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Abstract

In this paper, we first study further properties of S-asymptotically ω-periodic func-
tions taking values in Banach spaces including a theorem of composition. Then we
apply the results obtained to study the existence and uniqueness of S-asymptotically
ω-periodic mild solutions to a nonautonomous semilinear differential equation.
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1 introduction

The aim of this paper is two-fold. First to investigate in Section 3, further properties of S-
asymptotically ω-periodic functions taking values in an infinite dimensional Banach space
X, that is functions f : R+→ X which are bounded, continuous and such that

lim
t→∞

( f (t+ω)− f (t)) = 0, ω > 0.
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Then we apply the results obtained to study S-asymptotically ω-periodic mild solutions to
the semilinear differential equation (Section 4){

x′(t) = A(t)x(t)+F(t, x(t)) for t ≥ 0,
x(0) = x0,

(1.1)

where x0 ∈ X, and A(t) generates an exponentially stable ω-periodic evolutionary family in
X.

The results obtained here complement and generalize some results in the papers [1, 2,
3, 4, 5, 6, 8, 9, 10].

2 Preliminaries and Notation

Let X be a Banach space. BC(R+,X) denotes the space of the continuous bounded func-
tions from R+ into X; endowed with the norm ‖ f ‖∞ := supt≥0 ‖ f (t)‖, it is a Banach space.
C0(R+,X) denotes the space of the continuous functions from R into X such that
limt→∞ f (t) = 0; it is a Banach subspace of BC(R+,X). When we fix a positive number
ω, Pω(X) denotes the space of the continuous ω-periodic functions from R+ into X; it is a
Banach subspace of BC(R+,X).

When X and Y are two Banach spaces, L(X,Y) denotes the space of the continuous
linear mappings from X into Y . When X = Y , I ∈ L(X) denotes the identity mapping.

Definition 2.1. Let f : R→ X be a continuous function. We say that f is almost periodic if

∀ε > 0,∃` > 0,∀α ∈ R,∃τ ∈ [α,α+ `], sup
t∈R
‖ f (t+τ)− (t)‖ ≤ ε.

We denote by AP(X) the set of all almost periodic functions from R to X.

Definition 2.2. Let f :R→ X be a continuous function. We say that f is almost automorphic
if for every sequence of real numbers (sn)n, there exists a subsequence (tn)n such that for all
t ∈ R

lim
m→∞

lim
n→∞

f (t+ tn− tm) = f (t).

We denote by AA(X) the set of all almost automorphic functions from R to X. Recall
that AP(X) ⊂ AA(X).

Definition 2.3. Let f ∈ BC(R+,X). We say that f is asymptotically almost periodic if
f = g+h where g ∈ AP(X) and h ∈C0(R+,X).

Definition 2.4. Let f ∈ BC(R+,X). We say that f is asymptotically almost automorphic if
f = g+h where g ∈ AA(X) and h ∈C0(R+,X).

It is obvious that an asymptotically almost periodic function is asymptotically almost
automorphic.
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3 S-Asymptotically ω-Periodic Functions

Definition 3.1. A function f ∈ BC(R+,X) is called S-asymptotically ω-periodic if there
exists ω> 0 such that limt→∞( f (t+ω)− f (t))= 0. In this case we say that ω is an asymptotic
period of f and that f is S-asymptotically ω-periodic.

We will denote by S APω(X), the set of all S-asymptotically ω-periodic functions from
R+ to X.

Remark 3.2. If ω is an asymptotic period of f , then nω is also an asymptotic period of f
for every n = 1,2, ....

Proof. The proof is easy by using the principle of mathematical induction. �

The following result is due to Henriquez-Pierri-Táboas; Proposition 3.5 in [3].

Theorem 3.3. Endowed with the norm ‖ · ‖∞, S APω(X) is a Banach space.

