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Abstract

In this paper, we study the asymptotic and blow-up dynamics of the attraction
Keller-Segel chemotaxis system of equations in scale of Banach spaces Eα

q =H2α,q(Ω),
−1 ≤ α ≤ 1,1 < q < ∞, where Ω ⊂ RN is a bounded spatial domain. We show that
the system of equations is well-posed for a perturbed analytic semigroup, whenever

2χ+ a <
(

Neπ
2

)β+ γ2− 1
2 , where χ is the chemical attractivity coefficient, a is the rate of

production of chemical, and q, β, γ are of the scale spaces. Thus, as t↗∞, the asymp-
totic dynamics are captured in the limit setM∪{0}, whereM = |Ω|L1− spatial aver-
age solutions. The constants for the sharp space embedding Eα

q ⊂ LΘ(Ω) (1 < Θ ≤ ∞)
indicate that for either the application of Banach fixed point theorem, or the global
existence of solutions, no need of either the time for a contraction mapping, nor the
initial data of the system of equations, to be small, respectively. In blow-up dynamics,
we prove that the solutions blow-up at the borderline scale spaces Eα

q ,α =
N
2q , indepen-

dent of time t > 0, if the chemo-attractivity coefficient dominates the Moser-Trudinger
threshold value. An analysis of the finite time bounds for blow-up of solutions in norm
of L2p(Ω),1 ≤ p ≤ 6 and Ω ⊂ RN ,N = 2,3, is also furnished.
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1 Introduction

In this paper, we study the asymptotic dynamics of the following classical Keller-Segel
chemotaxis1 system of equations.

vt = ∆v−λv+aw in Ω× (0,T ),
wt = ∆w−∇ · (wχ∇v) in Ω× (0,T ),
∂~nv = ∂~nw = 0 on ∂Ω = Γ,
v(0) = v0, w(0) = w0 in Ω,

(1.1)

where Ω ⊂ RN is an open bounded domain with smooth boundary Γ,

v := chemical concentration,

w := cell density,

λ := rate of decay of chemical,

a := rate of production of chemical,

χ := chemical attractivity coefficient,

∇· = div, ~n := unit normal vector pointing outwards of Γ.

In what follows, we will often let I = [0,T ), İ = (0,T ).
We will study the system of equations (1.1) in nested scale of Banach spaces

Eα
q := H2α,q(Ω) = (I−A0)−αLq(Ω), for −1 ≤ α ≤ 1,1 < q <∞, (1.2)

with dual spaces [Eα
q′]
∗, for α ≥ 0, 1

q +
1
q′ = 1, endowed with the dual spaces product 〈·, ·〉q,q′

of the Lq(Ω)−spaces. By nested, we mean that if α ≥ β, then the identity mapping i : Eα
q 7→

Eβ
q is such that i ∈ L(Eα

q ,E
β
q), and in operator norm, ‖i‖α,β ≤ 1. The defined scale of Banach

spaces (1.2) are a special case of inhomogeneous Sobolev spaces Hs,q(Ω), s ∈R, 1 < q <∞,
or Bessel potential spaces, which coincide with the standard Soblolev spaces when s= α ∈Z
[2, 9].

To achieve the above-mentioned objective, we first make precise the notations to be
used for the function spaces. To this end, we state that in the absence of any danger of
causing uncertainties or confusions, we will use the same space notation

Hs,q(Ω) = Hs,q(Ω;R2) (1.3)

for both Sobolev spaces of either single or vector real-valued functions. More prominently,
if the components of the vector-valued functions are in different spaces (s1 , s2), then we
will use the notation

Hs,q(Ω) := Hs1+s2,q(Ω) = Hs1,q(Ω)×Hs2,q(Ω) := Z s1+s2
q .

In a similar fashion, we will use the notation

Z s
q := Es1

q ⊕Es2
q := Es

q, if s1 = s2. (1.4)

1Chemotaxis is the migration and organisation of cells induced by changes in the concentration of chemical
substances secreted by the cells themselves.
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Now, consider in (1.1) the uncoupled elliptic equation in Lq(Ω) and define the operator

A0 =

(
−∆+λ 0

0 −∆

)
: D(A0) ⊂ Lq(Ω)→ Lq(Ω), (1.5)

with domain

D(A0) =
{
u = (v,w)> ∈ H2,q(Ω) : ∂~nu = ~0 on Γ, 1 < q <∞

}
. (1.6)

It is well known, following [3, 11, 29, 31], that (1.5) is a sectorial (or C+ for short) operator
in Lq(Ω). Therefore, by the complex interpolation- extrapolation method (see [3, 32]), the
product scale spaces of (1.2)

Eα
q := H2α,q(Ω) = (I−A0)−αLq(Ω)

=

(
(1+∆−λ)−α 0

0 (1+∆)−α

)
Lq(Ω;R2)

= Eα
q ×Eα

q = Eα
q , for −1 ≤ α ≤ 1,1 < q <∞,

(1.7)

incorporating the boundary conditions, are well defined, and we can identify

E1
q � D(A0), E

1
2
q � H1,q(Ω), E0

q � Lq(Ω), E
− 1

2
q � H−1,q(Ω).

In particular, if we denote the complex interpolation by [·, ·]θ, then the fractional order scale
spaces associated with the operator (1.5)-(1.6) satisfy [3, 11]

Xα
q = [Lq(Ω),E1

q � D(A0)]α ↪→ H2α,q(Ω) := Eα
q , 0 ≤ α ≤ 1, 1 < q <∞, (1.8)

where the inclusions are strictly continuous. In general, the embeddings (1.8) are not
known, except in the case where Ω is of class C∞, or the boundary conditions are of the
Dirichlet type. We refer the reader to [3, 11] for more details.

For discussion convenience, we formulate the system of equations (1.1) in an abstract
evolutionary equations framework. To this end, we let u = (v,w)> ∈ Eα

q for some α ∈ R, and
observe that the system of equations (1.1) takes the form{

ut +Au = h(u,∇u),
u(0) = u0 ∈ Zβ+γq := Eβ

q ×Eγ
q , β ≥ γ,

(1.9)

whereA =Aα ∈ L(Eα+1
q ,Eα

q ) denotes the realisation of the sectorial operator (1.5)-(1.6) in
Lq(Ω), such thatA−α ∈ L(Eα+1

q ,E−αq ) is defined by

〈A−αu,z〉q,q′ =
∫
Ω

∇v∇ϕ+λ
∫
Ω

vϕ+
∫
Ω

∇w∇ψ, ∀z = (ϕ,ψ) ∈ Eα
q′ , (1.10)

in the weak variational form if α = 1
2 , that is as well very week if α = 1, since the distribu-

tional derivatives of the variables in system of equations are passed onto the test functions.
The non-linear term

h(u,∇u) = aw+P(wχ∇v) ∈ Eβ
q ⊕E−αq′ ,
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for α ≥ β ≥ 0 such that E−αq′ ⊇ E−βq′ , is defined by

〈h(u,∇u),z〉 := 〈(aw,−∇ · (wχ∇v))>, (ϕ,ψ)>〉q,q′

:= a
∫
Ω

wϕ+χ
∫
Ω

w∇v∇ψ

:= 〈aw,ϕ〉q,q′ + 〈P(wχ∇v),ψ〉q,q′ ∀z = (ϕ,ψ)> ∈ Eα
q′ . (1.11)

Thus, (1.9) is understood in the context of the identity

〈ut +Au,z〉q,q′ = 〈h(u,∇u),z〉q,q′ , ∀z = (ϕ,ψ)> ∈ Eα
q′ .

It is important to observe that the variational equivalent formulation (1.9) of the system
of equations (1.1) gives an easier configuration to treat the non-linear term

−∇ · (wχ∇v) = −χ∇w · ∇v−χw∆v

in solving the equations for a solution compared to working directly with the original system
of equations, since the action of the semigroup {T (t) := e∆t : t > 0} on the operator ∇· do not
commute [16]. This can however be resolved to some extent (see [16], and/or independently
using Hardy-Littlewood-Sobolev inequality [9]). Nevertheless, the results in this paper are
much finer as far as the well-definition of (1.11), and the treatment of the question are
concerned.

In this regard, it follows, using [3, 11, 30, 31], that the realisation of the operator (1.5)
is an infinitesimal generator of an analytic semigroup

{S (t) = e−At : t ∈ R+} : Eα
q 7−→ Eβ

q for any α,β ∈ R (1.12)

in the scale spaces. Thus we can solve the homogeneous equations corresponding to (1.1).
Moreover, Duhamel’s principle provides the integral equation

u(t) = e−Atu0+

∫ t

0
e−A(t−s)h(u(s))ds (1.13)

as the solution to the evolutionary equation (1.9) in adequate function spaces by means of a
contraction mapping, and vice-versa.

