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Abstract

Let M be a prime Γ−ring, I a nonzero ideal, θ an automorphism and d a θ−derivation
of M. In this article we have proved the following result: (1) If d([x,y]α) = ±([x,y]α)
or d((x ◦ y)α) = ±((x ◦ y)α) for all x,y ∈ I;α ∈ Γ, then M is commutative. (2) Under
the hypothesis dθ = θd and CharM , 2, if (d(x)◦d(y))α = 0 or [d(x),d(y)]α = 0 for all
x,y ∈ I;α ∈ Γ, then M is commutative. (3) If d acts as a homomorphism or an anti-
homomorphism on I, then d = 0 or M is commutative. Moreover, an example is given
to demonstrate that the primeness imposed on the hypothesis of the various results is
essential.
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1 Introduction

In 1964, Nobusawa [11] introduced the notion of a Γ-ring, an object more general than
a ring. Barnes [4] slightly weakened the conditions in the definition of a Γ-ring in the
sense of Nobusawa. Since then, many researchers have done a lot of work on Γ-rings
and have obtained some generalizations of the corresponding results in ring theory (see
[10] for references). If M and Γ are additive Abelian groups and there exists a mapping
(., ., ., ) : M×Γ×M→ M which satisfies the following conditions:
(i) (a,β,b) ∈ M;
(ii)(a+b)αc = aαc+bαc, a(α+β)b = aαb+aβb,aα(b+ c) = aαb+aαc;
(iii) (aαb)βc = aα(bβc), for a,b,c ∈ M and α, β ∈ Γ;
then M is called a Γ- ring.
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Obviously every associative ring is a Γ-ring with M = Γ, but the converse is in general
not true. Recall that a Γ-ring M is prime if aΓMΓb = 0 implies that a = 0 or b = 0. A
Γ-ring M is said to be a commutative if xαy = yαx for all x,y ∈ M and α,β ∈ Γ. A Γ-
ring M is said to be 2-torsion free if 2x = 0 implies x = 0 for all x ∈ M. Moreover, the set
Z(M) = {x ∈ M|xαy = yαx ∀ α ∈ Γ,y ∈ M} is called the center of the Γ-ring M. We shall
write [x,y]α = xαy− yαx and (x ◦ y)α = xαy+ yαx for all x,y ∈ M;α ∈ Γ. Throughout the
paper, we shall assume that xαyβz = xβyαz for all x,y,z ∈ M,α,β ∈ Γ and in this case we
have some basic identities: [xβy,z]α = [x,z]αβy+ xβ[y,z]α; [x,yβz]α = [x,y]αβz+ yβ[x,z]α
and (x◦ (yβz))α = (x◦ y)αβz− yβ[x,z]α = yβ(x◦ z)α+ [x,y]αβz for all x,y,z ∈ M and α,β ∈ Γ.

An additive subgroup U of a Γ-ring M is called a left (resp. right) ideal of M if MΓU ⊆
U (resp. UΓM ⊆ U). If U is both a left ideal and a right ideal, then we say that U is
an ideal of M. An additive mapping d : M → M is called a derivation on M if d(xαy) =
d(x)αy+ xαd(y) for all x,y ∈M and α ∈ Γ. Following [7], an additive mapping d : M→M is
called a θ-derivation on M if d(xαy) = d(x)αy+ θ(x)αd(y) for all x,y ∈ M and α ∈ Γ, where
θ is an automorphism on M. Let S be a nonempty subset of M and d a θ−derivation of M.
If d(xαy) = d(x)αd(y) or d(xαy) = d(y)αd(x) for all x,y ∈ S ;α ∈ Γ, then d is said to be a
θ−derivation which acts as a homomorphism or an anti-homomorphism on S , respectively.

