

Y 'U G * Institut de Mathématiques et de Sciences Physiques (IMSP), 01 BP 613 Porto-Novo, Bénin. AFRICAN CENTER FOR ADVANCED STUDIES (ACAS), P.O. Box 4477, Yaounde, Cameroon.

Abstract

In this note, we extend the idea of startpoint to a quasi-uniform space. We present two main results, first for single-valued maps and second for multi-valued maps.

AMS Subject Classification: 47H09; 47H10.

Keywords: Quasi-uniform Spaces, U-startpoint.

1 Introduction

In this section, we give the basic concepts and corresponding notations attached to the idea of quasi-uniform space. The idea of startpoint for multivalued maps defined on a quasi-pseudometric space has been introduced and discussed by Gaba [6]. The startpoint theory naturally generalizes, in the asymmetric settings, well-known results of the fixed point theory. In this article, we extend and improve the results in [6, 7, 8] by using quasi-uniform spaces. Quasi-uniform spaces have been extensively discussed in the literature and key results in the theory can be read in [2, 4, 5, 10, 11] and more recently the work by Andrikopoulos [1], Coghetto [3] and Künzi [9].

Definition 1.1. A quasi-uniformity \mathcal{U} on a set X is a filter on $X \times X$ such that

- i) each member *U* of \mathcal{U} contains the diagonal $\Delta_X = \{(x, x) : x \in X\}$ of *X*,
- ii) for each member U of \mathcal{U} there exists a $V \in \mathcal{U}$ such that $V^2 \subseteq U$, where

 $V^2 := V \circ V = \{(x, z) \in X \times X : \exists y \in X : (x, y) \in V \text{ and } (y, z) \in V\}.$

The members U of \mathcal{U} are called **entourages** of \mathcal{U} and the pair (X, \mathcal{U}) is called a **quasi-uniform space**.

^{*}E-mail address: gabayae2@gmail.com

To any quasi-uniformity \mathcal{U} corresponds a dual quasi-uniformity \mathcal{U}^{-1} defined as

$$\mathcal{U}^{-1} = \{ U : U^{-1} \in \mathcal{U} \}$$

where

$$U^{-1} = \{ (x, y) : (y, x) \in U \}.$$

A quasi-uniformity is a uniformity if $V \in \mathcal{U}$ implies $V^{-1} \in \mathcal{U}$.

Example 1.2. (Compare [9]) Let *d* be a quasi-pseudometric on a set *X*. The filter on $X \times X$ generated by the base $\{U_{\epsilon} : \epsilon > 0\}$ where

$$U_{\epsilon} = \{ (x, y) \in X \times X : d(x, y) < \epsilon \},\$$

is a quasi-uniformity called **quasi-pseudometric quasi-uniformity** and denoted \mathcal{U}_d . It is the quasi-uniformity induced by d on X. Indeed, just observe that for each $\epsilon > 0$, $U_{\epsilon/2}^2 \subseteq U_{\epsilon}$.

The dual (conjugate) quasi-uniformity \mathcal{U}_d^{-1} is generated by the entourages

$$U_{\epsilon}^{-1} = \{(x, y) \in X \times X : d(y, x) < \epsilon\}.$$

Moreover the intersection $\cap \mathcal{U} := \bigcap_{U \in \mathcal{U}} U$ is the graph of a preorder on *X* (see [10]). Hence for any quasi-uniform space (X, \mathcal{U}) , we shall then call $(X, \cap \mathcal{U})$ the preordered space associated with (X, \mathcal{U}) .

Definition 1.3. A quasi-uniformity \mathcal{U} is called T_0 if $\cap \mathcal{U}$ is a partial order on X.

Definition 1.4. Let (X, \mathcal{U}) be a quasi-uniform space and $T : X \to X$ be a single-valued map. A point $x_0 \in X$ is said to be a \mathcal{U} -fixed point for T if

$$(x_0, Tx_0) \in \bigcap_{U \in \mathcal{U}} U.$$

Definition 1.5. Let (X, \mathcal{U}) be a quasi-uniform space and $T : X \to 2^X$ be a multi-valued map. A point $x_0 \in X$ is said to be a \mathcal{U} -startpoint (resp. endpoint) for T if there exists $z \in Tx_0$ such that

$$(x_0,z) \in \bigcap_{U \in \mathcal{U}} U \quad \left(\text{resp. } (z,x_0) \in \bigcap_{U \in \mathcal{U}} U \right).$$

Let (X, \mathcal{U}) be a quasi-uniform space. For each $x \in X$ and $U \in \mathcal{U}$, set

$$U(x) = \{ y \in X : (x, y) \in U \}.$$

2 Main results

Theorem 2.1. Let (X, \mathcal{U}) be a quasi-uniform space and $T : X \to X$ be a single-valued map. If there exists $x^* \in X$ such that $U(x^*) \cap U^{-1}(Tx^*) \neq \emptyset$ for any $U \in \mathcal{U}$, then T has a \mathcal{U} -fixed point. Proof.

