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Abstract

This paper continues to carry out a foundational study of Banyaga’s topologies of
a closed symplectic manifold (M,ω) [4]. Our intention in writing this paper is to work
out several “symplectic analogues“ of some results found in the study of Hamiltonian
dynamics. By symplectic analogue, we mean if the first de Rham’s group (with real
coefficients) of the manifold is trivial, then the results of this paper reduce to some
results found in the study of Hamiltonian dynamics. Especially, without appealing to
the positivity of the symplectic displacement energy, we point out an impact of the
L∞−version of Hofer-like length in the investigation of the symplectic nature of the
C0−limit of a sequence of symplectic maps. This yields a symplectic analogue of a
result that was proved by Hofer-Zehnder [10] (for compactly supported Hamiltonian
diffeomorphisms on R2n); then reformulated by Oh-Müller [14] for Hamiltonian dif-
feomorphisms in general. Furthermore, we show that Polterovich’s regularization pro-
cess for Hamiltonian paths extends over the whole group of symplectic isotopies, and
then use it to prove the equality between the two versions of Hofer-like norms. This
yields the symplectic analogue of the uniqueness result of Hofer’s geometry proved by
Polterovich [13]. Our results also include the symplectic analogues of some approxi-
mation lemmas found by Oh-Müller [14]. As a consequence of a result of this paper,
we prove by other method a result found by McDuff-Salamon [12].
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1 Introduction

The Hofer geometry originated with the remarkable paper of Hofer [9] that introduced the
Hofer topologies on the group of Hamiltonian diffeomorphisms of a symplectic manifold
(so-called Hofer metrics, [9]). In particular, Hofer-Zehnder [10] elaborated almost all the
basic formulae and some perspectives for the subsequent development of Hamiltonian dy-
namics based on Hofer’s metrics.
Recently, Banyaga [4] showed that on a closed symplectic manifold (M,ω), each Hofer’s
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metric generalizes over the whole group of time-one maps of all symplectic isotopies (so-
called Hofer-like metric, [4]). By generalization we mean, if the first de Rham cohomology
group (with real coefficients) of a closed symplectic manifold is trivial, then the Hofer-like
metrics reduce to Hofer’s metrics [4].
Furthermore, when the above de Rham’s group is non-trivial, then the restriction of the
L(1,∞)−version of Banyaga’s norm to the group of all Hamiltonian diffeomorphisms is
equivalent to Hofer’s norm (see [15] and [17]).
However, we have some thorough discussions based on Hofer’s topologies whose symplec-
tic analogues with respect to Banyaga’s topologies are still unknown (see [10], [11], [14],
and [13]). These facts seem to attest that to better understand the Hofer-like geometry, it is
judicious to do further investigations based on Banyaga’s topologies. This is the main goal
of the present paper.

We organize this paper as follows. In Section 2, we recall some fundamental notions
concerning symplectic diffeomorphisms and isotopies: Subsection 2.4 deals with the de-
scription of symplectic isotopies introduced in [5]; Subsection 2.5 illustrates some implica-
tions of Hopf-Rinow’s theorem from Riemannian geometry in the study of Hofer geometry,
while in Subsection 2.10, we use Hodge’s theory to prove that Polterovich’s regularization
method for Hamiltonian isotopies admits a natural symplectic analogue.
The main results are presented in Section 3: The first main result Theorem 3.3 shows that
without appealing to the positivity of the symplectic displacement energy [6] one can use
the L∞−version of Hofer-like length to investigate the symplectic nature of the C0−limit of
a sequence of symplectic diffeomorphisms.
A key ingredient in the proof of Theorem 3.3 is the fact that: if a sequence Hi of smooth
families of smooth harmonic 1−forms converges uniformly to a smooth family H of har-
monic 1−forms, then the sequence of symplectic paths generated by Hi converges in both
C0−metric and L∞−metric to the symplectic path generated by H (Lemma 3.4). This fol-
lows as a simultaneous application of Hodge’s theory, ODE’s continuity theorem together
with a result found in Subsection 2.5.
The second main result Theorem 3.8 shows that the Hofer like-geometry is independent to
the choice of the Hofer-like norm. The main idea behind the proof of Theorem 3.8 is the
deformation of any non-trivial symplectic isotopy Φ into a regular symplectic isotopy Ψ so
that the L∞−Hofer-like length of Ψ is bounded from above by the L(1,∞)−Hofer-like length
ofΦ up to an additive positive ε, and both pathsΦ andΨ have the same extremities (Lemma
3.9). This is based on the general regularization method of symplectic paths introduced in
Subsections 2.10 and Lemma 3.10.
Section 4 deals with the symplectic analogues of some approximation lemmas found by
Oh-Müller [14]. Finally, in Section 5 we give an alternative prove of a result from flux
geometry found by McDuff-Salamon [12].

2 Preliminaries

Let M be a smooth closed manifold of dimension 2n. In brief, a 2−form ω on M is called a
symplectic form if it is closed and non-degenerate. Then, a symplectic manifold is a mani-
fold which can be equipped with a symplectic form. In particular, note that any symplectic
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manifold is oriented, and not all even dimensional manifold can be equipped with a sym-
plectic form.
In the rest of this paper, we shall always assume that M is a closed manifold that admits a
symplectic form ω, and we shall fix a Riemannian metric g on M (any differentiable mani-
fold M can be equipped with a Riemannian metric). Furthermore, we shall write d to denote
the distance induced on M by the Riemannian metric g. The metric topology induced by d
on M coincides with the underlying topological structure of M.

2.1 Symplectic vector fields

The symplectic structure ω on M being non-degenerate, it induces an isomorphism between
vector fields and 1−forms on M. This isomorphism is given by: to each vector field Y on
M, one assigns the 1−form ι(Y)ω := ω(Y, .), where ι is the usual interior product. A vector
field Y on M is symplectic if the 1−form ι(Y)ω is closed, and in particular, a symplectic
vector field Y is said to be a Hamiltonian vector field if the 1−form ι(Y)ω is exact. For
instance, any harmonic 1−form α on M determines a unique symplectic vector field Y such
that ι(Y)ω = α (so-called harmonic vector field, [4]). It follows from the definition of sym-
plectic vector fields that if the first de Rham’s cohomology group of M is trivial, then any
symplectic vector field on M is Hamiltonian.

According to Hodge’s theory, a sufficient condition that guarantees the existence of
non-trivial harmonic vector fields on a symplectic manifold is the non-triviality of its first
de Rham cohomology group (with real coefficients). Note that the first de Rham’s group is
a topological invariant, i.e. it does not depend on the differentiable structure on M and only
depends on the underlying topological structure of M [8].

2.2 Symplectic diffeomorphisms and symplectic isotopies

A diffeomorphism φ : M → M, is called symplectic if it preserves the symplectic form ω,

i.e. φ∗(ω) = ω. We denote by S ymp(M,ω), the group of all symplectic diffeomorphisms of
(M,ω).
An isotopy {φt} of a symplectic manifold (M,ω) is said to be symplectic if φt ∈ S ymp(M,ω)

for each t, or equivalently, the vector field φ̇t :=
dφt

dt
◦φ−1

t is symplectic for each t. In par-
ticular, a symplectic isotopy {ψt} is a Hamiltonian isotopy if for each t, the vector field

ψ̇t :=
dψt

dt
◦ψ−1

t is Hamiltonian, i.e. there exists a smooth function F : [0,1]×M→R, called

generating Hamiltonian such that ι(ψ̇t)ω = dFt, for each t. Any Hamiltonian isotopy de-
termines its generating Hamiltonian up to an additive constant. Throughout this paper we
assume that every generating Hamiltonian F : [0,1]×M→ R is normalized, i.e. we require
that

∫
M Ftω

n = 0, for all t. Let N([0,1]×M ,R) denote the vector space of all smooth nor-
malized Hamiltonians. In addition, note that a symplectic isotopy {θt} is said to be harmonic
if for each t, the vector field θ̇t is harmonic.
We let Iso(M,ω) denote the group of all symplectic isotopies of (M,ω), and let S ymp0(M,ω)
denote the group of time-one maps of all symplectic isotopies.
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2.3 Harmonics 1−forms

Let H1(M,R) denote the first de Rham cohomology group (with real coefficients) of M, and
let H1(M,g) denote the space of harmonic 1−forms on M with respect to the Riemannian
metric g. The setH1(M,g) forms a finite dimensional vector space over R which is isomor-
phic to H1(M,R), and whose dimension is denoted b1(M), and called the first Betti number
of the manifold M [8]. Taking (hi)1≤i≤b1(M) as a basis of the vector spaceH1(M,g), we equip
H1(M,g) with the norm |.| defined as follows: for all H ∈ H1(M,g) with H =

∑b1(M)
i=1 λihi,

its norm is defined as

|H| :=
b1(M)∑

i=1

|λi|. (2.1)

We denote by PH1(M,g) the space of all smooth mappingsH : [0,1]→H1(M,g).