During the past few decades, there has been an ongoing interest concerning the rela-
tionship between the commutativity of a ring and the existence of certain special types of
derivations (see [2, 5, 6, 13], where further references can be found). The first result in
this direction is due to Posner [14] who proved that if a prime ring R admits a nonzero
derivation d such that [d(x), x] ∈ Z(R) for all x ∈ R, then R is commutative. Recently some
authors have obtained commutativity of prime and semiprime rings with derivations, gen-
eralized derivations et al., satisfying certain polynomial constraints (see [3, 9, 15], where
further references can be found). In the year 2014, Ashraf and Jamal [1] investigated the
commutativity of prime Γ-rings satisfying certain differential identities. In this paper, we
shall attempt to extend some known commutativity results of rings to Γ-rings involving
θ−derivations on some appropriate subset of the Γ-ring M.

2 Main results

Theorem 2.1. Let M be a prime Γ−ring, θ an automorphism of M and I a nonzero ideal of
M. If M admits a θ−derivation d such that d([x,y]α) = [x,y]α for all x,y ∈ I and α ∈ Γ, then
M is commutative.

Proof. By the given hypothesis we have

d([x,y]α) = [x,y]α for all x,y ∈ I;α ∈ Γ. (2.1)

If d = 0, then [x,y]α = 0 for all x,y ∈ I. Thus, I is commutative and so is M by [8, Lemma
2.3]. Hence, in the sequel we assume that d , 0. Replacing y by yβx in (2.1) we get
d([x,yβx]α) = [x,yβx]α, which reduces to d([x,y]αβx) = [x,y]αβx for all x,y ∈ I;α,β ∈ Γ.
Since d is a θ−derivation, we deduce that

d([x,y]α)βx+ θ([x,y]α)βd(x) = [x,y]αβx for all x,y ∈ I;α,β ∈ Γ. (2.2)
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Combining (2.1) and (2.2), we obtain that

θ([x,y]α)βd(x) = 0 for all x,y ∈ I;α,β ∈ Γ. (2.3)

Replacing y by zγy in (2.3) and using (2.3), we get θ([x,z]α)γθ(y)βd(x) = 0 for all x,y,z ∈
I;α,β,γ ∈ Γ. Since θ is an automorphism of M, the above relation implies that

[x,z]αΓIΓθ−1d(x) = 0 for all x,z ∈ I;α ∈ Γ. (2.4)

The primeness of I [12, Lemma 2] forces that for each fixed x ∈ I, either [x,z]α = 0 for all
z ∈ I or θ−1d(x) = 0. Let K = {x ∈ I | [x,z]α = 0} and L = {x ∈ I | θ−1d(x) = 0}. Then, K
and L are both additive subgroups of I such that I = K ∪ L. Since a group can’t be a union
of its two proper subgroups, we have either I = K or I = L. If I = K, then [I, I]α = 0 and we
are done in this case. If I = L, then θ−1d(I) = 0. In this case, d(I) = 0 and so 0 = d(IΓM) =
d(I)ΓM + θ(I)Γd(M) = θ(I)Γd(M). Now, θ(I)Γd(M) = 0 implies θ(I)Γθ(M)Γd(M) = 0, the
primeness of M forces that θ(I) = 0 or d(M) = 0. Hence, I = 0 or d = 0, a contradiction.

Theorem 2.2. Let M be a prime Γ−ring, θ an automorphism of M and I a nonzero ideal of
M. If M admits a θ−derivation d such that d([x,y]α)+ [x,y]α = 0 for all x,y ∈ I and α ∈ Γ,
then M is commutative.

Proof. If d is θ−derivation such that d([x,y]α)+ [x,y]α = 0 for all x,y ∈ I, then −d is also
a θ−derivation and satisfies (−d)([x,y]α) = [x,y]α for all x,y ∈ I. It follows from Theorem
2.1 that M is commutative.

Theorem 2.3. Let M be a prime Γ−ring, θ an automorphism of M and I a nonzero ideal of
M. If M admits a θ−derivation d such that d((x ◦ y)α) = (x ◦ y)α for all x,y ∈ I and α ∈ Γ,
then M is commutative.