Remark 3.4. We give a very short proof of this result. We consider the translation operator
τω : BC(R+,X) → BC(R+,X) defined by τω f := [t 7→ f (t +ω)]. τω is clearly linear and
it is continuous since [ω,∞) ⊂ R+. We note that S APω(X) = (τω − I)−1(C0(R+,X)). And
then, since (τω − I) is linear continuous and since C0(R+,X) is a closed vector subspace of
BC(R+,X), S APω(X) is a closed vector subspace of the Banach space BC(R+,X).

Now we recall another notion which is related to the S-asymptotically ω-periodicity.

Definition 3.5. Let f ∈ BC(R+,X) and ω > 0. We say that f is asymptotically ω-periodic if
f = g+h where f ∈ Pω(X) and h ∈C0(R+,X).

Denote by APω(X) the set of all ω-periodic functions. Then we have

APω(X) ⊂ S APω(X).

The inclusion is strict. Indeed consider the function f : R+→ c0 where c0 = {x = (xn)n∈N :
limn→∞ xn = 0} equipped with the norm ‖x‖ = supn∈N |x(n)|, and f (t) = (2nt/(t2 + n2)n∈N.

Then f ∈ S APω(X) but f < APω(X) (cf. [3] Example 3.1).
The following extends ([3], Proposition 3.4) to the asymptotically almost automorphic

case.

Proposition 3.6. Let f be a S-asymptotically ω-periodic function. If f is asymptotically
almost automorphic, then f is asymptotically ω-periodic. In particular case if f asymptot-
ically almost periodic, then f is asymptotically ω-periodic.

Proof. Let f be a S-asymptotically ω-periodic and an asymptotically almost automor-
phic function. We can decompose f as f = g + φ where g is almost automorphic and
φ ∈ C0(R+,X). It suffices to prove that g ∈ Pω(X). From C0(R+,X) ⊂ S APω(X), it follows
that g = f −φ ∈ S APω(X), thus

lim
t→∞

g(t+ω)−g(t) = 0. (3.1)
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Consider the sequence (k)k. Since g is almost automorphic, we can extract a subsequence
(kn)n such that for all t ∈ R

lim
m→∞

lim
n→∞

g(t+ω+ kn− km)−g(t+ kn− km) = g(t+ω)−g(t). (3.2)

From (3.1) and lim
n→∞

kn− km =∞, it follows

lim
n→∞

g(t+ω+ kn− km)−g(t+ kn− km) = 0,∀t ∈ R+,

and from (3.2), we obtain g(t+ω)−g(t)= 0 for all t ∈R+. This implies that g(t+ω)−g(t)= 0
for all t ∈ R (cf. [7] Theorem 2.1.8), thus g ∈ Pω(X). This ends the proof. �

Theorem 3.7. Let φ : X→ Y be a function which is uniformly continuous on the bounded
subsets of X and such that φ maps bounded subsets of X into bounded subsets of Y. Then
for all f ∈ S APω(X), the composition φ◦ f := [t→ φ( f (t))] ∈ S APω(X).

Proof. Since the range of f is bounded, it follows that φ( f (·)) is bounded. Let ε > 0 be
given. Then there exists δ > 0 such that ‖φ(x)−φ(y)‖ < ε for all x, y ∈ f (R+) with ‖x−y‖ < δ.
Now we can find we can find T = T (δ) > 0 such that ‖ f (t+ω)− f (t)‖ < δ for all t > T . Thus
‖φ( f (t+ω))−φ( f (t))‖ < ε if t > T , which completes the proof. �

An example of such a function which satisfies the assumptions of Theorem 3.7 is a
bilinear continuous function B : X := U ×V → Y , where U and V are Banach spaces. From
the inequality ‖B(u,v)‖ ≤ c‖u‖‖v‖, where c ∈ (0,∞), it is easy to see that B maps bounded
subsets into bounded subsets. If M is a bounded subset of U ×V , there exists c1 ∈ (0,∞)
such that ‖u‖ ≤ c1 and ‖v‖ ≤ c1 for all (u,v) ∈ M. Then when (u,v), (u1,v1) ∈ M, we obtain
‖B(u,v)−B(u1,v1)‖ ≤ c.c1.(‖u−u1‖+ ‖v−v1‖)+c.‖u−u1‖.‖v−v1‖, and so B is Lipschitzian
on M and therefore it is uniformly continuous on M. Note that it is well-known that B is
not uniformly continuous on U ×V . And so we obtain the following corollary.