2.3.1 Comparison of norms

To avoid some heavy computations throughout the paper, we have found necessary to com-
pare the above norm |.| with the well-known uniform sup norm of differential 1−forms. For
this purpose, let us recall the definition of the uniform sup norm of differential 1−forms.
Consider α to be a differential 1−form on M: for each x ∈ M, we know that α induces a
linear map αx : TxM→ R, whose norm is given by

‖αx‖
g = sup{|αx(X)| : X ∈ TxM,‖X‖g = 1} (2.2)

where ‖.‖g is the norm induced on each tangent space TxM (at the point x) by the Rieman-
nian metric g. Therefore, the uniform sup norm of α, say |.|0 is defined as

|α|0 = sup
x∈M
‖αx‖

g. (2.3)

In particular, if α is a harmonic 1−form, i.e.

α =

b1(M)∑
i=1

λihi,

then we obtain

|α|0 ≤

b1(M)∑
i=1

|λi||hi|0 ≤ E|α| (2.4)

where
E := max

1≤i≤b1(M)
|hi|0. (2.5)

If the basis (hi)1≤i≤b1(M) is such that E>1, then one can always normalize such a basis so that
E equals 1. So, without loss of generality, instead of (2.4), we shall often use the following
inequality,

|α|0 ≤ |α|. (2.6)
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2.4 A description of symplectic isotopies [5]

We now recall the description of symplectic isotopies introduced in [5]. Given any symplec-
tic isotopy Φ= {φt}, one derives from Hodge’s theory that the closed 1−form ι(φ̇t)ω decom-
poses in a unique way as the sum of an exact 1−form dUΦt and a harmonic 1−formHΦt [8].
Denote by U the normalized Hamiltonian of UΦ = (UΦt ), and by H the smooth family of
harmonic 1−formsHΦ = (HΦt ). In [5], the Cartesian productN([0,1]×M,R)×PH1(M,g)
is denoted T(M,ω,g), and equipped with a group structure which makes the bijection

A : Iso(M,ω)→ T(M,ω,g),Φ 7→ (U,H) (2.7)

a group isomorphism. Under this identification, any symplectic isotopy Φ is denoted by
φ(U,H) to mean that A maps Φ onto (U,H), and the pair (U,H) is called the “generator” of
the symplectic isotopy Φ. For instance, a symplectic isotopy φ(0,H), is a harmonic isotopy,
and a symplectic isotopy φ(U,0), is a Hamiltonian isotopy.

2.4.1 Group structure on T(M,ω,g) [5]

The product rule in T(M,ω,g) is given by,

(U,H) Z (V,K) = (U +V ◦φ−1
(U,H)+∆̃(K ,φ−1

(U,H)),H +K). (2.8)

The inverse of (U,H), say (U,H) is given by

(U,H) = (−U ◦φ(U,H)− ∆̃(H ,φ(U,H)),−H). (2.9)

In (2.8) and (2.9) the quantity ∆̃ is defined as follows: for any symplectic isotopy Ψ = {ψt},

and for any smooth family of closed 1−forms α = (αt), we have

∆̃t(α,Ψ) = ∆t(α,Ψ)−

∫
M∆t(α,Ψ)ωn∫

Mω
n

,

where ∆t(α,Ψ) :=
∫ t

0 αt(ψ̇s)◦ψsds, for all t (see [5]).

Here is a consequence of (2.7) and (2.8).

Corollary 2.1. Every symplectic isotopy decomposes into the composition of a harmonic
isotopy and a Hamiltonian isotopy, and this decomposition is unique, or equivalently, every
generator (U,H) decomposes in a unique way as:

(U,H) = (0,H) Z (U ◦φ(0,H),0). (2.10)

Since the proof of the above corollary is easy, we leave it to readers and refer them to
[4, 5] for more convenience.

2.5 Scholium

So far, we have introduced the function ∆(H,Φ) whenever H is a smooth family of closed
1−forms, and Φ = {φt} is an isotopy of a compact manifold M with φ0 = idM, but have not
produced any of its algebraic, geometric or analytic properties, so one might be wondering
if they are plentiful or rare.
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2.5.1 Boundedness properties of ∆(H,Φ)

Here, we use Hopf-Rinow’s theorem to point out some boundedness properties of Hofer’s
norms of the functions ∆(H,Φ). Firstly, recall that for any smooth family of closed p−forms
{Ωt}, and for any isotopy Φ = {φt} of a compact manifold, it is well-known that

φ∗t (Ωt)−Ωt = d{
∫ t

0
φ∗s

(
ι(φ̇s)Ωt

)
ds} (2.11)

for each t, where d stands for the usual differential operator (see [4] for a quick proof). In
particular, when {Ωt} is a smooth family of closed 1−forms H = (Ht), it follows from (2.11)
that

φ∗t (Ht)−Ht = d{∆t(H,Φ)} (2.12)

for each t. Now fix a point x0 ∈ M, and for all x ∈ M pick a curve γx from x0 to x, then
define a smooth function by setting

ūt(x) :=
∫
γx

(
φ∗t (Ht)−Ht

)
(2.13)

for each t. The function ū defined in (2.13) does not depend on the choice of the curve γx

from x0 to x, and it follows from (2.12) that for each (t, x), we have

ūt(x) = (∆t(H,Φ)) (x)− (∆t(H,Φ)) (x0),

i.e. both functions ū and ∆(H,Φ) have the same Hofer norms. By Hopf-Rinow’s theorem,
for each x ∈ M, one can choose the path γx to be a geodesic, and its length
l(γx) :=

∫ 1
0 ‖γ̇x(s)‖gds satisfies

l(γx) ≤ diam(M) (2.14)

where diam(M) stands for the diameter of M with respect to the Riemannian metric g. For
instance, for each t, consider y0 to be any point of M that realizes the supremum of the
function x 7→ |ūt(x)|, and derive from the triangle inequality that,

sup
x
|ūt(x)| ≤ |

∫
γy0

Ht|+ |

∫
γy0

φ∗t (Ht)|

≤ |Ht|0

∫ 1

0
‖γ̇y0(s)‖gds+ sup

v,s
|Dφv(γy0(s))||Ht|0

∫ 1

0
‖γ̇y0(s)‖gds,

≤ diam(M)(1+ sup
s,v
|Dφv(γy0(s))|)|Ht|0,

for each t, and where Dφv is the tangent map of φv. So, we obtain

sup
x
|ūt(x)| ≤ diam(M)(1+ sup

s,v
|Dφv(γy0(s))|)|Ht|0 (2.15)

for each t, and since we always have,

osc(∆t(H,Φ)) = osc(ūt) ≤ 2sup
x
|ūt(x)| (2.16)
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for each t, then we deduce from (2.15) together with (2.16) that∫ 1

0
osc(∆t(H,Φ))dt ≤ 2diam(M)(1+ sup

s,v
|Dφv(γy0(s))|)

∫ 1

0
|Ht|0dt, (2.17)

and
max
t∈[0,1]

osc(∆t(H,Φ)) ≤ 2diam(M)(1+ sup
s,v
|Dφv(γy0(s))|) max

t∈[0,1]
|Ht|0.� (2.18)

Notice that (2.17) and (2.18) are useful in the rest of this paper.

2.5.2 Algebraic properties of ∆(H,Φ)

Proposition 2.2. Let Φ = {φt} and Ψ = {ψt} be two isotopies. Let H = (Ht) be a smooth
family of closed 1−forms. Then, for each t, there exists a constant η which depends only on
Φ, Ψ, andH such that,

∆t(H ,Φ◦Ψ)(x) = ∆t(H ,Ψ)(x)+∆t(H ,Φ)◦ψt(x)+η,

for all x ∈ M.

Proof. Using (2.11) we derive that,

d∆t(H ,Φ◦Ψ) = (φt ◦ψt)∗Ht −Ht

= ψ∗t (φ∗t (Ht))−Ht

= ψ∗t (Ht +d∆t(H ,Φ))−Ht

= ψ∗t (Ht)+d(∆t(H ,Φ)◦ψt)−Ht

= Ht +d∆t(H ,Ψ)+d(∆t(H ,Φ)◦ψt)−Ht

= d∆t(H ,Ψ)+d(∆t(H ,Φ)◦ψt),

for each t ∈ [0,1]. Since M is connected, it follows from the above equalities that there
exists a constant η such that:

∆t(H ,Φ◦Ψ)(x) = ∆t(H ,Ψ)(x)+∆t(H ,Φ)◦ψt(x)+η,

for all x ∈ M. Note that η depends only on Φ, t, Ψ, and H , but not on x. This achieves the
proof. �

For further survey of the class of functions ∆(H ,Φ), let us consider the following
Poincaré’s scalar product :

〈, 〉P : H1(M,R)×H2n−1(M,R)→ R,

([α], [β]) 7→
∫

M
α∧β,
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where H∗(M,R) represents the ∗−th de Rham cohomology group with real coefficients, and
[α] stands for the de Rham cohomology class of a closed differential form α.