We shall proceed by the way of contradiction. So assume that for any $z \in X$, there is $U_z \in \mathcal{U}$ such that $(z, Tz) \notin U_z$. So by Definition1.1 (*ii*), we know that there exists $V_z \in \mathcal{U}$ such that $V_z \circ V_z \subseteq U_z$. Therefore

$$(z, Tz) \notin U_z \Longrightarrow (z, Tz) \notin V_z \circ V_z,$$

$$\Longrightarrow (z, y) \notin V_z \text{ or } (y, Tz) \notin V_z \text{ for any } y \in X,$$

$$\Longrightarrow (z, y) \notin V_z(z) \text{ or } (y, Tz) \notin V_z^{-1}(Tz).$$

Therefore we obtain $V_z(z) \cap V_z^{-1}(Tz) = \emptyset$ –a contradiction. Hence there exists $x_0 \in X$ such that

$$(x_0, Tx_0) \in \bigcap_{U \in \mathcal{U}} U,$$

i.e. x_0 is a \mathcal{U} -fixed point for T.

We now give the following lemma in view of a fixed point result. The proof is straightforward.

Lemma 2.2. Let (X, \mathcal{U}) be a T_0 -quasi-uniform space and $T : X \to X$ be a single-valued map. If T is an involution (i.e. T(Tx) = x for any $x \in X$) and order preserving (i.e. $(x, y) \in \bigcap \mathcal{U} \Longrightarrow (Tx, Ty) \in \bigcap \mathcal{U}$), then any \mathcal{U} -fixed point for T is a fixed point for T.

Theorem 2.3. Let (X, \mathcal{U}) be a T_0 -quasi-uniform space and $T : X \to X$ be an order preserving involution. If there exists $x^* \in X$ such that $U(x^*) \cap U^{-1}(Tx^*) \neq \emptyset$ for any $U \in \mathcal{U}$, then Thas a fixed point.

Proof. The result is an immediate consequence of Theorem 2.1 and Lemma 2.2.

Theorem 2.4. Let (X, \mathcal{U}) be a quasi-uniform space and $T : X \to 2^X$ be a multi-valued map. If there exists $x^* \in X$ such that $U(x^*) \cap U^{-1}(z) \neq \emptyset$ for any $U \in \mathcal{U}$, for any $z \in Tx^*$, then T has a \mathcal{U} -startpoint.

Proof.

Again we shall proceed by the way of contradiction. So assume that for any $x^* \in X$, and for any $z \in Tx^*$, there is $U_z \in \mathcal{U}$ such that $(x^*, z) \notin U_z$. Hence there exists $V_z \in \mathcal{U}$ such that $V_z \circ V_z \subseteq U_z$ and hence $(x^*, z) \notin V_z \circ V_z$. Therefore for any $y \in X$, $(x^*, y) \notin V_z$ or $(y, z) \notin V_z$. So we obtain $V_z(x^*) \cap V_z^{-1}(z) = \emptyset$ –a contradiction. Then *T* has a \mathcal{U} -startpoint.

References

- [1] A. Andrikopoulos, Completeness in quasi-uniform spaces. *Acta Math. Hungar.* **105** (1-2) (2004), 151–173.
- [2] J. W. Carlson and T. L. Hicks, On completeness in quasi-uniform spaces. Journal of Mathematical Analysis and Applications 34 (1971), 618–627.

- [3] R. Coghetto, Quasi-uniform spaces. *Formalized Mathematics* Vol. 24, No. 3, Pages 205–214, 2016
- [4] D. Doitchinov, A concept of completeness of quasi-uniform spaces. *Topology and its Applications* **38** (1991), 205-217.
- [5] P. Fletcher and W. F. Lindgren, Quasi-uniform spaces. *Lecture Notes in Pure and Appl. Math.* Vol 77, Marcel Dekker Inc., New York, 1982.
- [6] Y. U. Gaba, Startpoints and (α, γ) -Contractions in Quasi-Pseudometric Spaces. *Journal of Mathematics* Vol. 2014 Article ID 709253, 8 pages, 2014.
- [7] Y. U. Gaba, New Results in the Startpoint Theory for Quasipseudometric Spaces. *Journal of Operators* Vol. 2014 Article ID 741818, 5 pages, 2014.
- [8] Y. U. Gaba, Advances in Startpoint Theory for quasi-pseudometric spaces. *Bulletin of the Allahabad Mathematical Society*, in press. arXiv:1503.00344 [math.GM].
- [9] H.-P. A. Künzi, An introduction to quasi-uniform spaces. *Contemp. Math.* **486** (2009), 239–304.
- [10] L. Nachbin, Topology and order. D. Van Nostrand Company, Inc., Princeton, 1976.
- [11] W. J. Pervin, Quasi-uniformization of topological spaces. *Math. Ann.*147 (1962), 316–317.
- [12] B. S. W. Schröder, Ordered Sets, An Introduction. Birkhaäuser Boston, 2003.