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Abstract
In this paper, we first study further properties of S-asymptotically w-periodic func-
tions taking values in Banach spaces including a theorem of composition. Then we

apply the results obtained to study the existence and uniqueness of S-asymptotically
w-periodic mild solutions to a nonautonomous semilinear differential equation.
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1 introduction

The aim of this paper is two-fold. First to investigate in Section 3, further properties of S-
asymptotically w-periodic functions taking values in an infinite dimensional Banach space
X, that is functions f : R* — X which are bounded, continuous and such that

Ili)m(f(t+a))—f(t)) =0, w>0.
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Then we apply the results obtained to study S-asymptotically w-periodic mild solutions to
the semilinear differential equation (Section 4)

(1.1)

X' (1) = A@®)x(t) + F(t,x(t)) for t > 0,
x(0) = xo,

where xo € X, and A(f) generates an exponentially stable w-periodic evolutionary family in
X.

The results obtained here complement and generalize some results in the papers [1, 2,
3,4,5,6,8,9,10].

2 Preliminaries and Notation

Let X be a Banach space. BC(R*,X) denotes the space of the continuous bounded func-
tions from R* into X; endowed with the norm || f]lc := sup,s [l f(?)l], it is a Banach space.
Co(R*, X) denotes the space of the continuous functions from R into X such that

lim,_, f(¢) = 0; it is a Banach subspace of BC(R*,X). When we fix a positive number
w, P,(X) denotes the space of the continuous w-periodic functions from R* into X; it is a
Banach subspace of BC(R*, X).

When X and Y are two Banach spaces, £(X,Y) denotes the space of the continuous
linear mappings from X into Y. When X =Y, I € £(X) denotes the identity mapping.

Definition 2.1. Let /' : R — X be a continuous function. We say that f is almost periodic if

VYe>0,3¢>0,YaeR, It €[a,a+{], sup||lf(t+71)— ()| < e.
teR

We denote by AP(X) the set of all almost periodic functions from R to X.

Definition 2.2. Let f: R — X be a continuous function. We say that f is almost automorphic
if for every sequence of real numbers (s,,),, there exists a subsequence (#,),, such that for all
teR

lim lim f(t+1,—t,) = f().
Mm—>00 n—00

We denote by AA(X) the set of all almost automorphic functions from R to X. Recall
that AP(X) c AA(X).

Definition 2.3. Let f € BC(R",X). We say that f is asymptotically almost periodic if
f =g+hwhere g € AP(X) and h € Co(R*, X).

Definition 2.4. Let f € BC(R*,X). We say that f is asymptotically almost automorphic if
f =g+hwhere g € AA(X) and h € Co(R*, X).

It is obvious that an asymptotically almost periodic function is asymptotically almost
automorphic.
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3 S-Asymptotically w-Periodic Functions

Definition 3.1. A function f € BC(R*,X) is called S-asymptotically w-periodic if there
exists w > 0 such that lim,_, o, (f(+w) — f(¢)) = 0. In this case we say that w is an asymptotic
period of f and that f is S-asymptotically w-periodic.

We will denote by SAP,(X), the set of all S-asymptotically w-periodic functions from
R* to X.

Remark 3.2. If w is an asymptotic period of f, then nw is also an asymptotic period of f
foreveryn=1,2,....

Proof. The proof is easy by using the principle of mathematical induction. O
The following result is due to Henriquez-Pierri-Téboas; Proposition 3.5 in [3].
Theorem 3.3. Endowed with the norm || ||, S AP,(X) is a Banach space.

Remark 3.4. We give a very short proof of this result. We consider the translation operator
Ty : BC(R*,X) - BC(R",X) defined by 7,f := [t — f(t+w)]. T, is clearly linear and
it is continuous since [w,0) ¢ R*. We note that SAP,(X) = (1, — )" (Co(R*, X)). And
then, since (t,, — ) is linear continuous and since Co(R*, X) is a closed vector subspace of
BCR*,X), SAP,(X) is a closed vector subspace of the Banach space BC(R*, X).

Now we recall another notion which is related to the S-asymptotically w-periodicity.

Definition 3.5. Let f € BC(R*,X) and w > 0. We say that f is asymptotically w-periodic if
f =g+hwhere f € P,(X)and h € Co(R*, X).