We have the following fact.

Proposition 2.3. LetH = (Ht) be a smooth family of closed 1−forms, and let Φ = {φt} be a
symplectic isotopy. Then for each t ∈ [0,1], we have∫

M
∆t(H ,Φ)ωn = n〈Flux(Φ̄t), [Ht ∧ω

(n−1)]〉P (2.19)

where Φ̄t is the isotopy s 7→ φst, and Flux stands for the flux homomorphism. In particular,
if Φ is a Hamiltonian isotopy then the right hand side in (2.19) vanishes.

Proof. For each fixed t ∈ [0,1], since the differential formHt ∧ω
n is of degree (2n+1)

over a 2n−dimensional manifold, we derive thatHt ∧ω
n = 0. This implies that

Ht(φ̇s)ωn−nι(φ̇s)ω∧Ht ∧ω
(n−1) = 0,

for each s ∈ [0, t]. Composing the above equality in both sides by φ∗s yields,

φ∗s
(
Ht(φ̇s)

)
ωn−nφ∗s

(
ι(φ̇s)ω

)
∧φ∗s(Ht)∧ω(n−1) = 0 (2.20)

for each s ∈ [0, t]. Using (2.12), we derive that for each s ∈ [0, t], we have

φ∗s(Ht) =Ht +d f s
{φt},Ht

(2.21)

where
f s
{φt},Ht

:=
∫ s

0
Ht(φ̇u)◦φudu.

Relations (2.20) and (2.21) immediately imply that,

φ∗s
(
Ht(φ̇s)

)
ωn = nφ∗s

(
ι(φ̇s)ω

)
∧Ht ∧ω

(n−1)+nφ∗s
(
ι(φ̇s)ω

)
∧d f s

{φt},Ht
∧ω(n−1) (2.22)

for each s ∈ [0, t]. That is,∫
M

(∫ t

0
φ∗s

(
Ht(φ̇s)

)
ds

)
ωn = n

∫
M

(∫ t

0
φ∗s

(
ι(φ̇s)ω

)
ds

)
∧Ht ∧ω

(n−1) (2.23)

+n
∫

M

(∫ t

0

(
φ∗s

(
ι(φ̇s)ω

)
∧d f s

{φt},Ht

)
ds

)
∧ω(n−1).

On the other hand, since the differential forms φ∗s
(
ι(φ̇s)ω

)
, and ω(n−1) are closed, we

compute∫
M

∫ t

0
φ∗s

(
ι(φ̇s)ω

)
∧d f s

{φt},Ht
∧ω(n−1)ds =

∫
M

d[
∫ t

0
f s
{φt},Ht

φ∗s
(
ι(φ̇s)ω

)
∧ω(n−1)ds] (2.24)

and since the manifold M is without boundary, we derive from Stokes’ theorem that∫
M

d[
∫ t

0
f s
{φt},Ht

φ∗s
(
ι(φ̇s)ω

)
∧ω(n−1)ds] =

∫
∂M

∫ t

0
f s
{φt},Ht

φ∗s
(
ι(φ̇s)ω

)
∧ω(n−1)ds = 0 (2.25)
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for each t. We combine (2.23), (2.24), and (2.25) to obtain∫
M

∫ t

0
φ∗s

(
Ht(φ̇s)

)
dsωn = n

∫
M

(∫ t

0
φ∗s

(
ι(φ̇s)ω

)
ds

)
∧Ht ∧ω

(n−1). (2.26)

Observe that for each t, the de Rham cohomology class of the 1−form
∫ t

0 φ
∗
s

(
ι(φ̇s)ω

)
ds is

exactly the flux of the isotopy Φ̄t, i.e. (2.26) can be written as∫
M
∆t(H ,Φ)ωn = n〈Flux(Φ̄t), [Ht ∧ω

(n−1)]〉P. (2.27)

In particular, if the isotopy Φ is Hamiltonian, then so is Φ̄t for each t, and in this case, a
result found in [2] implies that Flux(Φ̄t) = 0, for each t, i.e. for each time t, the right hand
side in (2.27) is zero. This completes the proof. �

2.6 A geometric interpretation of the functions ∆(α,Φ)

Given a smooth family of diffeomorphisms Φ = {φt}, by setting Xt(x) =
d
ds

(φs(x))|s=t , for
each t and for all x ∈ M, one defines a family of tangent vector fields (Xt) on M: Xt(x) is
the tangent vector to the curve s 7→ φs(x) at the time t and we have φ̇t = Xt ◦φ

−1
t for each t

(see page 5 in [3] for more convenience). In particular, for each fixed (t, x) ∈ [0,1]×M, if
we consider the curve γx,t : s 7→ φst(x), then

γ̇x,t(s) =
d
ds

(φst(x)) = t
d
du

(φu(x))|u=st = tXu(x)|u=st (2.28)

for all s. Now, assume Φ is a symplectic isotopy, and α is a closed 1−form. We have∫
γx,t

α =

∫ 1

0
αγx,t(s)(γ̇x,t(s))ds =

∫ 1

0
φ∗st

(
α(tφ̇st)

)
(x)ds =

∫ t

0
φ∗u

(
α(φ̇u)

)
(x)du. (2.29)

On the other hand, if {θt} is the symplectic flow generated by α, then we derive as in [12]
that ∫

γx,t

α =

∫
γx,t

(∫ 1

0
ι(θ̇u)ωdu

)
=

∫ 1

0

∫ 1

0
ωγx,t(s)(θ̇u(γx,t(s)), γ̇x,t(s))duds (2.30)

i.e. ∫
γx,t

α =

∫
[0,1]×[0,1]

(Θγx,t )
∗ω (2.31)

where
Θγx,t : [0,1]× [0,1]→ M, (u, s) 7→ θu(φst(x)).

Geometrically, the equalities (2.29) and (2.31) tell us that for each t, the real number
∆t(α,Φ)(x) can be interpreted as the algebraic value of the symplectic area of the 2−chain
{θu(φst(x))|0 ≤ u, s ≤ 1}. In particular, each zero of the function ∆t(α,Φ) gives rise to a
2−chain with vanishing symplectic area. The following consequence of Proposition 2.3
gives a sufficient condition that guarantees the existence of at least one zero for such a
function.
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Lemma 2.4. If α is a smooth family of closed 1−forms on M and Φ is a Hamiltonian
isotopy, then for each t, the function x 7→ ∆t(α,Φ)(x) has at least one vanishing point on M.

Proof. Assume α is a smooth family of closed 1−forms and Φ is a Hamiltonian isotopy.
For each fixed t ∈ [0,1], we have a smooth function x 7→ ∆t(α,Φ)(x) from the compact M
into the set of real numbers. Thus, the latter function achieves its bounds; and this implies
that

min
x∈M
∆t(α,Φ)(x)

∫
M
ωn ≤

∫
M
∆t(α,Φ)ωn ≤max

x∈M
∆t(α,Φ)(x)

∫
M
ωn,

i.e. minx∈M∆t(α,Φ)(x) ≤ 0, and 0 ≤maxx∈M∆t(α,Φ)(x) since by Proposition 2.3 we have∫
M∆t(α,Φ)ωn = 0. �

2.7 Reparameterization of symplectic isotopies [5, 14]

We shall need the following basic formula for the generators of reparameterized symplectic
isotopies. If Φ = {φt} is a symplectic isotopy generated by (U,H), and ξ : [0,1]→ [0,1] is
a smooth function, then the reparameterized path t 7→ φξ(t), denoted Φξ, is generated by the
element (U,H)ξ defined as

(U,H)ξ := (Uξ,Hξ) (2.32)

whereHξ is the smooth family of harmonic 1−forms t 7→ ξ̇(t)Hξ(t); Uξ is the smooth family
of smooth functions (x, t) 7→ ξ̇(t)Uξ(t)(x); while ξ̇(t) is the derivative of the function ξ at the
point t. The inverse element of (U,H)ξ is given by

(U,H)ξ = (−Uξ ◦Φξ − ∆̃(Hξ,Φξ),−Hξ) (2.33)

with

∆t(Hξ,Φξ) =
∫ ξ(t)

0
ξ̇(t)Hξ(t)(φ̇u)◦φudu = ξ̇(t)∆ξ(t)(H ,Φ) (2.34)

for each t, i.e.
∆(Hξ,Φξ) = ∆ξ(H ,Φ). (2.35)

Definition 2.5. ([14]). Given a smooth function ξ : [0,1]→ R, its norm ‖ξ‖ham is defined
by

‖ξ‖ham = ‖ξ‖C0 + ‖ξ̇‖L1 ,

with ‖ξ̇‖L1 =
∫ 1

0 |ξ̇(t)|dt,and ‖ξ‖C0 = supt |ξ(t)|.