Corollary 3.8. Let X, Y and Z be three Banach spaces, and let B : X×Y → Z be a bilinear
continuous mapping. Then, when f ∈ S APω(X) and g ∈ S APω(Y), we have B◦ ( f ,g) := [t 7→
B( f (t),g(t))] ∈ S APω(Z).

Proof. Note that the function ( f ,g) := [t 7→ ( f (t),g(t))] ∈ S APω(X × Y) since, by using
the topology-product we have limt→∞( f (t+ω),g(t+ω))− ( f (t),g(t)) = (limt→∞( f (t+ω)−
f (t)), limt→∞(g(t+ω)− g(t)) = (0,0). And so we conclude by using Theorem 3.7 and the
previous comments. �

For instance, if X∗ is the topological dual space of a Banach space X, and if 〈·, ·〉 denotes
the duality bracket between X and X∗, when f ∈ S APω(X) and when f∗ ∈ S APω(X∗), the
function 〈 f∗, f 〉 := [t 7→ 〈 f∗(t), f (t)〉] belongs to S APω(R). And in the special case X = R we
obtain the following result.

Remark 3.9. S APω(R) is a Banach algebra.

Since a linear continuous mapping A ∈ L(X,Y) is Lipschitzian, it satisfies the assump-
tions of Theorem 3.7, and consequently we obtain the following corollary.
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Corollary 3.10. Let X and Y be two Banach spaces, and let A ∈ L(X,Y). Then when
f ∈ S APω(X), we have A f := [t→ A f (t)] ∈ S APω(Y).

Remark 3.11. For a fixed ω > 0, the bounded linear operator τω− I, where I is the identity
operator is not bijective since Ker(τω− I) = Pω(X) which is nonzero, however for 0 < ε < 1
the operator (1− ε)τω− I is bijective, since (1− ε)τω is a bounded linear operator with
‖(1− ε)τω‖ < 1. For this reason, if we consider

Eεω := { f ∈ BC(R+; X) : lim
t→∞

((1− ε) f (t+ω)− f (t)) = 0},

then we have ⋂
ε>0

Eεω ⊂ S APω(X).

Proof. Let ε > 0 be given and take f ∈ Eεω. Then

‖ f (t+ω)− f (t)‖ ≤ ‖(1− ε) f (t+ω)− f (t)‖+ ε‖ f (t+ω)‖

≤ ‖(1− ε) f (t+ω)− f (t)‖+ ε‖ f ‖∞.

Thus

∀ε > 0, limsup
t→∞

‖ f (t+ω)− f (t)‖ ≤ ε‖ f ‖∞,

therefore

lim
t→∞
‖ f (t+ω)− f (t)‖ = 0.

This completes the proof. �

For the sequel we consider asymptotically ω-periodic functions with parameters.

Definition 3.12. [3] A continuous function f : [0,∞)× X → X is said to be uniformly S-
asymptotically ω-periodic on bounded sets if for every bounded set K ⊂ X, the set { f (t, x) :
t ≥ 0, x ∈ K} is bounded and limt→∞ ( f (t, x)− f (t+ω, x)) = 0 uniformly on x ∈ K.