Denote by AP, (X) the set of all w-periodic functions. Then we have
AP,(X) CSAP,(X).

The inclusion is strict. Indeed consider the function f : R* — ¢¢ where ¢y = {x = (x)nen :
lim,, 0 X, = 0} equipped with the norm |[x|| = sup,o|x(n)l, and f(t) = 2nt/(t* + n*)uen.
Then f e SAP,(X) but f ¢ AP, (X) (cf. [3] Example 3.1).

The following extends ([3], Proposition 3.4) to the asymptotically almost automorphic
case.

Proposition 3.6. Let f be a S-asymptotically w-periodic function. If f is asymptotically
almost automorphic, then f is asymptotically w-periodic. In particular case if f asymptot-
ically almost periodic, then f is asymptotically w-periodic.

Proof. Let f be a S-asymptotically w-periodic and an asymptotically almost automor-
phic function. We can decompose f as f = g+ ¢ where g is almost automorphic and
¢ € Co(R*,X). It suffices to prove that g € P,(X). From Co(R*,X) c SAP,(X), it follows
that g = f —¢ € SAP,(X), thus

lim g(1+w) - (1) = 0. (3.1)
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Consider the sequence (k). Since g is almost automorphic, we can extract a subsequence
(k) such that for all r € R

lim 1im g(7 + @ + kn — k) — g(t + kn — k) = g(t + w) — g(). (3.2)

nM—>00 n—00

From (3.1) and lim k&, — &, = oo, it follows
n—o00
lim g(t+w+k, —ky) — gt +k, —k,) =0,Yt € RT,
n—oo

and from (3.2), we obtain g(z+ w)—g(¢) = 0 for all € R*. This implies that g(r+ w)—g(¥) =0
for all # € R (cf. [7] Theorem 2.1.8), thus g € P,,(X). This ends the proof. O

Theorem 3.7. Let ¢ : X — Y be a function which is uniformly continuous on the bounded
subsets of X and such that ¢ maps bounded subsets of X into bounded subsets of Y. Then
forall f e SAP,(X), the composition ¢po f :=[t = ¢(f(t))] € SAP,(X).

Proof. Since the range of f is bounded, it follows that ¢(f(-)) is bounded. Let € > 0 be
given. Then there exists § > 0 such that [|¢(x) — p(y)|| < € for all x, y € f(R*) with ||x—y|| < 6.
Now we can find we can find T = T(6) > 0 such that || f(¢ + w) — f(?)|| < 6 for all t > T'. Thus
llp(f(t+w)) —d(f())l < € if t > T, which completes the proof. O

An example of such a function which satisfies the assumptions of Theorem 3.7 is a
bilinear continuous function B: X := U XV — Y, where U and V are Banach spaces. From
the inequality ||B(u,v)|| < cllull||[vl], where ¢ € (0, 0), it is easy to see that B maps bounded
subsets into bounded subsets. If M is a bounded subset of U X V, there exists c¢; € (0, c0)
such that ||u|| < ¢; and ||[v]| € ¢ for all (u,v) € M. Then when (u,v),(u1,v1) € M, we obtain
[|B(u,v) = B(uy,v)ll < c.cr.(llu—uq|| +1lv=v1l]) + c.|lu — uyl.|[v —v1ll, and so B is Lipschitzian
on M and therefore it is uniformly continuous on M. Note that it is well-known that B is
not uniformly continuous on U X V. And so we obtain the following corollary.

Corollary 3.8. Let X, Y and Z be three Banach spaces, and let B: X XY — Z be a bilinear
continuous mapping. Then, when f € SAP,(X) and g€ SAP,(Y), we have Bo(f,g) :=[t—
B(f(1),g())] € SAP(Z).

Proof. Note that the function (f,g) := [t — (f(#),g(t))] € SAP,(X X Y) since, by using
the topology-product we have lim;_,o,(f(t + w), g(t + w)) — (f (1), g(?)) = (im;— e (f(t + w) —
(@), lim;_,o,(g(t + w) — g()) = (0,0). And so we conclude by using Theorem 3.7 and the
previous comments. o

For instance, if X™* is the topological dual space of a Banach space X, and if (-, -) denotes
the duality bracket between X and X*, when f € SAP,(X) and when f, € SAP,(X"), the
function (fs, f) := [t = (fi(9), f(¢))] belongs to SAP,(R). And in the special case X = R we
obtain the following result.