2.8 Boundary flat symplectic isotopies [5, 14]

Definition 2.6. ([5]). Given (U,H) ∈T(M,ω,g), we say that (U,H) is boundary flat if there
exists δ ∈]0,1[ such that (Ut,Ht) = (0,0), for all t in [0, δ[∪]1−δ,1].

In other words, a symplectic path {φt} is boundary flat if there exists a constant
0<δ<1 such that φt = idM for all 0 ≤ t<δ, and φt = φ1 for all 1−δ<t ≤ 1.
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2.9 The C0−topology

Let Homeo(M) be the group of all homeomorphisms of M equipped with the C0− compact-
open topology [1]. This is the metric topology induced by the following distance

d0( f ,h) =max(dC0( f ,h),dC0( f −1,h−1)) (2.36)

where
dC0( f ,h) = sup

x∈M
d(h(x), f (x)). (2.37)

On the space of all continuous paths λ : [0,1]→ Homeo(M) such that λ(0) = idM, we con-
sider the C0−topology as the metric topology induced by the following metric

d̄(λ,µ) = max
t∈[0,1]

d0(λ(t),µ(t)). (2.38)

2.10 Regularization of symplectic isotopies

Definition 2.7. A symplectic path {φt} is said to be regular if for every t, the vector field φ̇t

does not vanish.

First of all, note that a regularization method (in the sense of Definition 2.7) for Hamil-
tonian paths is due to Polterovich [13]. As far as I know, when H1(M,R) , {0}, a general
regularization method (in the sense of Definition 2.7) for the whole group of symplec-
tic isotopies is unknown. The goal of this subsection is to provide such a result for non-
Hamiltonian symplectic paths.
Given a symplectic isotopy Φ generated by (U,H); in view of Proposition 5.2.A found in
[13], for the above Hamiltonian U, there exists a Hamiltonian loop φ(r,0) which is close to
the constant loop identity (in the C∞−sense), and in particular, its generating function r is
arbitrarily small in the L(1,∞)−version of Hofer’s norm so that

osc(−rt +Ut) , 0 (2.39)

for all t. Now consider (V,K) to be the product (r,0)Z (U,H), which can be written imme-
diately as

(V,K) = (−r ◦φ(r,0)+U ◦φ(r,0)+∆̃(H ,φ(r,0)),H). (2.40)

We claim that the isotopy generated by the element (V,K) defined in (2.40) is regular in the
sense of Definition 2.7. The proof of this claim relies on Hodge’s theory and Proposition
5.2.A found in [13]. Arguing indirectly, we assume that there exists a time s for which the
vector field Xs = φ̇

s
(V,K) vanishes identically, i.e.

ι(Xs)ω = dVs+Ks = 0. (2.41)

Inserting (2.40) in (2.41) gives

d(−rs ◦φ
s
(r,0)+Us ◦φ

s
(r,0)+∆s(H ,φ(r,0)))+Hs = 0. (2.42)
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From (2.42), we see that the harmonic 1−form Hs is exact, and the latter 1−form must be
trivial because of Hodge’s theory: any exact harmonic form of a compact oriented Rieman-
nian manifold is trivial [8], i.e. Hs = 0. This implies that

∆s(H ,φ(r,0)) =
∫ s

0
Hs(φ̇u

(r,0))◦φ
u
(r,0)du = 0,

i.e. the function −rs◦φ
s
(r,0)+Us◦φ

s
(r,0) is constant since M is connected. The latter argument

contradicts (2.39), and the claim follows. �

As a consequence of the above regularization method, we derive as in [13] that using
any regular symplectic path φ(V,K), we can define a function ζ : [0,1]→ [0,1] to be the
inverse of the map,

s 7→

∫ s
0 (osc(Vt)+ |Kt|)dt∫ 1
0 (osc(Vt)+ |Kt|)dt

. (2.43)

The derivative of ζ is given explicitly by :

ζ′(s) =

∫ 1
0 (osc(Vt)+ |Kt|)dt

osc(Vζ(s))+ |Kζ(s)|
(2.44)

for each s. If ζ is only C1, then we can approximate ζ in the C1−topology by a smooth
diffeomorphism κ : [0,1]→ [0,1], that fixes 0 and 1 [1].
Later in the next section, we will understand the role that plays the above regularization
method in the comparison of the infima of Banyaga’s lengths relatively to each fixed φ ∈
S ymp0(M,ω).

3 Main results

Throughout this section, we introduce the main results of this paper. We shall start by re-
calling the notions of lengths for symplectic isotopies introduced by [4].

According to [4], given a symplectic isotopy Φ generated by (U,H), the L(1,∞)−version
and the L∞−version of Hofer-like lengths of a Φ are defined respectively by

l(1,∞)(Φ) =
∫ 1

0
(osc(Ut)+ |Ht|)dt, (3.1)

l∞(Φ) = max
t∈[0,1]

(osc(Ut)+ |Ht|). (3.2)

In the case that H1(M,R) vanishes, the above lengths are called Hofer’s lengths. It is clear
that if Φ is a Hamiltonian isotopy generated by (U,0), then its inverse Φ−1 is generated by
(−U ◦Φ,0); and we have l(1,∞)(Φ) = l(1,∞)(Φ−1), and l∞(Φ) = l∞(Φ−1) (symmetry). On the
other hand, for non-Hamiltonian symplectic isotopies we do not know whether the above
Hofer-like lengths are symmetric or not. Indeed, for such a symplectic isotopy Φ generated
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by (U,H), the formula for inversion of generators tells us that Φ−1 is generated
by (−U ◦Φ− ∆̃(H ,Φ),−H), and the gap of symmetry in each of the above lengths seems to
come from the appearance of the function ∆̃(H ,Φ) in the generator of Φ−1. This does not
mean that the appearance of ∆̃(H ,Φ) in the generator of Φ−1 justifies the non-symmetry of
the lengths of Φ. In fact, the following example exhibits the existence of a larger number of
non-Hamiltonian symplectic isotopies whose Hofer-like lengths are symmetric.

Example 3.1. (Non-Hamiltonian symplectic isotopies with symmetric lengths). Let α
be a non-trivial harmonic 1−form. It is clear that the symplectic flow {ρt} generated by
(0,α) is non-Hamiltonian since its flux is non-trivial. Next, consider Y to be the smooth
autonomic vector field such that ι(Y)ω = α, and for each t compute

∆t(α, {ρt})(x) =
∫ t

0
ρ∗s(α(ρ̇s))(x)ds =

∫ t

0
α(Y)◦ρs(x)ds =

∫ t

0
ω(Y,Y)◦ρs(x)ds = 0 (3.3)

for all x ∈ M because ω(Y,Y) = 0. On the other hand, since {ρt}
−1 is generated by

(−∆̃(α, {ρt}),−α), one derives from (3.3) that

l(1,∞)({ρt}
−1) =

∫ 1

0

[
osc

(
−∆̃t(α, {ρt})

)
+ |α|

]
dt = |α| = l(1,∞)({ρt}), (3.4)

and
l∞({ρt}

−1) = max
t∈[0,1]

[
osc

(
−∆̃t(α, {ρt})

)
+ |α|

]
= |α| = l∞({ρt}). (3.5)

Remark 3.2. Given a symplectic isotopy Φ and a smooth function ξ : [0,1]→ [0,1] that
fixes 0 and 1, one can derive Subsection 2.7 that

l(1,∞)(Φξ) = l(1,∞)(Φ) (3.6)

i.e. the L(1,∞)−length is invariant under reparameterization via smooth curves ξ that fix 0
and 1.

To put the above lengths into further perspective, note that Hofer-Zehnder [10] showed
that one can use the Hofer lengths to investigate the Hamiltonian nature of the C0−limit
of a sequence of Hamiltonian diffeomorphisms (see Theorem 6, [10]). Since the Hofer-
like lengths generalize the Hofer lengths, it is natural to investigate whether one can use
the Hofer-like lengths to elaborate the symplectic analogues of Theorem 6−[10] or not. Of
course, by analogy with the Hamiltonian case, in presence of a positive symplectic displace-
ment energy, such symplectic analogues can be provided (see [6]). The worst imaginable
scenario is to think of the above symplectic analogues of Theorem 6−[10] in the lack of a
positive symplectic displacement energy. However, the following result shows that using
exclusively the L∞−Hofer-like length, we can provide a symplectic analogue of Theorem
6−[10] without appealing to the positivity of the symplectic displacement energy.
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Theorem 3.3. Let (M,ω) be a closed symplectic manifold. Let {φt
i} be a sequence of sym-

plectic isotopies, let {ψt} be another symplectic isotopy, and let φ : M→ M be a map such
that

• (φ1
i ) converges uniformly to φ, and

• l∞({ψt}−1 ◦ {φt
i})→ 0, i→∞.