Definition 3.13. [3] A continuous function f : [0,∞)×X→ X is said to be asymptotically
uniformly continuous on bounded sets if for every ε > 0 and every bounded set K ⊂ X, there
exist Lε,K ≥ 0 and δε,K > 0 such that ‖ f (t, x)− f (t,y)‖ < ε for all t ≥ Lε,K and all x,y ∈ K with
‖x− y‖ < δε,K .

Theorem 3.14. [3] Let f : [0,∞)×X→ X be a function which is uniformly S-asymptotically
ω-periodic on bounded sets and asymptotically uniformly continuous on bounded sets. Let
u : [0,∞) be an S-asymptotically ω-periodic function. Then the Nemytskii function φ(·) :=
f (·,u(·)) is S-asymptotically ω-periodic.
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4 Applications to Abstract Differential Equations

Now we consider the linear problem:{
x′(t) = A(t)x(t)+ f (t) for t ≥ 0,
x(0) = x0,

(4.1)

where x0 ∈ X, f ∈ BC(R+,X) and A(t) generates a ω-periodic (ω > 0) exponentially stable
evolutionary process (U(t, s))t≥s in X, that is, a two-parameter family of bounded linear
operators that satisfies the following conditions:

1. U(t, t) = I for all t ∈ R,

2. U(t, s)U(s,r) = U(t,r) for all t ≥ s ≥ r,

3. The map (t, s) 7→ U(t, s)x is continuous for every fixed x ∈ X,

4. U(t+ω, s+ω) = U(t, s) for all t ≥ s ( ω-periodicity),

5. There exist K > 0 and a > 0 such that ‖U(t, s)‖ ≤ Ke−a(t−s) for t ≥ s.

Definition 4.1. A continuous function x : R+→ X is called mild solution of (4.1) if

x(t) = U(t,0)x0+

∫ t

0
U(t, s) f (s)ds, for t ≥ 0. (4.2)

Lemma 4.2. Let f ∈ S APω(X) and (U(t, s))t≥s an ω-periodic exponentially stable evolu-
tionary process. Then the function

u(t) :=
∫ t

0
U(t, s) f (s)ds

is also in S APω(X).

Proof. For t ≥ 0, one has

u(t+ω)−u(t) =
∫ t+ω

0
U(t+ω, s) f (s)ds−

∫ t

0
U(t, s) f (s)ds

=

∫ ω

0
U(t+ω, s) f (s)ds+

∫ t+ω

ω
U(t+ω, s) f (s)ds−

∫ t

0
U(t, s) f (s)ds

= I1(t)+ I2(t)

where
I1(t) =

∫ ω

0
U(t+ω, s) f (s)ds

and

I2(t) =
∫ t+ω

ω
U(t+ω, s) f (s)ds−

∫ t

0
U(t, s) f (s)ds.

Remark that
I1(t) = U(t+ω,ω)

∫ ω

0
U(ω, s) f (s)ds = U(t+ω,ω)u(ω)
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and by using the fact (U(t, s))t≥s is exponentially stable, we obtain

‖I1(t)‖ ≤ Ke−at‖u(ω)‖,

which shows that lim
t→∞

I1(t) = 0.

Now since f ∈ S APω(X), we can find T sufficiently large such that

‖ f (t+ω)− f (t)‖ < ε, for t > T.

Let’s write

I2(t) =
∫ t

0
(U(t+ω, s+ω) f (s+ω)−U(t, s) f (s)) ds

and since the evolution family is ω-periodic, we obtain

I2(t) =
∫ t

0
U(t, s) ( f (s+ω)− f (s)) ds.

Thus we get

‖I2(t)‖ ≤
∫ T

0
‖U(t, s)‖‖ f (s+ω)− f (s)‖ds+

∫ t

T
‖U(t, s)‖‖ f (s+ω)− f (s)‖ds

≤ 2‖ f ‖∞

∫ T

0
‖U(t, s)‖ds+ ε

∫ t

T
‖U(t, s)‖ds

≤ 2K‖ f ‖∞

∫ T

0
e−a(t−s)ds+ εK

∫ t

T
e−a(t−s)ds

≤
2K‖ f ‖∞

a
(e−a(t−T )− e−at)+

εK
a
.