Remark 3.9. SAP,(R) is a Banach algebra.

Since a linear continuous mapping A € £(X,Y) is Lipschitzian, it satisfies the assump-
tions of Theorem 3.7, and consequently we obtain the following corollary.
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Corollary 3.10. Let X and Y be two Banach spaces, and let A € L(X,Y). Then when
f€SAP,L(X), we have Af :=[t > Af()] € SAP,(Y).

Remark 3.11. For a fixed w > 0, the bounded linear operator 7., — I, where I is the identity
operator is not bijective since Ker(t,, —I) = P,(X) which is nonzero, however for 0 < e < 1
the operator (1 — €)1, — I is bijective, since (1 — €)7,, is a bounded linear operator with
[|(1=€)7,ll < 1. For this reason, if we consider

Ej, :={f € BCR™:X): lim((1-e)f(t+w) =~ () =0},

then we have
ﬂEg, C SAP,(X).
e>0

Proof. Let € >0 be given and take f € Ef,. Then

If(+w) = fOI <1 =€) f(1+w) = fOIl + €l f( + w)l

<A =e)f(t+w) = fOll + €l flleo-

Thus
Ve>0,  limsupl|f(t+w)— f(Ol < €l flleo,
t—o0
therefore
lim [|f(1+w) = fOl| = 0.
This completes the proof. O

For the sequel we consider asymptotically w-periodic functions with parameters.

Definition 3.12. [3] A continuous function f : [0,00) X X — X is said to be uniformly S-
asymptotically w-periodic on bounded sets if for every bounded set K C X, the set {f(¢, x) :
t > 0,x € K} is bounded and lim,_,, (f(¢,x) — f(t + w, x)) = 0 uniformly on x € K.

Definition 3.13. [3] A continuous function f : [0,00) X X — X is said to be asymptotically
uniformly continuous on bounded sets if for every € > 0 and every bounded set K C X, there
exist Le x > 0 and 6, g > 0 such that || f(¢,x) — f(¢,y)|| < e for all > L ¢ and all x,y € K with
lhe= Il < Sex.

Theorem 3.14. [3] Let f : [0,00) X X — X be a function which is uniformly S-asymptotically
w-periodic on bounded sets and asymptotically uniformly continuous on bounded sets. Let
u: [0,00) be an S-asymptotically w-periodic function. Then the Nemytskii function ¢(-) :=
f(C,u(-)) is S-asymptotically w-periodic.
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4 Applications to Abstract Differential Equations

Now we consider the linear problem:

X (t) = A()x(t) + f(t) for t > 0,
{ 0 = i, 4.1)

where xo € X, f € BC(R*,X) and A(¢) generates a w-periodic (w > 0) exponentially stable
evolutionary process (U(t, s))>s in X, that is, a two-parameter family of bounded linear
operators that satisfies the following conditions:

1. U(t,t)=1forallteR,

2. U, s)U(s,r)=U(t,r)forallt=s>r,

3. The map (z, s) — U(t, s)x is continuous for every fixed x € X,

4. U(t+w,s+w)=Ul(t,s) for all t > s ( w-periodicity),

5. There exist K > 0 and a > 0 such that ||U(t, s)|| < Ke™®~% for t > s.

Definition 4.1. A continuous function x : Rt — X is called mild solution of (4.1) if
t
x(1) = U(,0)xp + f U, s)f(s)yds, fort=>0. “4.2)
0

Lemma 4.2. Let f € SAP,(X) and (U(t,s))>s an w-periodic exponentially stable evolu-
tionary process. Then the function

u(t):=fU(t,s)f(s)ds
0

is also in SAP,(X).

Proof. For t > 0, one has

u(t+w)—u(t)=f+wU(t+w,s)f(s)ds—fU(t,s)f(s)ds
0 0

=fwU(t+a),s)f(s)ds+ft+wU(t+w,s)f(s)ds—ftU(t,s)f(s)ds
0 w 0

= L)+ L)

where "
Il(t):f U(t+w,s)f(s)ds

0

and I+w !
Iz(t)zf U(t+a),s)f(s)ds—fU(t,s)f(s)ds.
w 0

Remark that

Li(t)= U(t+w,a))fw U(w,s)f(s)ds = U(t + w,w)u(w)
0
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and by using the fact (U(t, 5));»5 is exponentially stable, we obtain
1L @] < Ke™llu(w)l,

which shows that tlim Ii(t)=0.
Now since f € SAP,(X), we can find T sufficiently large such that

Ift+w)— f(O)ll<e, fort>T.