Then we must have φ = ψ1.

The choice of the L∞−length in the statement of Theorem 3.3 is technically supported
by the following facts.

Lemma 3.4. (Naturality of the uniform sup norm) Let {ρt
i} be a sequence of harmonic

isotopies generated by (0,H i) and let {ρt} be another harmonic isotopy generated by (0,H)
such that maxt∈[0,1] |H

i
t −Ht| → 0, i→∞. Then, the following properties hold

1. l∞({ρt}−1 ◦ {ρt
i})→ 0, i→∞, and

2. {ρt
i} converges uniformly to {ρt}.

Proof. For (2), we define a sequence (Zi
t) of smooth families of harmonic vector fields

such that ι(Zi
t)ω =H

i
t , for each i and for all t. Likewise, we define a smooth family (Zt) of

harmonic vector fields such that ι(Zt)ω =Ht, for all t. Since by assumption the sequence
(H i) converges uniformly to H , it turns out that the sequence (Zi

t) converges uniformly
to (Zt). Therefore, it follows from the standard continuity theorem of ODE for Lipschitz
vector fields that the sequence of paths generated by (Zi

t) converges uniformly to the path
generated by (Zt), i.e. {ρt

i} converges uniformly to {ρt}. For (1), compute

(0,H) Z (0,H i) = (∆̃(H i−H , {ρt}),H i−H),

for each i, and derive from (2.18) that

max
t∈[0,1]

osc(∆t(H i−H , {ρt})) ≤ 2diam(M)(1+ sup
t,s
|Dρt(γy0(s))|) max

t∈[0,1]
|Ht −H

i
t | (3.7)

where Dρt stands for the tangent map of ρt, y0 ∈ M and γy0 is a geodesic (see Subsection
2.5). The right hand side in (3.7) tends to zero when i goes at infinity since the quantity
(1+ supt,s |Dρ

t(γy0(s))|) is bounded, and by assumption we have
maxt∈[0,1] |H

i
t −Ht|→ 0, i→∞. This completes the proof. �

Remark 3.5. It is clear from Lemma 3.4 that if {ρt
i} is a sequence of harmonic isotopies

generated by (0,H i) and {ρt} is another harmonic isotopy generated by (0,H), then the
convergence l∞({ρt}−1 ◦ {ρt

i})→ 0, i→∞, is equivalent to the convergence
maxt∈[0,1] |H

i
t −Ht| → 0, i→∞.

The following fact is a consequence of Lemma 3.4.
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Corollary 3.6. LetΦi be a sequence of symplectic isotopies and letΦ be another symplectic
isotopy such that l∞(Φ−1 ◦Φi)→ 0, i→∞. If for each i, µi is the Hamiltonian isotopy in the
Hodge decomposition of Φi, and µ is the Hamiltonian isotopy in the Hodge decomposition
of Φ, then we have l∞(µ−1 ◦µi)→ 0, i→∞.

Proof. Let Φ be a symplectic isotopy generated by (U,H), and Φi be a sequence of
symplectic isotopies generated by (U i,H i). Then, by Corollary 2.1, the Hamiltonian part µ
in the Hodge decomposition of Ψ is generated by (U ◦φ(0,H),0), and for each i, the Hamil-
tonian part µi in the Hodge decomposition of Φi is generated by (U i ◦φ(0,H i),0). For each i,
compute

osc(U i
t ◦φ

t
(0,H i)−Ut ◦φ

t
(0,H)) ≤ osc(U i

t −Ut)+osc(Ut ◦φ
t
(0,H i)−Ut ◦φ

t
(0,H)) (3.8)

for all t, and derive from the uniform continuity of the map (t, x) 7→ Ut(x) together with
Lemma 3.4 that maxt(osc(Ut ◦φ

t
(0,H i) −Ut ◦φ

t
(0,H)))→ 0, i→∞, while by assumption we

have maxt(osc(U i
t −Ut))→ 0, i→∞. Hence,

max
t

(osc(U i
t ◦φ

t
(0,H i)−Ut ◦φ

t
(0,H)))→ 0, i→∞. (3.9)

This completes the proof. �

Proof of Theorem 3.3. Firstly, note that we do not use the positivity of the symplectic
displacement energy; and this renders the proof rather delicate. So, we shall proceed in
several steps.

• Step (1). (Convergence of symplectic isotopies). For each i, let {ρt
i} (resp. {ρt}) be

the harmonic isotopy arising in the Hodge decomposition of the isotopy {φt
i} (resp.

{ψt}). From the convergence l∞({ψt}−1 ◦ {φt
i})→ 0, i→∞, we derive by the mean of

Lemma 3.4 that

1. l∞({ρt}−1 ◦ {ρt
i})→ 0, i→∞, and

2. {ρt
i} converges uniformly to {ρt}.

• Step (2). (Decomposition of the map φ = limC0(φ1
i )). For each i, let {µt

i} (resp. {µt})
denote the Hamiltonian isotopy arising in the Hodge decomposition of the isotopy
{φt

i} (resp. {ψt}). One derives from the assumption that the sequence of time-one
maps (φ1

i ) converges uniformly to φ, and according to step (1) the sequence of time-
one maps (ρ1

i ) converges uniformly to the time-one map ρ1. The preceding arguments
imply that the sequence of time-one maps (µ1

i ) converges uniformly to a continuous
map σ : M → M because µ1

i = (ρ1
i )−1 ◦φ1

i for each i, and each factor of the compo-
sition converges in the C0−metric. Note that at this level, we have no guarantee that
the maps σ and φ are invertible. Since the composition of maps is continuous with
respect to the C0−metric, it follows from the above C0−convergences that the map φ
decomposes as follows:

φ = ρ1 ◦σ. (3.10)
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• Step (3). (The Hamiltonian nature of the map σ). To achieve the proof, all we
have to show is that σ = µ1, where µ1 is the time-one map of the Hamiltonian isotopy
{µt}. Arguing indirectly, i.e. assuming that σ , µ1, we derive that there exists a small
non-empty open ball B ⊂ M such that B is completely displaced by (µ1)−1 ◦σ, i.e.
B∩ [(µ1)−1 ◦σ](B) = ∅. Since B is compact and the convergence µ1

i → σ is uniform,
we must have B∩ [(µ1)−1 ◦µ1

i ](B) = ∅, for i large enough. The above arguments tell
us that we can apply the energy-capacity inequality theorem [11] to obtain

0<C(B)/2 ≤ l∞({µt}−1 ◦ {µt
i}) (3.11)

for i large enough, where C(B) represents the Gromov area of the ball B. But, Corol-
lary 3.6 implies that the right hand side in (3.11) tends to zero for i large enough, and
this contradicts the positivity of the Gromov area C(B). Hence, we have proved that

σ = µ1. (3.12)

• Step (4). Finally, (3.10) together with (3.12) implies that,

φ = ρ1 ◦σ = ρ1 ◦µ1 = ψ1. (3.13)

This completes the proof. �

The following result is an immediate consequence of Theorem 3.3, and it can justify
the definition of strong symplectic isotopies in the L∞−context [7, 16].

Corollary 3.7. Let Φi = {φ
t
i} be a sequence of symplectic isotopies, Ψ = {ψt} be another

symplectic isotopy, and let η : t 7→ ηt be a family of maps ηt : M→M, such that the sequence
Φi converges uniformly to η and l∞(Ψ−1 ◦Φi)→ 0, i→∞. Then η = Ψ.

Proof. Assume the contrary i.e. assume that Ψ , η. This is equivalent to say that there
exists t ∈]0,1] such that ηt , ψt. Therefore, the sequence of symplectic paths Ξi : s 7→ φst

i
contradicts Theorem 3.3. This completes the proof. �

In order to introduce the second main result of this paper, we need to recall the following
definitions.