If we take, in (1.1), the dual spaces product between the spaces Lq(Ω) and Lq′(Ω), where
1
q +

1
q′ = 1, using z = (1,1)> as the test function, then we deduce that

d
dt

∫
Ω

v = −λ
∫
Ω

v+a
∫
Ω

w⇒ vΩ(t) = e−λtv0
Ω+a

∫ t

0
e−λ(t−s)wΩ(s)ds

⇐⇒ vΩ(t) = e−λtv0
Ω+

aw0
Ω

λ
(1− e−λt), ∀t ∈ (0,T ),

since
d
dt

∫
Ω

w = 0⇒ wΩ(t) =
∫
Ω

w0 = w0
Ω, ∀t ∈ (0,T ),

in which we have set ϕΩ =
∫
Ω
ϕ.
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Thus, if T =∞, then we have the limit set

M =

A ∈ R2 : A =

aw0
Ω

λ
,w0
Ω

>
 , (1.14)

of L1− spatially integrable solutions, in the distributions sense.
On the other hand, considering the corresponding stationary equations to the system of

equations (1.1), if we take ϕ = lnw−χv ∈ H1(Ω) = E
1
2
2 , w ∈ L∞(Ω), w , 0 as a test function

in the cell density equation, and then integrate by parts over Ω, taking into account the
boundary conditions, then we find, by using Green’s formula, that

0 =

∫
Ω

∇ · (∇w−wχ∇v)ϕ =
∫
Ω

∇ ·w
(
∇w
w
−χ∇v

)
ϕ

= −

∫
Ω

w |∇ (lnw−χv)|2

⇔ inf
Ω

w
∫
Ω

|∇(lnw−χv)|2 ≤
∫
Ω

w|∇(lnw−χv)|2 = 0

⇒ lnw−χv = cte, and w = Keχv (1.15)

where K = e
aw0
Ω
λ , using (1.14). Otherwise if we suppose that (1.15) is false, then we would

have that

ϕ = lnw−χv ∈ V =
{
φ ∈ H1(Ω) :

∫
Ω

φ = 0
}

which is the set of functions orthogonal to constant functions in H1(Ω). Thus, since ϕ , 0,∫
Ω
|∇ϕ|2 = 0 would leads us to conclude, with the aid of Poincaré inequality, that ‖ϕ‖H1(Ω) = 0

is valid, leading us to a contradiction. Ergo, ϕ must be a constant, and the implied in (1.15)
must be valid.

It henceforth follows, by substituting w = Keχv into the stationary v− equation, that we
obtain the semi-linear elliptic problem{

0 = ∆v−λv+aKeχv in Ω,
∂~nv = 0 on Γ.

(1.16)

Due to the exponential nature of its non-linear term, its well-posedness in the scale of
Banach spaces Eβ

q,β =
N
2q depends strongly on the following Moser-Trudinger lemma.

Lemma 1.1 ([1, 21, 37]). Let β ∈ (0,N) be a positive real number and 1< q= N
2β <∞. Then,

sup
f∈Eβ

q

‖(I−∆)β f ‖q≤1

∫
Ω

eχ| f |dx


≤ Cq,N |Ω| if χ < χN,β

= +∞ if χ ≥ χN,β

(1.17)

where,

χN,β =

(
N

ωN−1

) 1
q′

π N
2 22βΓ(β)

Γ( N−2β
2 )

 (1.18)
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is the Moser-Trudinger threshold value, and ωN−1 =
2π

N
2

Γ( N
2 )

is the measure of a unit sphere in

RN .

Furthermore, (1.16) can be viewed either as a non-linear eigenvalue problem, or a non-
local elliptic problem (see [8, 14, 15]), under adequate transformations of the equations
variables in (1.1) of the nature

ψ(t, x) =
|Ω|w(t, x)∫
Ω

w0(x)dx
, ϕ(t, x) = χ

(
v(t, x)−

1
|Ω|

∫
Ω

v(t, x)dx
)
, (1.19)

leading to a transformed version (1.31) of the original Keller-Segel chemotaxis equations
in (1.1), which we will discuss more towards the end of this section.

It is important to note that the study of (1.34) can be significantly involving, in the con-
text of establishing the Palais-Smale condition, in view of the Trudinger-Moser inequality
and Pohozaev’s identity for non-existence of solutions. It is in this regard, that we will only
confine ourselves to its impact on the blow-up dynamics of the system of equations (1.1) on
the basis of (1.18).

Among the questions to be answered in this paper, before the above-mentioned blow-up
analysis, is the question of whether the complete system elliptic differential operator

A(w) = A0− P̃(w)

=

(
−∆+λ −a
∇ · (wχ∇·) −∆

)
: Zβ+γq := Eβ

q ×Eγ
q 7→ E−βq ×E−γq , (1.20)

is an infinitesimal generator of an analytic perturbed semigroup to the semigroup (1.12),
defined by the uncoupled system elliptic differential operator, where γ ≤ β ≤ α < γ+1 and
w ∈ Eγ

q fixed . In this direction, we first have the following lemma.

Lemma 1.2. Consider the system (1.1), and assume that u = (v,w) ∈ Zα+γq := Eα
q ×Eγ

q , with
the scales satisfying α ≥ 1

2 , 0 ≤ α−γ < 1,

1
2
+

N
2q
≤ α+γ, and 1+

N
2q
≤ 2α+γ. (1.21)

Then the product wχ∇v ∈ Eα
q , with weak form P(wχ∇v) ∈ E−βq′ , defined by

〈P(wχ∇v),ψ〉q,q′ = 〈wχ∇v,∇ψ〉q,q′ = χ
∫
Ω

w∇v∇ψ ∈ R, ∀ψ ∈ Eα
q′ , (1.22)

is well defined. Moreover,

‖P‖
L(Eα

q ,E
−β

q′ ) := sup
‖ψ‖α,q′≤1

〈P(wχ∇v),ψ〉Eα
q ,E

γ

q′

‖wχ∇v‖α,q
≤

(
2

Neπ

)α+ γ2− 1
2

. (1.23)

In particular, the weak form P ∈ Llip(Eα
q ,E

β
q′) is a linear, continuous and Lipschitz operator

between the scale spaces.

It is worthwhile to remark the following about Lemma 1.2.
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Remark 1.3. a) The bounding estimate from above in (1.23) changes with the space em-

beddings E
N
2q
q ⊂ LΘ(Ω),1 < Θ ≤ ∞, in the critical situation, see (2.2) in the next sec-

tion.

b) The first yielding condition in (1.21) is consistent with studying the drift function only
with the div-operator (see [29]). The conditions in (1.21) are special cases of the
following

1
2
+

N
2

(
1
q
+

1
p
−

1
ρ

)
≤ β+γ and 1+

N
2

(
1
q
+

1
p
−

1
ρ

)
≤ 2β+γ, (1.24)

relating to initial data spaces with all different exponents, implying P : Eγ
ρ 7−→ E−βρ′ ,

P ∈ Llip(Eγ
ρ ,E

β
ρ′), and (1.21) is obtained when ρ = q. Since 1

2 ≤ γ, β ≤ 1, the gener-
alised condition yields Young’s inequality for convolutions, and ρ ≥ q, p. Moreover,
the sharp optimal scale of Banach spaces embedding (2.1) are verified with ρ = Θ.

c) The estimate (1.23) simplifies the action of the semigroup (1.12) in controlling (1.13),
which does not commute with the div-operator ∇· in (1.1), but behaves in a similar
fashion as it does for t ≥ 1. See [17, 36] for alternatives to this issue in dealing with
the w−integral equation solution directly from (1.1) and not from (1.13).

Thanks to Lemma 1.2, we have, on existence and uniqueness of solutions, the following
theorem.

Theorem 1.4. Assume in the v−equation of (1.1) that w ∈ Lσ(İ; Eβ
q), with 1 ≤ σ ≤ ∞ and

0 ≤ α−β < 1
σ′ . Then,

(i)
v ∈C(I; Eβ

q)∩C(İ; Eα
q )∩C(İ; Eβ+1

q )∩C1(İ; Eγ′

q ), (1.25)

for any γ′ < β+ 1
σ′ , β ≤ α < β+ 1. Moreover, since (1.5) is a sectorial operator,

w ∈ Lσ(0,∞; Eβ
q), v ∈ Lσ(0,∞; Eα

q ), β ≤ α < β+1, for any β ∈ R,, and

limsup
t↗∞

‖w‖α = 0 and limsup
t↗∞

‖∇v‖α− 1
2
= 0. (1.26)

(ii) Assume Lemma 1.2 is verified. Then, the w−solution of (1.1) satisfies

w ∈C(I; Eγ
q)∩C(İ; Eα

q )∩C(İ; Eγ+1
q )∩C1(İ; Eγ′

q ) (1.27)

for any γ′ < γ+1.

(iii) The system (1.1) admits a unique globally defined strong solution given by (1.13) and
conversely. Furthermore, if

1 >
2χ+a

q

(
2

Neπ

)β+ γ2− 1
2

(1.28)
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holds, then the complete system differential operator (1.20) generates a perturbed
analytic semigroup in Zβ+γq = Eβ

q ×Eγ
q , and

limsup
t↗∞

‖(v(t),w(t))>‖β+γ = A∗ ∈M∪{0}, (1.29)

where the limit setM, is as defined in (1.14).

(iv) If the first condition in (1.21) is satisfied with a strict inequality, then the unique glob-
ally defined strong solution in (iii) is a classical solution.

In particular, using (1.21) with γ = 0, q = 2, and since α− 1
2 < 1, Theorem 1.4 implies,

by a density argument, the following corollary, which is important in the analysis for much
finer blow-up results and local controllability of the system for a control function f ∈ L2(ω×
(0,T )), where ω ⊂Ω.

Corollary 1.5. Consider the system of equations (1.1) with initial data (v0,w0) ∈ L2(Ω)×
L2(Ω) and Ω ⊂ RN , N = 1, 2, 3. Then the solution (2.5) satisfies

u, w ∈ L∞
(
0,T ; L2(Ω)

)
∩L2

(
0,T ; H1(Ω)

)
; vt, wt ∈ L2

(
0,T ; L2(Ω)

)
. (1.30)

Moreover, the system (1.1) is given, for a.e. t ∈ (0,T ), by∫
Ω

vtϕ = −

∫
Ω

∇v∇ϕ−λ
∫
Ω

vϕ+a
∫
Ω

uϕ, ∀ϕ ∈ H1(Ω),∫
Ω

wtψ = −

∫
Ω

∇w∇ψ+χ
∫
Ω

w∇v∇ψ, ∀ψ ∈ H1(Ω),

in distribution sense of functions in H−1(Ω).