Let’s write

L(t) = f Ut+w,s+w)f(s+w)-U(t,s)f(s) ds
0

and since the evolution family is w-periodic, we obtain

5 = fo Ut,5) (f(s + @) — f(s) ds.

Thus we get

T t
1Ll < fo UL+ w) - F()lds + fT UG (s +w)— f(s)llds

T t
<2/ flleo f U, 9)llds+e f U, 9)lds
0 T

T !
< 2K |flleo f e 945+ eK f e~ =9
0 T

eK

< 2K]| floo (e7aU=T) _ gmary 4
Thus tlim Ir(t) = 0, this proves that u € SAP,,,. O

Theorem 4.3. Let f € SAP,(X) and (U(t, s))r>s an w-periodic exponentially stable evolu-
tionary process, then every mild solution of Eq.(4.1) is in SAP ,(X).

Proof. Since A(t) generates a w-periodic exponentially stable evolutionary process, then
Eq.(4.1) has a mild solution x defined by (4.2). It remains to prove that it is in SAP,(X).
This is immediate by using Lemma 4.2 and the fact that the two-parameter family is ex-
ponentially stable, thus tll)r?o |U(t,0)x0]| = 0, since Co(R*,X) c SAP,(X), we deduce that

tlim||U(t+a),0)x0—U(t,0)xo|| =0. m]

Example 4.4. Consider the equation

X (@) =a@®x()+ f@), >0 4.3)
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)
where f € SAP,(R) and a € P,(R). We also assume that f a(t)dt < 0. Then U(t,s) :=
0

t
exp( | a(o)do) is an w-periodic exponentially stable evolutionary process, therefore the

N
solution with initial data x(0) = x:

t ! !
x(t) = exp( f a(o)do)xy + f (exp( f a(o)) do-) f(s)ds,
0 0 K
is alsoin SAP,(R).

Now we consider semilinear problem

{ X' (1) = A()x(t) + F(¢,x(t)) for t > 0, 4.4)

x(0) = xo,

where xg € X.

We make the following assumptions.
H; A(?) generates a w-periodic (w > 0) exponentially stable evolutionary process in X.
H; F is uniformly S-asymptotically w-periodic on bounded sets.

Hj3 F satisfies a Lipschitz condition in second variable uniformly with respect to the
first variable, i.e. there exists L > 0 such that

IF(t,x) - Fll < Lllx—yll, x,yeX, t=0.

Theorem 4.5. Under Hy — H3, Eq.(4.4) possesses a unique mild solution in
SAP,(X)if L < %

Proof. Consider the mapping I" defined on S AP, (X) by
t
Tu(t) .= U(t,0)xg + f U(t,s)F(s,u(s))ds.
0

I' is well-defined by the above results. Now let u, v € SAP,(X). Then we have

ITu(t) —Tv(n)l| = fo U, )l ex 0l F(s,u(s)) — F(s,v(s))llds

A
< Lllu—=v|loo f Ke =9 g5,
0

thus

LK LK
ITu—T'V||oo £ — ||t — V||oo With — < 1.
a a

The results follows in virtue of the contraction mapping principle. ]
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Remark 4.6. Theorem 4.5 contains the case of semilinear equations where the linear part
is the infinitesimal generator of a semigroup which is exponentially stable. Consider the
following equation:

(4.5)

X'(t) = Ax(t)+ F(t,x(t)) for t > 0,
x(0) = xo,

where xg € X and A : D(A) — X is the infinitesimal generator of a semigroup (S (¢))s>0. If
the semigroup is exponentially stable: ||S (7)|| < Ke™ for all > 0 and F satisfies Under Hj

and H3, Eq.(4.5) possesses a unique mild solution in SAP,(X) if L < %.
This last result is a corollary of Theorem 4.5 by setting U(¢,s) = T(t — s) for ¢ > s.
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