σ̃3
n

− 1
√

n

n∑
t=1

h′S (Xt)

× (µ0−µn)2,

=
1

2σ̃3
n

−1
n

n∑
t=1

h′S (Xt)

× (√
n(µ0−µn)

)2
×

1
√

n
.

Since σ̃n ∈ [σ0;σn], by assumption (C.5) one has 0 < σ̃n <∞. Thus, 1/σ̃3
n is finite. By (C6)

and making use of the ergodic theorem one has that 1
n
∑n

t=1 h′S (Xt) converges almost surely

to some finite constant K. The fact that
√

n(µ0−µn) = OP(1) implies that
[√

n(µ0−µn)
]2
=

OP(1). It follows that

Rn,1 = oP(1). (5.14)

By a similar reasoning to that of the proof of (5.15), it easy to check that under the same
assumptions, Rn,2 = oP(1) and Rn,3 = oP(1). In summary

Rn = oP(1).

5.2 Proof of Proposition 3.4

From equality (3.15) one has

Dn(µ0,σ0,µn,σn) =

 1
√

n

n∑
t=1

hd1(µn,σn)G(Xt)−
1
√

n

n∑
t=1

h′d5(µn,σn,Xt)S (Xt)

× (µ0−µn)

+

 1
√

n

n∑
t=1

hd2(µn,σn,Xt)G(Xt)−
1
√

n

n∑
t=1

h′d7(µn,σn,Xt)S (Xt)

× (σ0−σn).

Proceeding as in the proof of (5.15) below, we show the differences

1
√

n

n∑
t=1

hd1(µn,σn)G(Xt)−
1
√

n

n∑
t=1

h′d5(µn,σn,Xt)S (Xt)
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1
√

n

n∑
t=1

hd2(µn,σn,Xt)G(Xt)−
1
√

n

n∑
t=1

h′d7(µn,σn,Xt)S (Xt)

are Op(1)’s. Then, applying Proposition 3.3, one substitutes
√

n(µ0 − µn) and
√

n(σ0 −

σn) respectively for
√

n(µN −µN N)+ oP(1) and
√

n(σ0 −σn)+ oP(1). This establishes the
Proposition.

5.3 Proof of Proposition 3.5

Consider again

Vn(µ0,σ0) = Vn(µn,σn)+Dn(µn,σn,µn,σn)+oP(1), (5.15)

where Dn(µn,σn,µn,σn) is defined in Proposition 3.4.
The tangent space Γ of the mapVn at (µn,σn) is described as

Γ :
{
(X,Y) ∈ R×R, such that,

Vn(X,Y)−Vn(µn,σn) = ∂Vn(µn,σn). ((X−µn), (Y −σn))
}
. (5.16)

For all (X,Y) ∈ Γ, one also has

Vn(X,Y)−Vn(µn,σn) =
∂Vn(µn,σn)
∂µ

(X−µn)

+
∂Vn(µn,σn)
∂σ

(Y −σn). (5.17)

The derivation of the estimator (µ̄n, σ̄n) is done by a perturbation one of the components
(µn,σn). For instance, a perturbation of the first component yields

µ̄n = µn+ x(n)

σ̄n = σn.

Plugging them into (5.17) yields

Vn(µ̄n, σ̄n)−Vn(µn,σn) =
∂Vn(µn,σn)
∂µ

× x(n), (5.18)

where x(n) can be computed from the equation

∂Vn(µn,σn)
∂µ

× x(n) = Dn(µN ,σN ,µn,σn).

Solving this equation, one finds

x(n) = Dn(µN ,σN ,µn,σn)
/(∂Vn(µn,σn)

∂µ

)
. (5.19)

The equality (5.18) is equivalent to

Vn(µ̄n, σ̄n) =Vn(µn,σn)+Dn(µ0,σ0,µn,σn). (5.20)
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Combining (5.20) with (5.15) gives

Vn(µ0,σ0) =Vn(µ̄n, σ̄n)+oP(1), (5.21)

where µ̄n = µn+ x(n) and σ̄n = σn.

The equality (5.21) establishes the equivalence between the central sequence and its
estimated version. Another estimator ensuring this equivalence can be obtained similarly
with the second component of (µn,σn). The reader can refer to [21] for more details.

5.4 Proof of Theorem 3.6

By the continuity of the function (x,y) 7→ τ(x,y) and the convergence in probability of
(µ̄n, σ̄n) to (µ0,σ0), using Proposition 3.5, one obtains that under H0, the tests based re-
spectively on

T̄n = I
[Vn(µ̄n, σ̄n)
τ(µ̄n, σ̄n)

≥ cα
]

and Tn = I
[Vn(µ0,σ0)
τ(µ0,σ0)

≥ cα
]

are asymptotically equivalent. Consequently, under H(n)
1 they have the same asymptotic

power. Since the one based on Tn is optimal, so is T̄n.
Now, using the contiguity property and applying the Le Cam’s third Lemma, one has

that under H(n)
1 ,

Vn(θ0,ρ0)
D
↪→N

(
τ2(µ0,σ0), τ2(µ0,σ0)

)
.

It results from this that under H(n)
1 , the asymptotic power is

1−Φ
[
cα−τ(µ0,σ0)

]
.
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