Proof. If d = 0, then (x ◦ y)α = 0 for all x,y ∈ I. Replacing y by yβz in above relation
and using the identity (x◦ (yβz))α = (x◦ y)αβz− yβ[x,z]α, we conclude that yα[x,z]β = 0 for
all x,y,z ∈ I;α,β ∈ Γ. This implies that IΓ[I, I]β = 0 and hence [I, I]β = 0. Thus, we get the
required result.

Suppose that d , 0 and we have

d((x◦ y)α) = (x◦ y)α for all x,y ∈ I;α ∈ Γ. (2.5)

Replacing y by yβx in (2.5) and using (2.5) we arrive at

θ((x◦ y)α)βd(x) = 0 for all x,y ∈ I;α,β ∈ Γ. (2.6)

Again replacing y by yγz in (2.6) and using (2.6), we obtain θ([x,y]α)γθ(z)βd(x) = 0 for all
x,y,z ∈ I;α,β,γ ∈ Γ. This implies that

[x,y]αΓIΓθ−1d(x) = 0 for all x,y ∈ I. (2.7)

This expression is similar to the equation (2.4) and hence repeat the same process to get
the required result.

Similarly, we can prove the following:
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Theorem 2.4. Let M be a prime Γ−ring, θ an automorphism of M and I a nonzero ideal of
M. If M admits a θ−derivation d such that d((x◦y)α)+ (x◦y)α = 0 for all x,y ∈ I and α ∈ Γ,
then M is commutative.

Theorem 2.5. Let M be a 2-torsion free prime Γ−ring, θ an automorphism of M and I
a nonzero ideal of M. If M admits a nonzero θ−derivation d commuting with θ such that
(d(x)◦d(y))α = 0 for all x,y ∈ I and α ∈ Γ, then M is commutative.

Proof. We are given that

(d(x)◦d(y))α = 0 for all x,y ∈ I;α ∈ Γ. (2.8)

Replacing y by yβz in (2.8) and using (2.8) we find that

[d(x), θ(y)]αβd(z)−d(y)β[d(x),z]α = 0 for all x,y,z ∈ I;α,β ∈ Γ. (2.9)

Again replacing y by yγd(x) in (2.9) and using (2.9), we obtain

[d(x), θ(y)]αβθ(z)γd2(x) = 0 for all x,y ∈ I;z ∈ d(I);α,β,γ ∈ Γ. (2.10)

The above equation implies that [θ−1d(x),y]αΓIΓd2(x) = 0 for all x,y ∈ I and α ∈ Γ. For
each fixed x ∈ I, either [θ−1d(x),y]α = 0 for all y ∈ I or d2(x) = 0. Using similar arguments
as in the proof of given in the proof of Theorem 2.1, we have [θ−1d(I), I]α = 0 or d2(I) = 0.
If [θ−1d(I), I]α = 0, then θ−1d(I) ⊆ Z(I). By [10, Lemma 1.2.2], [12, Lemma 4], M is
commutative. If d2(I) = 0, we have 0 = d2(uαv) = d2(u)αv+ 2θd(u)αd(v)+ θ2(u)d2(v) =
2θd(u)αd(v) for all u,v ∈ I. Since M is 2-torsion free, we get θd(u)Γd(I) = 0. In view of [12,
Lemma 3], either θd(I) = 0 or d = 0. The former case implies that d(I) = 0 and so d = 0.
This is a contradiction and the proof is complete.

Using the same techniques with necessary variations we get the following:

Theorem 2.6. Let M be a 2-torsion free prime Γ−ring, θ an automorphism of M and I
a nonzero ideal of M. If M admits a nonzero θ−derivation d commuting with θ such that
[d(x),d(y)]α = 0 for all x,y ∈ I and α ∈ Γ, then M is commutative.

Theorem 2.7. Let M be a 2-torsion free prime Γ−ring, θ an automorphism of M and I a
nonzero ideal of M. If M admits a θ−derivation d acting as a homomorphism on I, then
d = 0 or M is commutative.