The system of equations (1.1) is the simplest description of a cell population, which pro-
duces a chemical signal and responds to it by performing chemotaxic movements. It was
originally developed in [18] by Evelyn Fox Keller and Lee A. Segel (1970), in the context
of investigating the aggregation of the cellular slime mold Dictyostelium discoideum. The
system of equations is a macroscopic model for chemotactic cell migration, where besides
diffusing randomly, the cells partly orient their movement towards increasing concentra-
tions of a chemical signal substance. Eversince its discovery, the system of equations has
attracted the attention of many scientists from varied perspectives. See [7, 13, 22, 33, 34]
for other natural phenomena that describe generalized models from the system equations
(1.1).

Now we give a brief review of some of the contributions to the topic. For some litera-
ture, we cite, among others, [5, 8, 12, 13, 16, 14, 19, 23, 24]. In [5], Corrias and Perthame
(2006) studied the system of equations (1.1) in the entire space RN ,N ≥ 3, with initial data

(v0,w0) ∈W1,N(RN)×Lq(RN)∩L1(RN), q >
N
2
, ‖∇v0‖N � 1,

near optimum critical spaces. They proved that the system of equations is well-posed for a
solution satisfying

(v,w) ∈ L∞(İ;W1,N(RN)) ×

× L∞(İ; L1(RN)∩Lq(RN))∩L∞loc(İ; Lp(RN)),
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for all p > q, and
t

1
2−

N
2r ‖∇v(t)‖r ≤C(T ;‖u0‖q,‖∇v0‖N),

for r > N. In order to obtain global in time existence of solutions to the system of equations,
they had to impose an extra requirement on the cell initial data, that ‖w0‖q� 1 be sufficiently
small, owing to a need to establish Lp(RN) energy estimates for the solution. An important
role in their proofs is played by Lp(Ω)− Lq(Ω),1 < p ≤ q ≤ ∞, heat kernel estimates, to
show that the solution to the complete system of equations behaves in a similar way as
does the semigroup defined by the uncoupled elliptic differential operator, with much higher
contractivity in the smoothening or regularization effect estimates of the semigroup. Similar
results, to a great extent, were derived in [24] by Nagai and Yamada (2007), but with initial
data in much stronger spaces, i.e.

(v0,w0) ∈W1,∞(RN)×L1(RN)∩L∞(RN), N ≥ 1,

and without the need of the initial data to be small.
The objective of this paper, is to study the system of equations (1.1) in nested scale

of Banach spaces Eα
q ,−1 ≤ α ≤ 1,1 < q < ∞. It turns out that our results will agree, to a

great degree, with those of [5, 24], but without the need of the initial data to the equations
to either be small, nor to immediately belong in scale spaces embedded into the space of
uniformly bounded functions in Ω. Special thanks are due to the Professors W. Kryszewski
and M. Clapp for referring the authors to the research paper [16] by D. Horstmann and M.
Winkler, whose approach is somehow related to that of this paper, but its study is technically
different in view of (1.8), taken in conjunction with that the system of equations are not
entirely the same. In [16], the system of equations (1.1) is of a semi-linear chemotactic
sensitivity function, to which a precise exponent threshold value for blowing-up of solutions
was established.

The question of blow-up of solutions to the system of equations (1.1) has been previ-
ously investigated by many other authors. See [8, 12, 16, 14, 15], to cite just a few. The
study insofar has been either via the radically symmetric method, or the Lyapunov function
approach associated to the equations. In relation to (1.19), the corresponding transformed
version of the system of equation (1.1) is the following

ϕt = ∆ϕ−λϕ+aχ (ψ−1) in Ω× (0,T ),
ψt = ∆ψ−∇ · (ψ∇ϕ) in Ω× (0,T ),
∂~nϕ = ∂~nψ = 0 on ∂Ω = Γ,
ϕ(0) = ϕ0, ψ(0) = ψ0 in Ω.

(1.31)

The well-posedness of (1.31) for a local weak solution satisfying (1.30) was established in
[8] by H. Gajewski and K. Zacharias. The transformed system of equations (1.31) was well
shown to accept the Lyapunov function

J(ϕ,ψ)(t) =
1

2aχ

∫
Ω

(
|∇ϕ|2+λϕ2

)
+

∫
Ω

(ψ(logψ−1)+1)−
∫
Ω

(ψ−1)ϕ, (1.32)

with lower estimate

J(ϕ,ψ)(t) ≥ T (ϕ) =
1

2aχ

∫
Ω

(
|∇ϕ|2+λϕ2

)
− |Ω| log

(
1
Ω

∫
Ω

eϕ
)

(1.33)
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for t ≥ 0, and is bounded from below in a smooth domain Ω ⊂ R2, provided that aχ|Ω|
4π < 1. It

follows again, by [8, 14, 15], that the solutions to (1.31), in time subsequence (tk)k∈N such
that tk↗∞, converge to the stationary solution of the system of equations. In fact, this was
validated to hold for t↗∞, and

ϕ(t) ⇀ϕ∗ weakly in H1(Ω), ψ(t)→ ψ∗ strongly in L2(Ω),

as t↗∞, where ψ∗ = |Ω|e
ϕ∗∫

Ω
eϕ∗

and ϕ∗ solves the non-local elliptic boundary problem (1.16) of

the form  0 = ∆ϕ−λϕ+aχ
(
|Ω|eϕ∫
Ω

eϕdx
−1

)
in Ω,

∂~nϕ = 0 on Γ.
(1.34)

A complete treatise of this non-local elliptic problem and blow-up of solutions to (1.31),
in either finite or infinite time, was furnished in [14, 15], including the case without sym-
metry assumptions in [15].

This paper is organized as follows. In section 2, we give some preliminaries. Section 3
is concerned with the proof of Theorem 1.4. Note that in essence, it implies the following;
parting from the natural yielding condition (1.21) relating the initial data spaces of the
cell density and chemical concentration variable, the system of equations is globally well-
posed within the large time asymptotic dynamics, orthogonal to constant solutions decaying
to the null states. This in fact takes place at the same rate of the semigroup, by virtue
of an a priori approach to zero of the drift attracting chemical cue from that of the cell
density. Furthermore, using the best constant of the spaces embedding into LΘ(Ω)-spaces,
1 < Θ ≤ ∞, it shows that for either application of Banach fixed point theorem, or global
existence of solutions, no need of either the time for a contraction mapping, or initial data
of the equations, to be necessarily small respectively. In particular, if (1.28) holds, the
system coupled differential operator is an infinitesimal generator of a perturbed analytic
semigroup in product scale of Banach spaces.

In Section 4, we give an alternative proof to Theorem 1.4 (iv), that if the first condition in
(1.21) is strictly attained, the solution of the system of equation (1.1) is a classical solution.
Section 5 gives some highlights on the blow-up of solution to the system of equations at
the borderline space Eα

q ,α =
N
2q , independent of time t > 0. We comment that the question

of finite time blow-up of solution of the system of equations (1.1) has been previously
investigated by many other authors, see [12, 23, 16] among others. Section 6, studies finite
time upper and lower bounds for blow-up of solution of the system of equations (1.1) in
norm of L2p(Ω),1 ≤ p ≤ 6, and Ω ⊂ RN ,N = 2,3. It complements the elegant work initiated
by L.E.Payne and J.C. Song (2010) in [26] pertinent to the parabolic-elliptic equations of
the minimal chemotaxis model. The importance of both finite time bounds for blow-up of
solutions is in indicating the time for initial stage of aggregation and also when the final
stage of aggregation is reached

2 Preliminaries

Throughout this paper, generic constants will be denoted by C ∈ R+. In the sequel, relating
to the particular spaces Eα

q ,−1 ≤ α ≤ 1 associated with the operator (1.5), we will use ‖ · ‖α
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as the norm notation, while in the case of the space Lσ(İ; Eα
q ),1 ≤ σ ≤∞, the norm notation

to be used will be ‖ · ‖α,σ. Important for our analysis are the following Sobolev type spaces
embeddings [2, 3, 11, 30, 32];

Eα
q ⊂ LΘ(Ω) ⇐⇒ Θ


≤

qN
N−2αq if 2α− N

q < 0,
< ∞ if 2α− N

q = 0,
≤ ∞ if 2α− N

q > 0,
(2.1)

with the best constants of the inclusions ([10, 37]) given by

Cα =



(
2

π
1
2

) 2α
2 Γ( N−2α

2 )
Γ( N+2α

2 )

(
Γ(N)
Γ( N

2 )

) 2α
N
' (2(Neπ)−1)α if 1 < q <∞,

0 < 2α < N
q ,

2Γ
(

N
2q′

)
|Ω|

1
p

2
1
q +

N
q π

N
2q N

1
q′

(
1− 1

q′

(
1
q′ +

1
p

)) 1
q′ +

1
p

[Γ( N
2 )]

1
q′ Γ

(
N
2q

) if 2α = N
q ,

q ≤ p <∞,

(2.2)

respectively, using Stirling’s formula in the case 1 < q <∞ and 0 < 2α < N
q of (2.1). The

inverse type embeddings to (2.1);

LΘ(Ω) ⊂ E−αq ⇐⇒ ∞≥ Θ


≥

qN
N+2αq if 2α < N

q′ ,

> 1 if 2α = N
q′ ,

(2.3)

andM(Ω) ⊂ E−αq if 2α > N
q′

are as well verified.
Thanks to [3, 11, 30, 31], the semigroup (1.12) smoothening effect estimates

‖S (t)ϕ0‖α ≤
Me−ωt

tα−β
‖ϕ0‖β, t > 0, ϕ0 ∈ Eβ

q, (2.4)

whenever α ≥ β, for M ≥ 1, ω > 0, are satisfied.
As for the notion of a strong solution to (1.9) (as given in (1.1)) to be used, we observe

that in equivalence to (1.13), we have the integral equations

v(t) = e(∆−λ)tv0+a
∫ t

0
e(∆−λ)(t−s)w(s)ds,

(2.5)

w(t) = e∆tw0−

∫ t

0
e∆(t−s)P(u(s))ds,

using the notation of the weak non-linear form P(u) ∈ E−βq′ in scale of Banach spaces intro-
duced in Lemma 1.2. Accordingly, as per integral formula, we have the following definition;

Definition 2.1.
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(i) If w ∈ Lσ(İ; Eβ
q), 1 ≤ σ ≤∞, a function v satisfying (1.25), (2.5) and equation in (1.1) in

distribution sense as an identity in Eβ
q, is a strong solution.