3.1 Banyaga’s Hofer-like norms

Let φ ∈ S ymp0(M,ω). Using the lengths introduced in (3.1) and (3.2), Banyaga [4] defined
respectively the L(1,∞)−energy and the L∞−energy of φ by

e0(φ) = inf(l(1,∞)(Φ)), (3.14)

and
e∞0 (φ) = inf(l∞(Φ)) (3.15)

where each infimum is taken over the set of all symplectic isotopies Φ with time-one map
equal to φ.
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Therefore, the L(1,∞)−version and the L∞−version of the Hofer-like norms of φ are respec-
tively defined by

‖φ‖(1,∞)
HL = (e0(φ)+ e0(φ−1))/2, (3.16)

and
‖φ‖∞HL = (e∞0 (φ)+ e∞0 (φ−1))/2. (3.17)

The norms ‖.‖∞HL and ‖.‖(1,∞)
HL are the symplectic analogues of the Hofer norms for Hamilto-

nian diffeomorphisms in the following sense: if H1(M,R) vanishes, then the norm ‖.‖∞HL is
called the L∞−version of Hofer’s norm, and the norm ‖.‖(1,∞)

HL is called the L(1,∞)−version
of Hofer’s norm [9]. In [13] it is proved that the two versions of Hofer’s norms are equal,
i.e. the two norms ‖.‖∞HL and ‖.‖(1,∞)

HL are equal whenever H1(M,R) vanishes (see Lemma
5.1.C found in [13]). However, the following main result shows that the two norms ‖.‖∞HL
and ‖.‖(1,∞)

HL continue to coincide regardless of whether H1(M,R) is trivial or not, i.e. the
Hofer-like geometry is independent to the choice of the Hofer-like norm.

Theorem 3.8. Let (M,ω) be a closed symplectic manifold. For every φ ∈ S ymp0(M,ω), we
have

‖φ‖∞HL = ‖φ‖
(1,∞)
HL .

Theorem 3.8 was announced in [5], it yields the symplectic analogue of Lemma 5.1.C
found in [13]. Its proof appeals to the following refined version of a result found in [5].

Lemma 3.9. (Fundamental Lemma of Hofer-like Geometry) Let Φ be a symplectic iso-
topy. For any positive real number ε, there exists a regular symplectic isotopy Ψ with the
same extremities than Φ such that

l∞(Ψ)<l(1,∞)(Φ)+ ε. (3.18)

Proof of Theorem 3.8. It is clear from the definition of the Hofer-like energies that
‖.‖(1,∞)

HL ≤ ‖.‖∞HL. For the converse, consider φ ∈ S ymp0(M,ω), and derive from the char-
acterization of the infimum that for each positive real number ε, there exists a symplectic
isotopy Φε with time-one map equals to φ such that l(1,∞)(Φε) ≤ e0(φ)+ ε. By Lemma 3.9,
there exists another symplectic isotopy Ψε with the same extremities than Φε such that
l∞(Ψε)<l(1,∞)(Φε)+ ε. This yields, e∞0 (φ) ≤ l∞(Ψε)<e0(φ)+2ε, i.e.

e∞0 (φ)<e0(φ)+2ε. (3.19)

In a similar way we use once more the Lemma 3.9 to deduce that for each positive real
number ε, we have

e∞0 (φ−1)<e0(φ−1)+2ε. (3.20)

Therefore, adding (3.19) and (3.20) member to member leads to

‖φ‖∞HL = (e∞0 (φ−1)+ e∞0 (φ))/2<(e0(φ)+ e0(φ−1)+4ε)/2 = ‖φ‖(1,∞)
HL +2ε. (3.21)

Since (3.21) holds for any arbitrary positive ε, we conclude that ‖φ‖∞HL ≤ ‖φ‖
(1,∞)
HL . This com-

pletes the proof. �
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3.2 Proof of Lemma 3.9

In this subsection, we will always denote by r(g) the injectivity radius of the Riemannian
metric g. We shall need the following fact.

Lemma 3.10. Let (M,g) be a closed oriented Riemannian manifold, and letH = (Ht) be a
smooth family of closed 1−forms. The following facts hold:

1. If Ψ = {ψt} is an isotopy, and ξ j : [0,1]→ [0,1], j = 1,2 are two smooth monotonic
functions that fix 0, then there exists a constant B2 which depends only on H and Ψ
such that ∫ 1

0
osc(∆t(H ,Ψξ1)−∆t(H ,Ψξ2))dt ≤ B2‖ξ1− ξ2‖ham. (3.22)

2. If Φ = {φt} and Ψ = {ψt} are two isotopies such that d̄(Φ,Ψ) ≤ r(g)/2, then

max
t∈[0,1]

osc(∆t(H ,Φ)−∆t(H ,Ψ)) ≤ 4 max
t∈[0,1]

|Ht|0d̄(Φ,Ψ). (3.23)

Proof. For each j = 1,2, differentiating the reparameterized path Ψξ j in the variable t
yields Ψ̇ξ j(t) = ξ̇ j(t)ψ̇ξ j(t), for all t ∈ [0,1]. Now, compute

∆t(H ,Ψξ j) =
∫ t

0
Ht(Ψ̇ξ j(s))◦Ψξ j(s)ds =

∫ t

0
ξ̇ j(s)Ht(ψ̇ξ j(s))◦ψξ j(s)ds (3.24)

for each t, and we use a suitable variable change to see that the right hand side in (3.24) can
be written as ∫ t

0
ξ̇ j(s)Ht(ψ̇ξ j(s))◦ψξ j(s)ds =

∫ ξ j(t)

0
Ht(ψ̇u)◦ψudu. (3.25)

Relation (3.24 ) together with (3.25) yields∫ 1

0
osc(∆t(H ,Ψξ1)−∆t(H ,Ψξ2))dt =

∫ 1

0
osc

(∫ max{ξ1(t),ξ2(t)}

min{ξ1(t),ξ2(t)}
Ht(ψ̇u)◦ψudu

)
dt, (3.26)

≤ 2sup
s,t,x
|Ht(ψ̇s)(x)|‖ξ1− ξ2‖C0 ,

≤ 2sup
s,t,x
|Ht(ψ̇s)(x)|‖ξ1− ξ2‖ham.

Therefore, the last inequality in (3.26) suggests that the desired B2 can be chosen as
B2 := 2sups,t,x |Ht(ψ̇s)(x)|<∞. For (2), as in Subsection 2.5, fix a point m ∈ M, and for all x
in M, pick any curve γx from m to x, and therefore define a smooth function µ̄t by

µ̄t(x) :=
∫
γx

(
φ∗t (Ht)−ψ∗t (Ht)

)
(3.27)

for each t. Now, let y0 be any point of M that realizes the supremum of the function x 7→
|µ̄t(x)|, i.e.

sup
x
|µ̄t(x)| = |

∫
γy0

(
φ∗t (Ht)−ψ∗t (Ht)

)
| = |

∫
φt◦γy0

Ht −

∫
ψt◦γy0

Ht|. (3.28)
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In the what follows, for each fixed t, we shall express the quantity (
∫
φt◦γy0

Ht−
∫
ψt◦γy0

Ht) as

a difference between two integrals of the closed 1−formHt over two minimizing geodesics,
and next we shall combine it with a well-known result from Riemannian geometry to
achieve the proof. For this purpose, using the topological assumption d̄(Φ,Ψ) ≤ r(g)/2, we
derive that for each fixed t ∈ [0,1], and for all z ∈ M, the points φt(z) and ψt(z) can be con-
nected through a minimizing geodesic χz. This induces a homotopy Ht : [0,1]× [0,1]→ M
between the curves s 7→ (φt ◦γy0)(s) and s 7→ (ψt ◦γy0)(s), i.e. we have Ht(0, s) = φt(γy0(s))
and Ht(1, s) = ψt(γy0(s)) for all s ∈ [0,1]. We may define Ht(u, s) to be the unique mini-
mizing geodesic χ(γy0 (s)) that connects φt(γy0(s)) to ψt(γy0(s)) for all s ∈ [0,1]. On the other
hand, put

�t := {Ht(u, s) | (u, s) ∈ [0,1]× [0,1]} (3.29)

and derive from Stokes’ theorem that
∫
∂�tHt = 0, where ∂�t represents the boundary of the

set �t, i.e. ∫
φt◦γy0

Ht −

∫
ψt◦γy0

Ht =

∫
χy0

Ht −

∫
χm

Ht (3.30)

for each t. In (3.30), each of the integrals
∫
χy0
Ht and

∫
χm
Ht is bounded from above by

|Ht|0d̄(Φ,Ψ) because the speed is constant and equals to the distance between the end points.
Finally, we see that inserting (3.28) in (3.30) implies

max
t∈[0,1]

osc(∆t(H ,Φ)−∆t(H ,Ψ)) ≤ 4 max
t∈[0,1]

|Ht|0d̄(Φ,Ψ).