Proof. If M is commutative, then we are done. Assume that d acts as a homomorphism
on I. By our hypothesis, we have d(xαy) = d(x)αd(y), which can be rewritten as

d(x)αy+ θ(x)αd(y) = d(x)αd(y) for all x,y ∈ I;α ∈ Γ. (2.11)

Replacing y by yβz in (2.11) and using (2.11), we get (θ(x)−d(x))αθ(y)βd(z) = 0, which
implies that (x− θ−1d(x))ΓIΓθ−1d(z) = 0 for all x,z ∈ I. By the primeness of I, either θ(x) =
d(x) for all x ∈ I or d(I) = 0. In the former case, θ(x)αθ(y) = d(x)αd(y) = d(xαy) = d(x)αy+
θ(x)αd(y) = d(x)αy+ θ(x)αθ(y) for all x,y ∈ I. Thus, d(x)αy = 0 and hence d(I)ΓI = 0. In
light of [12, Lemma 3], d(I) = 0. In both cases, we conclude d(I) = 0 and so d = 0.
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Theorem 2.8. Let M be a 2-torsion free prime Γ−ring, θ an automorphism of M and I a
nonzero ideal of M. If M admits a θ−derivation d acting as an anti-homomorphism on I,
then d = 0 or M is commutative.

Proof. Assume that d acts as an anti-homomorphism on I, then

d(x)αy+ θ(x)αd(y) = d(xαy) = d(y)αd(x) for all x,y ∈ I;α ∈ Γ. (2.12)

Replacing x by xβy in (2.12) and using (2.12), we get

d(y)αθ(x)βd(y) = θ(x)βθ(y)αd(y) for all x,y ∈ I;α,β ∈ Γ. (2.13)

Replacing x by zγx in (2.13) and using (2.13), we have

d(y)αθ(z)γθ(x)βd(y) = θ(z)γθ(x)βθ(y)αd(y) = θ(z)γd(y)αθ(x)βd(y) (2.14)

for all x,y,z ∈ I and α,β,γ ∈ Γ. This implies that [d(y), θ(z)]γαθ(x)βd(y) = 0 and hence
[θ−1d(y),z]γΓIΓθ−1d(y) = 0 for all y,z ∈ I;γ ∈ Γ. For each fixed y ∈ I, either [θ−1d(y),z]γ = 0
for all z ∈ I or θ−1d(y) = 0. Repeating similar arguments as given in in the proof of Theorem
2.1, we obtain [θ−1d(I), I]γ = 0 or θ−1d(I) = 0. If [θ−1d(I), I]γ = 0, then the same arguments
as in the proof of Theorem 2.5 forces M to be commutative. In the latter case, θ−1d(I) = 0
implies that d(I) = 0 and we deduce that d = 0.

The following example shows that the primeness in the above theorems can not be
omitted.

Example 2.9. Let Q be rational number field and M =
{(

a b
0 0

)
| a,b ∈ Q

}
. Then it

is easy to check that I =
{(

0 b
0 0

)
| b ∈ Q

}
is a nonzero ideal of M. The fact that(

0 1
0 0

)
ΓMΓ

(
0 1
0 0

)
=

(
0 0
0 0

)
proves that M is not prime. Define maps d

(
a b
0 0

)
=(

0 b
0 0

)
and θ

(
a b
0 0

)
=

(
a −b
0 0

)
. Then d is a nonzero θ−derivation on M. It can be eas-

ily checked that (i) d([x,y]α) = ±([x,y]α) (ii) d((x◦y)α) = ±((x◦y)α) (iii) (d(x)◦d(y))α =
0 (iv) [d(x),d(y)]α = 0 (v) d(xαy)= d(x)αd(y) (vi) d(xαy)= d(y)αd(x) for all x,y ∈ I;α ∈ Γ.
However, M is not commutative.
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