(ii) A function w ∈ Eα
q for which (1.22) is well defined in Eγ

q , with 0 ≤ α−γ < 1, and (1.27)
holds, as well as the equation in (1.1) in distribution sense as an identity in Eγ

q , is a
strong solution.

(iii) If (i)-(ii) above are satisfied, then u = (v,w)> is a strong solution to (1.9) and the equa-
tion is verified in distribution sense as an identity in Zβ+γq = Eβ

q ×Eγ
q .

We now proceed to the main sections of the paper. Note that in most of the proofs, we
use the subcritical case of the spaces embedding (2.1), with obvious changes (although not
necessarily trivial) in the critical and supercritical cases, which we might not highlight to
shorten an already too lengthy paper.

3 Proof of Theorem 1.4

We carry out the proof of Theorem 1.4 in a sequence of lemmas, starting with the proof of
Lemma 1.2.

Proof. of LEMMA 1.2. It suffices to note that the proof follows by space embeddings (2.1)
and Hölder’s inequality. In fact, the mappings

Eα
q ×Eγ

q ×Eα
q′ 3 (v,w,ψ) 7→ (wχ∇v,ψ) ∈ Eα

q ×Eα
q′ and

Eα
q ×Eα

q′ 3 (wχ∇v,ψ) 7→ χ

∫
Ω

w∇v∇ψ ∈ R

are well defined and continuous, since ∇v ∈ E
α− 1

2
q ⊂ E0

q = Lq(Ω) if α ≥ 1
2 . Thus, w∇v ∈ E0

q,
using (2.1) of Eα

q , provided that γ ≥ N
2q , as one needs that 1

q −
2γ
N +

1
q ≤

1
q .

Furthermore, relaxing the embedding into space for E
α− 1

2
q yields that 1

q −
2γ
N +

1
q −

2α
N +

1
N ≤

1
q , giving our conclusion, as long as the first condition in (1.21) is satisfied. Thanks

again to the space embeddings (2.1) and Hölder’s inequality in more general setting, we
require

1 ≥
N −2(α− 1

2 )q
qN

+
N −2γq

qN
+

N −2(α− 1
2 )q′

q′N

must hold. This implies that the second hypothesis of (1.21) has to be satisfied. Conse-
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quently,

|

∫
Ω

χw∇v∇ψ| ≤ ‖wχ∇v‖Θ‖∇ψ‖Θ′

≤ χ

(
2

Neπ

)α− 1
4

‖w∇v‖α,q‖∇ψ‖α− 1
2 ,q
′

≤ χ

(
2

Neπ

)α− 1
2

‖w‖Θ0‖∇v‖α− 1
2 ,q
‖∇ψ‖α− 1

2 ,q
′

≤ χ

(
2

Neπ

)α+ γ2− 1
2

‖w‖γ,q‖v‖α,q‖ψ‖α,q′ , (3.1)

using (2.1) and (2.2), taking 1
Θ
= 1
Θ0
+ 1
Θ1

. Lastly, we recognize that the linearity of the
mapping implies that it is Lipschitz continuous. The proof of the lemma is complete. �

Now in proceedings to prove (i) and (ii) of Theorem 1.4, we observe that in (1.25)-
(1.27), the initial smoothness of solutions are due to the fact that an analytic semigroup
(1.12) is as well a C0− semigroup, hence [30, 31] yields the assertions, using (2.5).

It as well follows, with either α = β if σ = 1, or 0 ≤ α−β < 1
σ′ if 1 < σ <∞, that

‖v(t)‖α ≤ ‖e(∆−λ)tv0‖α+a
∫ t

0
‖e(∆−λ)(t−s)w(s)‖α ds

≤ Mt−(α−β)‖v0‖β+aM
∫ t

0
(t− s)−(α−β)‖w(s)‖β ds

≤ Mt−(α−β)‖v0‖β+aM
(∫ t

0
(t− s)−σ

′(α−β) ds
) 1
σ′

(∫ t

0
‖w(s)‖σβ ds

) 1
σ

≤ Mt−(α−β)‖v0‖β+aM
(

1
1−σ′(α−β)

) 1
σ′

t
1
σ′
−(α−β)‖w(t)‖σ,β, (3.2)

which imply boundedness of the v− solution on finite time intervals, away from t = 0. In
particular, v ∈ L∞α−β(İ; Eα

q ).
To prove the continuity, fix t > 0 (or even t = 0 if v0 ∈ Eα

q ), h > 0, then compute using
(2.5), that

v(t+h)− v(t) = e(∆−λ)hv(t)− v(t)+a
∫ t+h

t
e(∆−λ)(t+h−s)w(s)ds.

Taking the norm, we get that

‖v(t+h)− v(t)‖α ≤ ‖(e(∆−λ)h− I)v(t)‖α +

+ aM
∫ t+h

t
(t+h− s)−(α−β)‖w(s)‖βds

≤ ‖(e(∆−λ)h− I)v(t)‖α+aM
(∫ t+τ

t
(t+h− s)−σ

′(α−β)ds
) 1
σ′

×

×

(∫ t+τ

t
‖w(s)‖σβ ds

) 1
σ

≤ ‖(e(∆−λ)h− I)v(t)‖α+M1−σ′(α−β)‖w‖σ,βh
1
σ′
−(α−β)↘ 0,
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as h↘ 0, concluding the desired continuity of the v− solution.
Next, for any β,α ∈ R such that β ≤ α ≤ β+ 1

σ′ , if we let

cβ,α(t) = e(∆−λ)t ∈ L1(0,∞),

then cβ,α(t) is not bounded at t = 0, unless α = β. Coupled with this, if σ = 1, then we let

ϕ(t) =
∫ t

0
e(∆−λ)(t−s)w(s)ds,

so that, since
e(∆−λ)(t−s)v0 ∈ L1(0,∞; Eα

q )

whenever v0 ∈ Eα
q , we only need to prove that ϕ(t) ∈ L1(0,∞; Eα

q ). Thus, let s = tρ for
ρ ∈ [0,1] fixed. Then we get that

‖ϕ(t)‖1,α ≤

∫ 1

0
‖ϕ(t)‖1,αdρ =

∫ 1

0

∫ ∞

0
‖e(∆−λ)t(1−ρ)w(tρ)‖αdt

≤

∫ 1

0

∫ ∞

0

r
ρ2 cβ,α(r(1−ρ)ρ−1)‖w(r)‖βdrdρ

≤

(∫ ∞

0
cβ,α(s)ds

)(∫ ∞

0
‖w(r)‖βdr

)
,

in which the last inequality follows from changes to the time variables r = tρ, s = r( 1−ρ
ρ ),

then integrating with respect to ρ. Consequently,

‖v(t)‖1,α ≤ ‖cα,α(t)‖1‖v0‖α+ ‖cβ,α(s)‖1‖w(r)‖1,β.

The case σ =∞ is proven as in the first lines of the proof to (i) of the theorem. The rest is
by using interpolation. Thus, the second-last result in (1.26) is proven.

Furthermore, owing to (2.5), if we apply ∇ to the v− formula and taking the norm in
α− 1

2 , we obtain that

‖∇v‖α− 1
2
≤ ‖∇

(
e∆−λ)tv0

)
‖α− 1

2
+a

∫ t

0
‖∇

(
e∆−λ)(t−s)w(s)

)
‖α− 1

2
ds

≤ Mt−(α−β)‖v0‖β+aM
∫ t

0
(t− s)−(α−β)‖w(s)‖βds

≤ Mt−(α−β)‖v0‖β+aM
(∫ t

0
(t− s)−σ

′(α−β)
) 1
σ′

‖w‖σ,β (3.3)

≤ Mt−(α−β)‖v0‖β+aM1−σ(α−β)t
1
σ′
−(α−β)‖w‖σ,β

holds. This is because (1.21) is assumed to hold, and thus α− 1
2 ≥ β provided that β≥ N

2q and

t ∈ (0,T ) is large. Therefore, ∇v ∈ L∞α−β(0,∞; E
α− 1

2
q ). Hence, if we set f (t) = tα−β‖∇v‖α− 1

2
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and consider the w−equation of (2.5), then we get that

‖w(t)‖α ≤ Mt−(α−γ)‖w0‖γ +

∫ t

0
‖∇e∆(t−s)(wχ∇v)(s)‖αds

≤ Mt−(α−γ)‖w0‖γ +χM
∫ t

0
(t− s)−(

1
2+α−β)‖(w∇v)(s)‖βds

≤ Mt−(α−γ)‖w0‖γ +χM
(

2
Neπ

)α+ γ2− 1
2

×

×

∫ t

0
(t− s)−(

1
2+α−β)‖w(s)‖γ‖∇v(s)‖α− 1

2
ds

≤ Mt−(α−γ)‖w0‖γ +χM
(

2
Neπ

)α+ γ2− 1
2

×

×

∫ t

0
(t− s)−(

1
2+α−β) f (s)s−(α−β)‖w(s)‖γds

= Mt−(α−γ)‖w0‖γ +χM
(

2
Neπ

)α+ γ2− 1
2

J,

where J =
∫ t

0 (t− s)−(
1
2+α−β) f (s)s−(α−β)‖w(s)‖γds. Making a change of time variable s = ρt

leads to

J ≤

sup
t>0

f (t)

∫ 1

0
t−σ

′( 1
2+α−β)t−σ

′(α−β)

 1

(1−ρ)σ′(
1
2+α−β)ρσ′(α−β)

dρ


1
σ′

‖w‖σ,β

≤ t−( 1
2+2(α−β)) sup

t>0
f (t)

∫ 1

0

1

(1−ρ)σ′(
1
2+α−β)ρσ′(α−β)

dρ


1
σ′

‖w‖σ,β

≤ t−( 1
2+(α−β)) sup

t>0
‖∇v‖α− 1

2
×

×

∫ 1

0

1

(1−ρ)σ′(
1
2+α−β)ρσ′(α−β)

dρ


1
σ′

‖w‖σ,β. (3.4)

A backward combination with (3.4) yields limsupt↗∞ ‖w‖α = 0. If we allow the expo-
nential decay effect of the semigroup (2.4) in the norm estimates of (3.3) in σ =∞, then we
conclude that the last statement in (1.26) is true. In fact,

limsup
t↗+∞

‖∇v‖α− 1
2
≤ aM

(∫ ∞

0

e−ωt

tα−β
dt

)
limsup

t↗+∞
‖w‖β = 0,

from which our result follows.
To complete the proof of (i), we need extra results on (ii).