Thus lim
t→∞

I2(t) = 0, this proves that u ∈ S APω. �

Theorem 4.3. Let f ∈ S APω(X) and (U(t, s))t≥s an ω-periodic exponentially stable evolu-
tionary process, then every mild solution of Eq.(4.1) is in S APω(X).

Proof. Since A(t) generates a ω-periodic exponentially stable evolutionary process, then
Eq.(4.1) has a mild solution x defined by (4.2). It remains to prove that it is in S APω(X).
This is immediate by using Lemma 4.2 and the fact that the two-parameter family is ex-
ponentially stable, thus lim

t→∞
‖U(t,0)x0‖ = 0, since C0(R+,X) ⊂ S APω(X), we deduce that

lim
t→∞
‖U(t+ω,0)x0−U(t,0)x0‖ = 0. �

Example 4.4. Consider the equation

x′(t) = a(t)x(t)+ f (t), t ≥ 0 (4.3)



120 J. Blot, P. Cieutat, and G. M. N’Guérékata

where f ∈ S APω(R) and a ∈ Pω(R). We also assume that
∫ ω

0
a(t)dt < 0. Then U(t, s) :=

exp(
∫ t

s
a(σ)dσ) is an ω-periodic exponentially stable evolutionary process, therefore the

solution with initial data x(0) = x0:

x(t) = exp(
∫ t

0
a(σ)dσ)x0+

∫ t

0

(
exp(

∫ t

s
a(σ))dσ

)
f (s)ds,

is also in S APω(R).

Now we consider semilinear problem{
x′(t) = A(t)x(t)+F(t, x(t)) for t ≥ 0,
x(0) = x0,

(4.4)

where x0 ∈ X.

We make the following assumptions.

H1 A(t) generates a ω-periodic (ω > 0) exponentially stable evolutionary process in X.

H2 F is uniformly S-asymptotically ω-periodic on bounded sets.

H3 F satisfies a Lipschitz condition in second variable uniformly with respect to the
first variable, i.e. there exists L > 0 such that

‖F(t, x)−F(t,y)‖ ≤ L‖x− y‖, x,y ∈ X, t ≥ 0.

Theorem 4.5. Under H1−H3, Eq.(4.4) possesses a unique mild solution in
S APω(X) if L <

a
K

.

Proof. Consider the mapping Γ defined on S APω(X) by

Γu(t) := U(t,0)x0+

∫ t

0
U(t, s)F(s,u(s))ds.

Γ is well-defined by the above results. Now let u, v ∈ S APω(X). Then we have

‖Γu(t)−Γv(t)‖ =
∫ t

0
‖U(t, s)‖L(X,X)‖F(s,u(s))−F(s,v(s))‖ds

≤ L‖u− v‖∞

∫ t

0
Ke−a(t−s)) ds,

thus

‖Γu−Γv‖∞ ≤
LK
a
‖u− v‖∞ with

LK
a
< 1.

The results follows in virtue of the contraction mapping principle. �
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Remark 4.6. Theorem 4.5 contains the case of semilinear equations where the linear part
is the infinitesimal generator of a semigroup which is exponentially stable. Consider the
following equation: {

x′(t) = Ax(t)+F(t, x(t)) for t ≥ 0,
x(0) = x0,

(4.5)

where x0 ∈ X and A : D(A)→ X is the infinitesimal generator of a semigroup (S (t))t≥0. If
the semigroup is exponentially stable: ‖S (t)‖ ≤ Ke−at for all t ≥ 0 and F satisfies Under H2

and H3, Eq.(4.5) possesses a unique mild solution in S APω(X) if L <
a
K

.
This last result is a corollary of Theorem 4.5 by setting U(t, s) = T (t− s) for t ≥ s.
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