This completes the proof. �

Proof of Lemma 3.9. Let Φ be a symplectic isotopy generated by (U,H), and let ε be
a positive real number. Consider Ξ to be the isotopy obtained by regularizing the isotopy
Φ as explained in Subsection 2.10. It follows from Subsection 2.10 that the isotopy Ξ is
generated by the element (V,K) defined in (2.40) so that

l(1,∞)(Ξ) =
∫ 1

0
(osc(Vt)+ |Kt|)dt ≤ l(1,∞)(Φ)+

∫ 1

0
osc(rt)dt+

∫ 1

0
osc(∆t(H ,φ(r,0)))dt,

where φ(r,0) is a Hamiltonian loop such that
∫ 1

0 osc(rt)dt<ε/2 (see Subsection 2.10). Since
Polterovich’s arguments provided in Subsection 2.10 state that the path φ(r,0) is arbitrarily
close to the constant path identity (in the C∞−topology), we derive from Lemma 3.10 that
one can assume

∫ 1
0 osc(∆t(H ,φ(r,0)))dt<ε/2. Hence,

l(1,∞)(Ξ)<l(1,∞)(Φ)+ ε. (3.31)

Now we use the isotopy Ξ to define a curve ζ as in Subsection 2.10 (see (2.43)), and we let
Ξζ to be the path obtained by a reparameterization of Ξ via curve ζ. Next, consider

Ωs := ζ′(s)(osc(Vζ(s))+ |Kζ(s)|),

for each s, and derive from (2.44) that Ωs = l(1,∞)(Ξ), i.e.

l∞(Ξζ) =max
s
Ωs = l(1,∞)(Ξ). (3.32)
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Relations (3.31) and (3.32) imply that

l∞(Ξζ)<l(1,∞)(Φ)+ ε.

Therefore, to complete the proof, it suffices to take Ψ = Ξζ . �

Remark 3.11. As in [14], we have l(1,∞)(.) ≤ l∞(.) in general, where the former is invariant
under reparameterization, while the latter is far from being invariant. Actually, it is clear
from the proof of Lemma 3.9 that any regular symplectic path Φ can be reparameterized to
obtain another path Ψ with the same extremities than Φ so that l(1,∞)(Ψ) = l∞(Ψ).

4 Some auxiliary results

The goal of this section is to elaborate the symplectic analogues of some approximation
lemmas found in [14].

Definition 4.1. ([4]) The L(1,∞)−version of Hofer-like topology on the group Iso(M,ω) is
the topology induced by the following metric:

D1((U,H), (V,K)) =
D0((U,H), (V,K))+D0((U,H), (V,K))

2
(4.1)

where

D0((U,H), (V,K)) =
∫ 1

0
osc(Ut −Vt)+ |Ht −Kt|dt. (4.2)

We will need the following lemma.

Lemma 4.2. (Reparameterization Lemma) Let (M,g) be a closed oriented Riemannian
manifold. Let H ∈ PH1(M,g), and let Φ = {φt} ∈ Iso(M,ω). If ξ j : [0,1]→ [0,1], j = 1,2
are two smooth functions such that ξ1 is monotonic, then there exists a constant B1 which
depends onH and Φ such that∫ 1

0
osc(∆t(Hξ1 ,Φ)−∆t(Hξ2 ,Φ))dt ≤ B1‖ξ1− ξ2‖ham.

Proof. From the equality,

∆(Hξ2 ,Φ)−∆(Hξ1 ,Φ) = ∆t(Hξ2 −Hξ1 ,Φ),

we derive by the mean of (2.17) that∫ 1

0
osc(∆t(Hξ2 ,Φ)−∆t(Hξ1 ,Φ))dt ≤ 2diam(M)(1+ sup

t,s
|Dφt(γy0(s))|)

∫ 1

0
|H

ξ1
t −H

ξ2
t |dt

(4.3)
where Dφt is the tangent map of φt, and γy0 is a geodesic (see Subsection 2.5). Since we
always have

|H
ξ1
t −H

ξ2
t | ≤ |ξ̇1(t)Hξ1(t)− ξ̇1(t)Hξ2(t)|+ |ξ̇1(t)Hξ2(t)− ξ̇2(t)Hξ2(t)|,
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we use the Lipschitz nature of the map t 7→ Ht to derive the existence of a constant c0>0
(which depends onH) such that,

|H
ξ1
t −H

ξ2
t | ≤max

t
|Ht||ξ̇1(t)− ξ̇2(t)|+ c0‖ξ1− ξ2‖C0 |ξ̇1(t)| (4.4)

for each t. Therefore, integrating (4.4) between 0 and 1 with respect to t gives∫ 1

0
|H

ξ1
t −H

ξ2
t |dt ≤max

t
|Ht|

∫ 1

0
|ξ̇1(t)− ξ̇2(t)|dt+ c0‖ξ1− ξ2‖C0 (4.5)

≤ 2max(c0,max
t
|Ht|)‖ξ1− ξ2‖ham.

Finally, (4.3) together with (4.5) yields∫ 1

0
osc(∆t(Hξ2 ,Φ)−∆t(Hξ1 ,Φ))dt ≤ B1‖ξ1− ξ2‖ham,

where B1 = 4diam(M)max(c0,maxt |Ht|)(1+supt,s |Dφt(γy0(s))|)<∞. This completes the proof.�

Lemma 4.3. If (U,H) ∈ T(M,ω,g), and ξ j : [0,1]→ [0,1], j = 1,2 are two smooth mono-
tonic functions, then there exists a constant C which depends on (U,H) such that,

D1((U,H)ξ1 , (U,H)ξ2) ≤C‖ξ1− ξ2‖ham.

We shall give a complete proof of Lemma 4.3 later on. The following result is an
immediate consequence of Lemma 4.3.

Lemma 4.4. Let (U i,H i) be a Cauchy sequence in D1, and ξl : [0,1]→ [0,1], l= 1,2 be two
monotonic smooth functions. Given ε>0, there exists a positive constant δ= δ((U i,H i)), and
a larger positive integer j0 = j0((U i,H i)) such that if the inequality ‖ξ1 − ξ2‖ham<δ holds,
then

D1((U i,H i)ξ1 , (U i,H i)ξ2)<ε,

for all i ≥ j0.

Proof. Since (U i,H i) is Cauchy in D1, one can choose an integer j0 large enough
such that D1((U i,H i)ξ1 , (U j0 ,H j0)ξ1)<ε/3 for all i ≥ j0. Assume this is done. Now we
apply Lemma 4.3 with (U j0 ,H j0), ξ1, and ξ2 to derive that there exists a constant C which
depends on (U j0 ,H j0) such that,

D1((U j0 ,H j0)ξ1 , (U j0 ,H j0)ξ2) ≤C‖ξ1− ξ2‖ham. (4.6)

Taking δ = ε/3C, we compute

D1((U i,H i)ξ1 , (U i,H i)ξ2) ≤ D1((U i,H i)ξ1 , (U j0 ,H j0)ξ1)

+D1((U j0 ,H j0)ξ1 , (U j0 ,H j0)ξ2)+D1((U j0 ,H j0)ξ2 , (U i,H i)ξ2)

≤ ε/3+ ε/3+ ε/3,

as long as ‖ξ1− ξ2‖ham<δ, and i ≥ j0. This completes the proof. �

The following result is the symplectic analogue of a slight variation of the L(1,∞)− ap-
proximation lemma found in [14]. It implies that a symplectic isotopy Φ can be approx-
imated in each of the metrics D1 and d̄ by a boundary flat symplectic path with the same
extremities than Φ.
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Lemma 4.5. Let Φ be a symplectic isotopy generated by (U,H), and let ε be a positive
real number. Then, there exists a boundary flat symplectic isotopy Ψ = ψ(V,K) with the same
extremities than Φ such that D1((U,H), (V,K))<ε, and d̄(Ψ,Φ)<ε.

Proof. Let ε be a positive real number, and consider ξ : [0,1] → [0,1] to be any
smooth and increasing function which is constant on the intervals [0, δ] and [1−δ,1] where
0<δ<1/13. Therefore, define (V,K) to be the element (U,H)ξ obtained by a reparameteri-
zation of (U,H) via the curve ξ as explained in Subsection 2.7. It follows from the definition
of the curve ξ that the symplectic isotopy Ψ generated by (V,K) is boundary flat and it has
the same extremities than Φ. Applying Lemma 4.3 with ξ1 = id[0,1] and ξ2 = ξ, we derive
from the above arguments that

D1((U,H), (V,K)) ≤C‖ξ− id[0,1]‖ham,

where C is the constant in Lemma 4.3 which only depends on (U,H). On the other hand,
since the maps (t, x) 7→ φt

(U,H)(x) and (t, x) 7→ φ−t
(U,H)(x) are Lipschitz continuous, it turns out

that there exists a constant l0>0 which depends only on (U,H) such that

d̄(φ(U,H),ψ(V,K)) ≤ l0‖ξ− id[0,1]‖C0<l0‖ξ− id[0,1]‖ham.