Lemma 3.1. Let w ∈ Eγ
q be as given in (2.5) and Ξ=α−β ∈ (0,1). Then, w ∈CΞloc((0,T ); Eβ

q).
That is, w is Hölder continuous in time.
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Proof. Indeed, if 0 < t < t+h < T , then

w(t+h)−w(t) = (e∆h− I)e∆tw0+

∫ t

0
(e∆h− I)e∆(t−s)∇(w(s)χ∇v(s))ds

+

∫ t+h

t
e∆(t+h−s)∇(w(s)χ∇v(s))ds.

Thus, by virtue of Lemma 1.2, taking γ = β, we get that

‖w(t+h)−w(t)‖β ≤ ‖(e∆h− I)e∆tw0‖β +

+

∫ t

0
‖(e∆h− I)e∆(t−s)∇(w(s)χ∇v(s))‖βds +

+

∫ t+h

t
‖e∆(t+h−s)∇(w(s)χ∇v(s))‖βds

≤ Mα−βhα−β‖e∆tw0‖α+Mα−βhα−β
∫ t

0
‖∇e∆(t−s)(w(s)χ∇v(s))‖αds

+

∫ t+h

t
‖∇e∆(t+h−s)(w(s)χ∇v(s))‖αds

≤ Mα−βMhα−βt−(α−β)‖w0‖β+χMα−βMhα−β
∫ t

0
(t− s)−

1
2−(α−β)×

× ‖w(s)∇v(s)‖βds+χM
∫ t+h

t
(t+h− s)−

1
2−(α−β)‖w(s)∇v(s)‖βds

≤ Mα−βMhα−βt−(α−β)‖w0‖β+χM
(

2
Neπ

)α+ β2− 1
2

Mα−βhα−β ×

×

∫ t

0
(t− s)−

1
2−(α−β)‖w(s)‖β‖∇v(s)‖α− 1

2
ds +

+ χM
(

2
Neπ

)α+ β2− 1
2
∫ t+h

t
(t+h− s)−

1
2−(α−β)‖w(s)‖β‖∇v(s)‖α− 1

2
ds

≤

Mα−βMt−(α−β)‖w0‖β+χ

(
2

Neπ

)α+ β2− 1
2

Mα−βM1−(α−β)t1−(α−β)+

+ χ

(
2

Neπ

)α+ β2− 1
2

M1−(α−β) sup
t∈(0,T )

{
‖w‖β‖∇v‖α− 1

2

}hα−β,

which gives the desired Hölder continuity of the w− integral solution in (2.5), and the proof
of the lemma is complete. �

Lemma 3.2. Consider the subset

W :=
ψ ∈C(I; Eα

q ); sup
t∈(0,T )

‖ψ(t)‖α ≤C‖ψ0‖γ

 , (3.5)
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and let in (2.5)

F (w)(t) = e∆tw0−

∫ t

0
e∆(t−s)P(u(s))ds.

Then,

(i) FW ⊂W, i.e. it maps W to itself.

(ii) The mapping F : Eβ
q → Eα

q is a contraction.

(iii) There exists a unique w ∈ W such that F (w)(t) = w(t) is a solution to (1.1) up to
maximal time T ∗(‖w0‖γ) of existence of solutions of (1.9).

Proof. We first note that we can read the right hand side of (2.5), in taking the norm of
Eα

q = Eγ
q × Eα−γ

q , as in the scale spaces product, whereas, thanks to Lemma 1.2, wχ∇v is
well defined in E0

q � Lq(Ω). Therefore, if w ∈W, then we find that

‖F (w)(t)‖α ≤ M‖w0‖γ +M
∫ t

0
(t− s)−

1
2−(α−γ)‖wχ∇v‖0ds

≤ M‖w0‖γ +χ

(
2

Neπ

)α+ γ2− 1
2

M
∫ t

0
(t− s)−

1
2−(α−γ)‖w‖γ‖∇v‖α− 1

2
ds

≤ M‖w0‖γ +χMC
(

2
Neπ

)α+ γ2− 1
2

sup
t∈(0,T )

‖∇v‖α− 1
2
‖w0‖γ ×

×

∫ t

0
(t− s)−

1
2−(α−γ)ds

≤ M‖w0‖γ +χMC
(

2
Neπ

)α+ γ2− 1
2

sup
t∈(0,T )

‖∇v‖α− 1
2
‖w0‖γT

1
2−(α−γ).

Thus, with

T =

( 1
M
−

1
C

)
1

χsupt∈(0,T ) ‖∇v‖α− 1
2

(
2

Neπ

) 1−2α−γ
2


2

1−2(α−γ)

,

we get that (i) is satisfied.
To prove (ii), we evaluate F at w1,w2 ∈W, using the same initial data, to obtain that

‖F (w1)(t)−F (w2)(t)‖α ≤
∫ t

0
‖∇e∆(t−s)((w1−w2)χ∇v)(s)‖αds

≤ M
∫ t

0
(t− s)−

1
2−(α−γ)‖(w1−w2)χ∇v‖γds

≤ χM
(

2
Neπ

)α+ γ2− 1
2
∫ t

0
(t− s)−

1
2−(α−γ)‖w1−w2‖γ‖∇v‖α− 1

2

≤ χM
(

2
Neπ

)α+ γ2− 1
2

T
1
2−(α−γ) sup

t∈(0,T )
‖∇v‖α− 1

2
sup

t∈(0,T )
‖w1−w2‖γ.
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Whence, (ii) is proven by taking

T <

 1
χM supt∈(0,T ) ‖∇v‖α− 1

2

(
2

Neπ

) 1−2α−γ
2


2

1−2(α−γ)

,

and viewed together with (i) of the lemma.
Applying the Banach contraction mapping theorem followed by the use of the Picard’s

method, or classical continuation for extension of the finite existence time to maximal time
T ∗ = T (‖w0‖γ), yields the last assertion of the lemma. �

To complete the proof of the theorem, we prove (iii). But before we do this we make
the following observation on the smoothness of the solution, as given in the theorem. The
solution regularity in (1.25) holds, using [11, 30, 31]. Since (1.5) is a C+ operator, Lemma
3.1 is valid, and w(t) ∈ Lσ(İ; Eβ

q) is Hölder continuous. Consequently, the conclusion is due
to linear non-homogeneous evolutionary equations theory, which imply the time regularity
of the solution component, even with T at ∞. Analogously, writing the weak form in
Lemma 1.2-(1.22) as

g(t) = 〈(wχ∇v)(t),∇ϕ〉q,q′ , for any ϕ ∈ Eα
q′ , (3.6)

we conclude that (1.27) holds, because ∇v ∈ E
α− 1

2
q is bounded, and by Lemma 3.1, w ∈

CΞ(İ,Eβ
q) for 0 ≤ Ξ = α− β < 1, yielding that (3.6) is Hölder continuous in time. Further-

more, from [11, 30, 31] ( in particular [11]; Lemma 3.2.1 and Theorem 3.2.2.) we get the
existence and uniqueness of solutions to (1.9)-(1.1). The fact that the solution is given by
(2.5) follows from Definition 2.1.

Now, to prove the generation of a perturbed analytic semigroup, we have the following
lemma.

Lemma 3.3. Assume in (1.20) that (1.28) holds. Then, (1.20) is an infinitesimal generator
of a perturbed analytic semigroup in scale spaces Zβ+γq , and the strong solution coincides
with the one generated by the operator (1.20).

Proof. First, we observe from what has been proved up to now that (3.2) implies v ∈
L∞α−β(0,T ; Eα

q ), and limsup
t↗+∞

tα−β‖v(t)‖α ≤ M‖v0‖β, using (3.4) with σ =∞, while still with

(3.4) we obtain limsup
t↗+∞

t(β−γ)‖w(t)‖β ≤ M‖w0‖γ, and the assertion should follow. More pre-

cisely, to complete ideas, we prove that (1.20) is well defined, continuous, coercive, strictly
monotone and is a sectorial operator in E0

q � Lq(Ω).
To this end, we define b : Zβ+γq ×Zβ+γq 7−→ R by

b(u,z) =
∫
Ω

∇v∇ϕ+λ
∫
Ω

vϕ+
∫
Ω

∇w∇ψ−χ
∫
Ω

w∇v∇ψ−a
∫
Ω

wϕ, (3.7)

where z= (ϕ,ψ)>. Note that, since Lemma 1.2-(1.21) is assumed, continuity of the mapping
(3.7) is clear. We therefore only need to prove the coercivity (since if we apply Browder-
Minty theorem, strict monotonicity can be easily deduced).
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Thus, taking z = u, we find that

b(u,u) ≥ ‖∇v‖q
β− 1

2
+

+ ‖∇w‖q
γ− 1

2
−χ

(
2

Neπ

)β+ γ2− 1
2

‖w‖γ‖∇v‖β− 1
2
‖∇w‖γ− 1

2

−
a
q

(
2

Neπ

)β+ γ2− 1
2

‖∇w‖q
γ− 1

2
−

a
q

(
2

Neπ

)β+ γ2− 1
2

‖∇v‖q
β− 1

2

≥

1− 2χ+a
q

(
2

Neπ

)β+ γ2− 1
2
‖u‖qβ+γ, (3.8)

implying the coercivity of (3.7), using (1.28). Thus, (1.20) is uniquely invertible by using
Browder-Minty’s theorem, and is a sectorial operator in E0

q � Lq(Ω), since

‖(A+µ)−αP̃‖0 = sup
‖u‖0≤1

≤

{
‖(A+µ)−αP̃(u)‖0

‖u‖0

}

≤
C
µα

(
a+ ‖P‖α,0

)
≤

C
µα

a+ (
2

Neπ

)α− 1
2


for any 0 ≤ α < 1 satisfying Lemma 1.2-(1.21), for some C ∈ R+, |π− argµ| ≥ ϑ, ϑ < π
2 . The

conclusion of the lemma is obtained by using Corollary 1.4.5 in [11]. Clearly, (1.14) and
(1.26) imply that (1.29) is true. The proof of the lemma is complete. �

To complete the proof of Theorem 1.4-(iv), it suffices to note that, since α− 1
2 >

N
2q , we

have E
α− 1

2
q ⊂ L∞(Ω) by virtue of (2.1), and Theorem 1.4-(1.26) implies that ∇v ∈ L∞(Ω) is

bounded for all t > 0. Since w ∈ E0
q � Lq(Ω), q > N

2 because 1 ≥ α− 1
2 >

N
2q . Viewing the

weak form (1.22) in Lq(Ω), as well as the equation in elliptic form by passing wt to the right
hand side, and using [30], we get that w ∈ L∞(Ω) is bounded for all t > 0. The rest is trivial
or immediate. The proof of Theorem 1.4 is complete.

4 Uniform boundedness

In this section, we give an alternative proof for Theorem 1.4-(iv) without using the space
embeddings. More precisely, we have the following theorem.

Theorem 4.1. Assume that the minimal condition of (1.21) is attained strictly. If γ = 0,
then u = (v,w) ∈ L∞(0,∞; H1,∞(Ω)×L∞(Ω)),

sup
t>0
‖u‖ 1

2 ,∞;∞ ≤ M
(
t−(α−β)‖v0‖β+ t−β‖w0‖0

)
+C, (4.1)

and the solution semigroup to (1.9) is a classical solution semigroup.
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Proof. Assume w0 = 0, and let N
2 < q ≤ N, |w|q−2w ∈ E

1
2
2 � H1(Ω). Then we find, using the

second line from above of (3.1) and Gagliardo-Nirenberg’s inequality [11], that

1
q

d
dt

∫
Ω

|w|q+
4(q−1)

q2

∫
Ω

|∇|w|
q
2 |2 = χ

∫
Ω

w∇v∇(|w|q−2w)

≤ (q−1)χ
∫
Ω

|∇v|w|q−1∇w| =
2χ(q−1)

q

∫
Ω

|w|
q
2∇|w|

q
2 |∇v|

≤
2χ(q−1)

q

(
2

Neπ

) 1
4

‖∇v‖∞,∞
(
‖∇|w|

q
2 ‖2‖|w|

q
2 ‖2

)
≤

2χ(q−1)
q

(
2

Neπ

) 1
4

‖∇v‖∞,∞‖∇|w|
q
2 ‖2

( 2
Neπ

) 1
4

‖∇|w|
q
2 ‖

N
N+2
2 ×

×‖|w|
q
2 ‖

1− N
N+2

1 +

∫
Ω

|w|
q
2

)
≤

2χ(q−1)
q

(
2

Neπ

) 1
2

‖∇v‖∞,∞‖∇|w|
q
2 ‖

1+ N
N+2

2 ‖|w|
q
2 ‖

1− N
N+2

1 +

+
2χ(q−1)

q

(
2

Neπ

) 1
4

‖∇v‖∞,∞‖∇|w|
q
2 ‖2

∫
Ω

|w|
q
2 .

This yields, after multiplying throughout by q and using Young’s inequality, that

d
dt

∫
Ω

|w|q+
4
q′

∫
Ω

|∇|w|
q
2 |2

≤

(
2

Neπ

) 1
2 (

1+
N

N +2

)∫
Ω

|∇|w|
q
2 |2 +

+
((

2qχ‖∇v‖∞,∞
)N+2
+

(
2qχ‖∇v‖∞,∞

)2
) (∫

Ω

|w|
q
2

)2

≤

(
2

Neπ

) 1
2 (

1+
N

N +2

)∫
Ω

|∇|w|
q
2 |2+

(
2χN‖∇v‖∞,∞

)2
×

×
(
1+qN

) (∫
Ω

|w|
q
2

)2

,

where we have used the fact that for T � 1 sufficiently large, ‖∇v‖∞,∞ � 1 is adequately
small.

Thus, if we set

ω =
4
q′
−

(
2

Neπ

) 1
2 (

1+
N

N +2

)
> 0, and CΩ = (2χN)2 ,

then we get that

d
dt

∫
Ω

|w|q+ω
∫
Ω

|w|q ≤CΩ (1+q)N
(∫
Ω

|w|
q
2

)2

=⇒

∫
Ω

|w|q ≤CΩ (1+q)N sup
t>0

(∫
Ω

|w|
q
2

)2

.
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Now, let Λ(q) =
∫
Ω
|w|q, so that

Λ(q) ≤ [CΩ(1+q)N]
1
qΛ

(q
2

)
, ∀q ≥ 2.

Consequently, if we let qi = 2i, i ∈ N∗, then we conclude that

Λ(2i) ≤ C2−i

Ω (1+2i)
N
2iΛ(2i−1)

≤ . . . ≤C
∑i

k=1 2−k

Ω
(1+2i)2−iN . . . (1+2)2−1NΛ(1)

≤ CΩ
[
2i2−iN(2−i)2−iN

]
. . . . . .

[
22−1N(2−1)2−1N

]
Λ(1)

≤ CΩ2N
∑i

k=1 k2−k
×2N

∑i
k=1 2−k

Λ(1) ≤CΩ23NΛ(1).

Therefore, taking the limit as i→∞ gives

‖w(t)‖∞ ≤CΩ23NΛ(1) ≤CΩ23N‖w0‖1 <∞. (4.2)

Now, let’s write w(t) = ψ1(t)+ψ2(t), where ψ1(t) satisfies the homogeneous equation in
(1.1) with w(0) = w0, and ψ2(t) the non-homogeneous equation with, w0 = 0. It follows, by
(2.1) and (2.4), that ‖ψ1(t)‖∞ ≤ Mt−

N
2q ‖w0‖0 for all t > 0, while (4.2) implies ‖ψ2(t)‖∞ ≤ C.

Thus, we obtain
‖w(t)‖∞ ≤ Mt−β‖w0‖0+C,

where β = N
2q , so that combining with the v-solution gives (4.1). The proof of the theorem

is complete. �

5 Blow-up dynamics independent of time

In this section, we give some highlights on the blow-up dynamics of the system of equations
(1.1) at the borderline spaces Eα

q ,α =
N
2p , and independent of the condition (1.28) yielding

that the complete system coupled differential operator (1.20) is an infinitesimal generator
of a perturbed analytic semigroup to the semigroup (1.12) defined by the uncoupled system
differential operator (1.5). To this end, we first notice that the stationary equations to the
system can be derived as a limit process at time∞, to the following Lyapunov function

J(t) =
∫
Ω

w lnw−χ
∫
Ω

wv+
χ

aq

∫
Ω

(
|∇v|q+λ|v|q

)
, (5.1)

using La-Salle- Hale-Henry invariance principle [11].

Theorem 5.1. The dynamical system defined by the equations (1.1) admits (5.1) as a Lya-
punov function, and the elliptic equation (1.16) is verified at T =∞ with, if the initial data
is in spaces Eβ

q,β =
N
2q such that χ > χN,β = (1.18), then

‖(v,w)>‖β+γ =∞ for any t ∈ (0,∞).

Moreover, ∞ > J(0) ≥ J(t) > −∞, and Proposition 3.2 in [28] holds for blow-up of solu-
tions for any finite time t∗ ∈ (0,∞).
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Proof. To show that (5.1) is a Lyapunov function, we take the dual spaces product in (1.1)
with lnw−χv ∈ Eγ

q′ as a test function, in the w− equation, and let vt ∈ Eβ
q′ . Then we find that

dJ(t)
dt
=

∫
Ω

wt lnw+
∫
Ω

wt −χ

∫
Ω

wtv− κ
∫
Ω

vtw +

+
χ

a

(∫
Ω

|∇v|q−2∇v∇vt +λ

∫
Ω

|v|q−2vvt

)
=

∫
Ω

wt(lnw−χv)−
χ

a

∫
Ω

|vt|
q

=

∫
Ω

∇ (∇w−χw∇v) (lnw−χv)−
χ

a

∫
Ω

|vt|
q

= −

∫
Ω

(∇w−χw∇v)∇ (lnw−χv)−
χ

a

∫
Ω

|vt|
q

= −

∫
Ω

w|∇(lnw−χv)|q−
χ

a

∫
Ω

|vt|
q ≤ 0, (5.2)

using the dual space function characterization for functions in Lq′ , and the fact that∫
Ω

wt = 0, w∇(lnw−χv) = w
(
∇w
w
−χ∇v

)
,

to yield that (5.1) is a Lyapunov function for the system of equations (1.1). The proof asserts
that the Lyapunov function decreases along trajectories of orthogonal to constant solutions
of the system of equations as time increases to infinity. Thanks to La-Salle-Hale-Henry in-
variance principle [11], at time T =∞, we have that the stationary equations corresponding
to (1.9) are verified, and consequently, so is the elliptic problem (1.16), since (1.28) is not
assumed to be verified.