Finally, to conclude, it suffices to choose the function ξ so that
‖ξ− id[0,1]‖ham ≤min{ε/C;ε/l0;ε}. This completes the proof. �

Remark 4.6. Notice that the proof of Lemma 4.5 will still hold for any choice of δ such that
[0, δ]∩ [1− δ,1] = ∅. This means that in Lemma 4.5 the choice of δ less than 1/13 has no
particular meaning than to satisfy the condition [0, δ]∩ [1−δ,1] = ∅.

Proof of Lemma 4.3. Let Φ to be a symplectic isotopy generated by (U,H).

• Step (1). Consider the normalized function V = Uξ1 −Uξ2 , and compute

|Vt| = |ξ̇1(t)Uξ1(t)− ξ̇2(t)Uξ2(t)| ≤ |ξ̇1(t)||Uξ1(t)−Uξ2(t)|+ |ξ̇1(t)− ξ̇2(t)||Uξ2(t)| (4.7)

for each t. Since the map (t, x) 7→Ut(x) is smooth on a compact set, it is Lipschitz, i.e. there
exists a positive constant k0 which depends on U such that maxx∈M |Ut(x)−Us(x)| ≤ k0|t− s|
for all t, s ∈ [0,1]. This together with (4.7) yields

0 ≤max
x∈M

Vt(x) ≤ k0|ξ̇1(t)||ξ1(t)− ξ2(t)|+max
x

(Ut(x))|ξ̇1(t)− ξ̇2(t)|. (4.8)

Similarly, one can check that

0 ≤ −min
x∈M

Vt(x) ≤ k0|ξ̇1(t)||ξ1(t)− ξ2(t)| −min
x

(Ut(x))|ξ̇1(t)− ξ̇2(t)|. (4.9)

Adding (4.8) and (4.9) member to member, and integrating the resulting inequality in the
variable t gives∫ 1

0
osc(Vt)dt ≤ 2k0 max

t
|ξ1(t)− ξ2(t)|+max

t
(osc(Ut))

∫ 1

0
|ξ̇1(t)− ξ̇2(t)|dt. (4.10)



Symplectic Dynamical Systems and Flux Geometry 91

• Step (2). Put K =Hξ1 −Hξ2 , and compute

|Kt| = |ξ̇1(t)Hξ1(t)− ξ̇2(t)Hξ2(t)| ≤ |Hξ1(t)−Hξ2(t)||ξ̇1(t)|+ |ξ̇1(t)− ξ̇2(t)||Hξ2(t)| (4.11)

for each t. The Lipschitz nature of the smooth map t 7→Ht implies that there exists a positive
constant c0 such that |Ht −Hs| ≤ c0|t− s| for all s, t ∈ [0,1]. This tells us that (4.11) implies

|Kt| ≤ c0|ξ1(t)− ξ2(t)||ξ̇1(t)|+ |ξ̇1(t)− ξ̇2(t)||Hξ2(t)|. (4.12)

Integrating (4.12) in the variable t yields,∫ 1

0
|Kt|dt ≤ c0 max

t
|ξ1(t)− ξ2(t)|+max

t
|Ht|

∫ 1

0
|ξ̇1(t)− ξ̇2(t)|dt. (4.13)

Adding (4.10) and (4.13) member to member gives

D0((U,H)ξ1 , (U,H)ξ2) ≤ B3‖ξ1− ξ2‖ham (4.14)

where
B3 = 2max{2k0+ c0,max

t
|Ht|+max

t
osc(Ut)}.

• Step (3). On the other hand, for each j = 1,2, we compute

(U,H)ξ j = (−Uξ j ◦Φξ j − ∆̃(Hξ j ,Φξ j),−Hξ j),

with
∆̃t(Hξ j ,Φξ j) = ξ̇ j(t)∆̃ξ j(t)(H ,Φ),

for all t, and derive from the definition of D0 that

D0((U,H)ξ1 , (U,H)ξ2) ≤
∫ 1

0
osc

(
∆̃t(Hξ1 ,Φξ1)− ∆̃t(Hξ2 ,Φξ2)

)
dt (4.15)

+

∫ 1

0
osc(Uξ2

t −Uξ1
t )+ |Hξ1

t −H
ξ2
t |dt+

∫ 1

0
osc

(
Uξ1

t ◦Φ
ξ2(t)−Uξ1

t ◦Φ
ξ1(t)

)
dt

≤

∫ 1

0
osc

(
∆̃t(Hξ1 ,Φξ1)− ∆̃t(Hξ2 ,Φξ2)

)
dt+D0((U,H)ξ1 , (U,H)ξ2)+ k1‖ξ1− ξ2‖ham.

Note that in (4.15), to obtain the quantity k1‖ξ1− ξ2‖ham we have used the Lipschitz natures
of the maps (x, t) 7→ Ut(x), (x, t) 7→ Φ−1(t)(x) and (x, t) 7→ Φ(t)(x) to derive the existence of
a positive constant k1 which depends on Φ such that∫ 1

0
osc

(
ξ̇1(t)Uξ1(t) ◦Φ

ξ1(t)− ξ̇1(t)Uξ1(t) ◦Φ
ξ2(t)

)
dt ≤ k1‖ξ1− ξ2‖ham.

Since the map (x, t) 7→ ∆t(H ,Φ)(x) is smooth and M is compact, we derive as in step (1)
that there exists a Lipschitz constant k2 which depends on Φ such that
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∫ 1

0
osc(ξ̇1(t)∆̃ξ1(t)(H ,Φ)− ξ̇2(t)∆̃ξ2(t)(H ,Φ))dt ≤ 2k2 max

t
|ξ1(t)− ξ2(t)| (4.16)

+max
t

(osc(∆t(H ,Φ)))
∫ 1

0
|ξ̇1(t)− ξ̇2(t)|dt.

Observe that maxt(osc(∆t(H ,Φ))) ≤ B2(H ,Φ), where B2 is the constant in Lemma 3.10,
and derive from (4.16) that∫ 1

0
osc(ξ̇1(t)∆̃ξ1(t)(H ,Φ)− ξ̇2(t)∆̃ξ2(t)(H ,Φ))dt ≤ 2max{2k2,B2}‖ξ1− ξ2‖ham. (4.17)

• Step (4). Since,

D1((U,H)ξ1 , (U,H)ξ2) =
(
D0((U,H)ξ1 , (U,H)ξ2)+D0((U,H)ξ1 , (U,H)ξ2)

)
/2,

it follows from step (2) and step (3) that

D1((U,H)ξ1 , (U,H)ξ2) ≤C‖ξ1− ξ2‖ham,

where
C = B3+

k1

2
+max{2k2,B2}<∞.

This completes the proof. �

5 Final remark

McDuff-Salamon [12] proved that the orbits of Hamiltonian loops are null-homologous (see
Lemma 10.31, [12]). This is equivalent to the following result.

Proposition 5.1. ([12]) LetΨ be any symplectic isotopy whose flux is non-trivial. Then any
loop γ in the homotopy class of an orbit of any Hamiltonian loop (relatively to a fixed base
point) trivializes the flux of Ψ, i.e. Flux(Ψ).[γ] = 0.

Here, we provide the following alternative proof of Proposition 5.1 based on Lemma
2.4.

Proof. Let Ψ be a symplectic isotopy with a non-trivial flux. Let HΨ denote the har-
monic representative in the de Rham cohomology class Flux(Ψ). Consider a Hamiltonian
loopΦ= {φt} in S ymp0(M,ω), and derive from (2.12) that d∆1(HΨ,Φ) = 0, i.e. the function
∆1(HΨ,Φ) is constant. In fact, we have ∆1(HΨ,Φ)(x) = 0 for all x ∈ M because Lemma
2.4 implies that the function x 7→ ∆1(HΨ,Φ)(x) has a vanishing point on M, and M is con-
nected. On the other hand, for each x ∈ M, consider the loop γx,Φ : t 7→ φt(x), and check by
the mean of (2.29) that

Flux(Ψ).[γx,Φ] =
∫
γx,Φ

HΨ = ∆1(HΨ,Φ)(x) = 0.
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In addition, if β is any representative in the homotopic class [γx,Φ] (relatively to fix base
point), then Stokes’ theorem implies that

∫
γx,Φ
HΨ =

∫
β
HΨ. This completes the proof. �

Proposition 5.1 tells us that on the 2−dimensional revolution torus T2 equipped with its
natural symplectic form ω, no meridian circle of T2 is an orbit of a Hamiltonian loop in
S ymp0(T2,ω) since a meridian of T2 yields a non-trivial homology class. This tells us how
does an orbit of a Hamiltonian loop wind on T2.
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