To prove the blow-up of solutions, we note that (3.8) holds, using the best constant of
the inclusion Eβ

q,β =
N
2q in (2.2), while, associated to (1.16) is the energy functional

E(t) =
1
q
‖∇v‖q

β− 1
2
+
λ

q
‖v‖qβ−

aK
χ

∫
Ω

(
eχv−1

)
. (5.3)

This results in (3.8) yielding

b(u,u) ≥ ω‖∇w‖q
γ− 1

2
+

aK
χω

∫
Ω

(
eχv−1

)
,

using the second embedding condition in (2.2), If we take u ∈ Eβ
q ×Eγ

q as a test function in
the complete system equations (1.9), and integrate in time t ∈ (0,T ), using a reduction to
absurd argument, then we get our conclusion.

In fact, if we suppose that the conclusion was false, then we would get that

0 =
d
dt
‖u‖ρβ+γ +b(u,u)

≥
d
dt
‖u‖ρβ+γ +ω‖∇w‖q

γ− 1
2
+

aK
χω

∫
Ω

eχv−
aK|Ω|
χω

⇐⇒
aK|Ω|T
χω

+ ‖u0‖
ρ
β+γ ≥ ‖u‖

ρ
β+γ +

aK
χω

∫ t

0

∫
Ω

eγv(s)ds

≥
aK
χω

∫ t

0

∫
Ω

eχv(s)ds =∞,
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using (1.17) at χ = (1.18). The contrary to the premises is true, since the norm ‖u0‖
ρ
β+γ =

‖v0‖
q
β+ ‖w0‖

q
γ, and t ∈ (0,T ) are finite. Therefore, the conclusion of the theorem is valid.

To prove the second half of the theorem, we first note that

χ

∫
Ω

wv ≤ χ‖w‖q′‖v‖q ≤ χ|Ω|
1
q−

1
Θ ‖w‖q′‖v‖Θ

≤ χ|Ω|
1
q−

1
Θ

(
2

Neπ

) 1
2

‖w‖q′‖v‖ 1
2

≤
1
q′

(
|Ω|

1
q−

1
Θ

)q
‖w‖q

′

q′ +
1
q
χq

∫
Ω

(
|∇v|q+λ|v|q

)
,

where we have used (2.1)-(2.2), Hölder’s and Young inequalities. Now, since inf w lnw =
−1

e , we have, from (5.1), that

J(t) ≥ −
|Ω|

e
−

1
q′

(
|Ω|

1
q−

1
Θ

)q
‖w‖q

′

q′ −
1
q

(
χq−

χ

a

)∫
Ω

(
|∇v|q+λ|v|q

)
> −

|Ω|

e
−

1
q′

(
|Ω|

1
q−

1
Θ

)q
‖w‖q

′

q′ −

(
χq−

χ

a

) aK
χ

∫
Ω

eχv = −∞,

following from (5.3) at χ = (1.18). On the other hand, thanks to (5.2), we have that J(t) ≤
J(0) <∞ for any χ ∈ (0,∞) and for all t > 0. The conclusions of Proposition 3.2 of [28] are
satisfied for any q′ > 1.

Alternative proofs can be found in [8, 14] for the case Eα
q , α =

1
2 ,q = 2, using the Lya-

punov function (5.1), embedding into Orlicz spaces [6, 20] and properties. The proof of the
theorem is complete. �

6 Upper and lower finite time bounds for blow-up dynamics

In this section, we study finite time bounds for blow-up of solutions in E
1
2
2 � H1(Ω) to

the system of equations (1.1) in norms of L2p(Ω)-spaces. The following theorem yields
existence of a finite time upper bound for blow-up of solutions using the concavity method
in [4] .

Theorem 6.1. Assume that Theorem 4.1 holds and that the classical solutions are bounded
on Ω× I with T = t∗. Then, there exists a finite time upper bound to the maximal time of
existence of solutions

t∗ ≤
1

νM(E(0))ν
, where E(0) =

κ

4

∫
Ω

(v2
0+w2

0)

M =
J(0)

(E(0))1+ν with

J(0) = −
1
2

(∫
Ω

|∇v0|
2+λ

∫
Ω

v2
0−a

∫
Ω

w0v0

)
−

1
2

(∫
Ω

|∇w0|
2−χ

∫
Ω

w0∇v0∇w0

)
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for some ν > 0 such that liminf
t↗t∗

‖(v,w)>‖20 = ∞. That is, solutions to system of equations

(1.1) blow-up in finite time in norm of E0
2 � L2(Ω), with Ω ⊂ RN , N = 2,3.

Note that the restriction Ω ⊂ RN , N = 2,3 follows as in the proof of Theorem 1.4-(iv).
Since, if (1.28) is attained strictly, and γ = 0, then we have 1 ≥ α− 1

2 >
N
2q . This, combined

with q = 2, yields that 4 > N, and remains valid in Theorem 4.1.

Proof. Let κ = 1
1+ν for some ν > 0 and E(t) = κ

4

∫
Ω

(v2+w2). Then

E′(t) =
κ

2

∫
Ω

(vtv+wtw)

= −
κ

2

(∫
Ω

|∇v|2+λ
∫
Ω

v2−a
∫
Ω

wv
)

−
κ

2

(∫
Ω

|∇w|2−χ
∫
Ω

w∇v∇w
)

≥ −
1
2

(∫
Ω

|∇v|2+λ
∫
Ω

v2−a
∫
Ω

wv
)

−
1
2

(∫
Ω

|∇w|2−χ
∫
Ω

w∇v∇w
)

:=J(t). (6.1)

Next, we observe that if we multiply through (1.1) by (vt,wt)> and then integrate by parts
over Ω using the boundary conditions, then we have

J ′(t) = −

(∫
Ω

∇v∇vt +λ

∫
Ω

vvt −a
∫
Ω

wvt −a
∫
Ω

wtv
)

−

∫
Ω

∇w∇wt +χ

∫
Ω

wt∇v∇w+χ
∫
Ω

w∇vt∇w+χ
∫
Ω

w∇v∇wt

≥

∫
Ω

(v2
t +w2

t ).

This leads us to conclude that

a
∫
Ω

wtv = 0,

χ

∫
Ω

wt∇v∇w+χ
∫
Ω

w∇vt∇w = 0. (6.2)

Another way to justify the above is as follows; independent of the sign of the integrands,
using the fact that solutions to (1.1) are classical solutions, one can find bounds above and
below in terms of

∫
Ω

wt = 0, with, in the last conclusion, an argument leading to (6.2), to
imply that χ

∫
Ω

w∇vt∇w = 0.
Next, note that J(0) ≥ 0 and J ′(t) ≥ 0 for t ≥ 0, imply that J(t) ≥ 0 for t ≥ 0. Now,



Semigroup and Blow-up Dynamics of Attraction Keller-Segel Equations 25

from (6.1) we obtain, using Cauchy-Schwartz inequality, that

E′(t)E′(t) = (E′(t))2

=
κ2

4

(∫
Ω

vvt

)2

+

(∫
Ω

wwt

)2

+2
(∫
Ω

vvt

)(∫
Ω

wwt

)
≤

κ2

4

∫
Ω

v2
∫
Ω

v2
t +

∫
Ω

w2
∫
Ω

w2
t +2

(∫
Ω

v2
∫
Ω

v2
t

∫
Ω

w2
∫
Ω

w2
t

) 1
2


≤
κ2

4

(∫
Ω

(v2+w2)
)(∫

Ω

(v2
t +w2

t )
)

= κE(t)J ′(t) =
1

1+ ν
E(t)J ′(t),

where the second from last follows using the elementary inequality
√

ab ≤ a+b
2 ,a,b ≥ 0.

Thus, using (6.1) we obtain that

(1+ ν)
E′(t)
E(t)

≤
J ′(t)
J(t)

⇒
1

(E(t))ν
≤

1
(E(0))ν

− νMt,

using [25]. Since the implied inequality cannot be true for all t ≥ 0, we infer that at least one
of either v or w must blow-up in norm of L2(Ω) in finite time. The last assertion follows from
the yielding condition of Theorem 4.1, working in the function space E1/2

2 � H1(Ω). �

In continuation, to find the lower finite time bound for blow-up of solutions to (1.1) via
the differential inequality technique due to P.E. Payne, et al.[25, 27], the following Sobolev
type inequality is required.

Lemma 6.2. Let ϕ ∈C1(Ω)∩C+(Ω), where the plus sign imply non-negative. Then,∫
Ω

ϕ
3
2 n ≤

[
3

2ρ

∫
Ω

ϕn+
n
2

(
1+

d
ρ

)∫
Ω

ϕn−1|∇ϕ|

] 3
2

, (6.3)

where Ω ⊂ RN ,N = 2,3 is such that ~0 ∈ Ω and is a star-shaped, convex domain in two
orthogonal directions , n ≥ 1, ρ =minΓ(x ·~n), d =max

Ω
|x|.

The following Theorem provides the lower finite time bound for blow-up of solutions
to (1.1).

Theorem 6.3. Consider the system of equations (1.1) in Ω ⊂ RN ,N = 2,3 such that Lemma
6.2 and Theorem 4.1 hold, or equivalently, just w ∈ L∞(Ω) is bounded. Then, there exists a
lower finite time bound for blow-up of solutions

t∗ ≥
∫ ∞

E(0)

dη

η(K1η2+K2η
1
2 +K3)

, with E(0) =
∫
Ω

(v2p
0 +w2p

0 ), (6.4)

and on setting ϑ > 0, ν > 0, the computable constants K j, j = 1,2,3 are

K1 = max

 |Ω|
1
2

3
3
4 ×4ϑ3

,
a|Ω|

1
3

2ν3


(
d
ρ
+1

) 3
2

,

K2 = max

 |Ω|
1
2
√

2

3
3
4

,
2
√

2a|Ω|
1
3

3
3
4


(

3
2ρ

) 3
2

,K3 =max{21+
1
p′
,2pλ}
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such that solutions to the system of equations (1.1) in E
1
2
2 � H1(Ω) blow-up in norm of

L2p(Ω),1 ≤ p ≤ 6, whenever t↗ t∗, i.e. inf
t↗t∗
‖(v,w)>‖2p =∞.

Proof. We carry out the proof of the theorem in Ω ⊂ RN ,N = 3. Consider the energy func-
tion

E(t) =
∫
Ω

(w2p+ v2p).

Then, compute the time derivative through the system of equations, to find that

E′(t) = 2p
∫
Ω

(w2p−1wt + v2p−1vt)

= 2p
∫
Ω

w2p−1 (∇ · (∇w−wχ∇v)) +

+ 2p
∫
Ω

v2p−1 (∆v−λv+aw) =
2∑

j=1

I j.

Next, we note that the alternative requirement of the hypotheses w ∈ L∞(Ω) implies that

v ∈C2(Ω)∩C1(Ω), and ∇ϕ2p−1 = (2p−1)ϕ2p−2|∇ϕ|2 =
2p−1

p2 |∇ϕ
p|2.

Therefore, we can write

I1 = −
2(2p−1)

p

∫
Ω

|∇wp|2+2p(2p−1)χ
∫
Ω

w2p−1∇w∇v, (6.5)

from which, observing that w2p−1∇w = 1
2p∇w2p = 1

p wp∇wp, and since v > 0 is classical
solution, there is

δ =
√

inf
Ω

vp−1 > 0 such that
1

(pδ)2 |∇vp|2 ≥ ‖∇v|2.

This, in conjunction with the fact that w ∈ L∞(Ω), implies that

1
p

∫
Ω

wp∇wp∇v ≤
1
p

(∫
Ω

|wp∇wp|2
) θ0

2
(∫
Ω

|∇v|2
) θ3

2

≤
1

p(pδ)θ3

(∫
Ω

w2p
) θ1

2
(∫
Ω

|∇wp|2
) θ1

2
(∫
Ω

|∇vp|2
) θ3

2

,

for some 0 <
∑3

j=1
θ j
2 = 1 to be determined.

Thus, getting back to (6.5), adequately associating multiplying coefficients of the inte-
grand involving v, and using the generalized Young’s inequality [35], we obtain

I1 ≤ −(2p−1)
(

2
p
− θ2

)∫
Ω

|∇wp|2+ θ1(2p−1)
∫
Ω

w2p +

+
θ3χ

2pδ

∫
Ω

|∇vp|2. (6.6)
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But p ≤ 6, θ1 < 2, so we have

θ1(2p−1)
∫
Ω

w2p ≤ 22
∫
Ω

w2p = 21
∫
Ω

w2p+

∫
Ω

w2p.

From this, controlling only the last added integrand term, using the fact that L3p(Ω) ⊂
L2p(Ω), we get the following, with additional consequences due to (6.3) of Lemma 6.2;

∫
Ω

w2p ≤

(∫
Ω

w2p
) 3

2

≤ |Ω|
1
2

∫
Ω

w3p

≤ |Ω|
1
2

1

3
3
4

 3
2ρ

∫
Ω

w2p+

(
d
ρ
+1

)(∫
Ω

w2p
) 1

2
(∫
Ω

|∇wp|2
) 1

2


3
2

≤ |Ω|
1
2

1

3
3
4

√2
(

3
2ρ

) 3
2
(∫
Ω

w2p
) 3

2

+

(
d
ρ
+1

) 3
2
(∫
Ω

u2p
) 3

4
(∫
Ω

|∇wp|2
) 3

4


≤ |Ω|
1
2

1

3
3
4

√2
(

3
2ρ

) 3
2
(∫
Ω

w2p
) 3

2

+
1

4ϑ3

(
d
ρ
+1

) 3
2
(∫
Ω

w2p
)3

+

+
3ϑ
4

(
d
ρ
+1

) 3
2
∫
Ω

|∇wp|2

 ,

by virtue of the elementary inequalities (a+ b)
3
2 ≤ 2

1
2 (a

3
2 + b

3
2 ), and a

1
4 b

3
4 ≤ 1

4 a+ 3
4 b, for

numbers a,b ∈ R+, with weight ϑ > 0 to be found. Therefore, (6.6) is extended in a manner
of the sense that

I1 ≤ −

(2p−1)
(

2
p
− θ2

)
−

3
1
4ϑ|Ω|

1
2

4

(
d
ρ
+1

) 3
2
∫
Ω

|∇wp|2+21
∫
Ω

w2p +

+
|Ω|

1
2
√

2

3
3
4

(
3

2ρ

) 3
2
(∫
Ω

u2p
) 3

2

+
|Ω|

1
2

3
3
4 ×4ϑ3

(
d
ρ
+1

) 3
2
(∫
Ω

w2p
)3

+

+
θ3χ

2pδ

∫
Ω

|∇vp|2, (6.7)

so that with properly chosen θ2,ϑ > 0, we must have

−

(2p−1)
(

2
p
− θ2

)
−

3
1
4ϑ|Ω|

1
2

4

(
d
ρ
+1

) 3
2
 ≤ 0.
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Now we pay attention to I2, for which it holds that

I2 = −2(2p−1)
∫
Ω

|∇vp|2−2pλ
∫
Ω

v2p+2pa
∫
Ω

v2p−1w

≤ −2(2p−1)
∫
Ω

|∇vp|2+2pλ
∫
Ω

v2p+2pa
(∫
Ω

v3p
) 2p−1

3p
(∫
Ω

w
3p
p+1

) p+1
3p

≤ −2(2p−1)
∫
Ω

|∇vp|2+2pλ
∫
Ω

v2p+2pa|Ω|
1
3

(∫
Ω

v3p
) 2p−1

3p
(∫
Ω

w2p
) 1

2p

≤ −2(2p−1)
∫
Ω

|∇vp|2−2pλ
∫
Ω

v2p+2pa|Ω|
1
3−

1
6p

(∫
Ω

v3p
) 1

p
(∫
Ω

w2p
) 1

p′

≤ −2(2p−1)
∫
Ω

|∇vp|2+2pλ
∫
Ω

v2p+2a|Ω|
1
3

∫
Ω

v3p+
1
p′

∫
Ω

w2p.

Using similar arguments leading to (6.7) we find that

I2 ≤ −2(2p−1)
∫
Ω

|∇vp|2+2pλ
∫
Ω

v2p+2a|Ω|
1
3 ×

×
1

3
3
4

√2
(

3
2ρ

) 3
2
(∫
Ω

v2p
) 3

2

+

(
d
ρ
+1

) 3
2
(∫
Ω

v2p
) 3

4
(∫
Ω

|∇vp|2
) 3

4


+
1
p′

∫
Ω

w2p

≤ −

2(2p−1)−
3a|Ω|

1
3 ν

2

(
d
ρ
+1

) 3
2
∫
Ω

|∇vp|2+2pλ
∫
Ω

v2p +

+
2
√

2a|Ω|
1
3

3
3
4

(
3

2ρ

) 3
2
(∫
Ω

v2p
) 3

2

+
a|Ω|

1
3

2ν3

(
d
ρ
+1

) 3
2
(∫
Ω

v2p
)3

+
1
p′

∫
Ω

w2p,

with θ3 > 0 of (6.7), and ν > 0 such that

−

2(2p−1)−
3a|Ω|

1
3 ν

2

(
d
ρ
+1

) 3
2

−
θ3χ

2pδ

 ≤ 0.

Combining all the above, we get that

E′(t) ≤ (21+
1
p′

)
∫
Ω

w2p+
|Ω|

1
2
√

2

3
3
4

(
3

2ρ

) 3
2
(∫
Ω

w2p
) 3

2

+

+
|Ω|

1
2

3
3
4 ×4ϑ3

(
d
ρ
+1

) 3
2
(∫
Ω

w2p
)3

+2pλ
∫
Ω

v2p

+
2
√

2a|Ω|
1
3

3
3
4

(
3

2ρ

) 3
2
(∫
Ω

v2p
) 3

2

+
a|Ω|

1
3

2ν3

(
d
ρ
+1

) 3
2
(∫
Ω

v2p
)3

,
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yielding Payne et al. [25, 27] type differential inequality

E′(t) ≤ K1E
3(t)+K2E

3
2 (t)+K1E(t), or t ≥

∫ E(t)

E(0)

dη

K1η3+K2η
3
2 +K3η

,

and if E(t) blows-up at time t∗, then (6.4) must be verified.
This completes the proof of the Theorem in R3 and complements the beautiful work

initiated in [26], pertinent to the parabolic-elliptic equations of the minimal chemotaxis
model. Lastly, we note that the conclusion of the theorem holds in dimension N = 2, as

a result of the yielding condition from Theorem 4.1, working in product spaces of E
1
2
2 �

H1(Ω). �
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