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Abstract

In this paper we prove the interior approximate controllability of the following
Semilinear Heat Equation

zt(t, x) = ∆z(t, x)+1ωu(t, x)+ f (t,z,u(t, x)) in (0, τ]×Ω,
z = 0, on (0, τ)×∂Ω,
z(0, x) = z0(x), x ∈Ω,

where Ω is a bounded domain in RN(N ≥ 1), z0 ∈ L2(Ω), ω is an open nonempty
subset of Ω, 1ω denotes the characteristic function of the set ω,the distributed control
u belong to ∈ L2([0, τ]; L2(Ω; )) and the nonlinear function f : [0, τ]× IR× IR→ IR is
smooth enough and there are a,b,c ∈ IR, with c , −1, such that

sup
(t,z,u)∈Qτ

| f (t,z,u)−az− cu−b| <∞,

where Qτ = [0, τ]× IR× IR. Under this condition we prove the following statement: For
all open nonempty subset ω of Ω the system is approximately controllable on [0, τ].
Moreover, we could exhibit a sequence of controls steering the nonlinear system (1.1)
from an initial state z0 to an ε neighborhood of the final state z1 at time τ > 0, which is
very important from a practical and numerical point of view.
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1 Introduction

In this paper we prove the interior approximate controllability of the following Semilinear
Heat Equation

zt(t, x) = ∆z(t, x)+1ωu(t, x)+ f (t,z,u(t, x)) in (0, τ]×Ω,
z = 0, on (0, τ)×∂Ω,
z(0, x) = z0(x), x ∈Ω,

(1.1)

where Ω is a bounded domain in RN(N ≥ 1), z0 ∈ L2(Ω), ω is an open nonempty subset
of Ω, 1ω denotes the characteristic function of the set ω,the distributed control u belong to
∈ L2([0, τ]; L2(Ω; )) and the nonlinear function f : [0, τ]× IR× IR→ IR is smooth enough and
there are a,b,c ∈ IR, with c , −1, such that

sup
(t,z,u)∈Qτ

| f (t,z,u)−az− cu−b| <∞, (1.2)

where Qτ = [0, τ]× IR× IR. Under this condition we prove the following statement: For all
open nonempty subset ω of Ω the system is approximately controllable on [0, τ]. Moreover,
we could exhibit a sequence of controls steering the nonlinear system (1.1) from an initial
state z0 to an ε neighborhood of the final state z1 at time τ > 0, which is very important from
a practical and numerical point of view.
We note that, the interior approximate controllability of the linear heat equation

zt(t, x) = ∆z(t, x)+1ωu(t, x) in (0, τ]×Ω,
z = 0, on (0, τ)×∂Ω,
z(0, x) = z0(x), x ∈Ω,

(1.3)

has been study by several authors, particularly by [16],[17],[18]; and in a general fashion in
[14].
The approximate controllability of the heat equation under non linear perturbation f (z)
independents of t and u variable

zt(t, x) = ∆z(t, x)+1ωu(t, x)+ f (z) in (0, τ]×Ω,
z = 0, on (0, τ)×∂Ω,
z(0, x) = z0(x), x ∈Ω,

(1.4)

has been studied by several authors, particularly in [8], [9] and [10], depending on con-
ditions impose to the nonlinear term f (z). For instance, in [9] and [10] the approximate
controllability of the system (1.4) is proved if f (z) is sublinear at infinity, i.e.,

| f (z)| ≤ d|z|+ e. (1.5)

Also, in the above reference, they mentioned that when f is superlinear at the infinity, the
approximate controllability of system (1.4) fail.
In this paper we use different technique for the linear part (see [14]) and Schauder fixed
point Theorem for the semilinear system. Moreover, we find a sequence of control steering
the semilinear system (1.1) from an initial state z0 to a ε-neighborhood of the final state z1
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on time τ > 0.
Now, we shall describe the strategy of this work:
First, we observe that the hypothesis (1.2) is equivalent to the existence of a,c ∈ IR, with
c , −1, such that

sup
(t,z,u)∈Qτ

| f (t,z,u)−az− cu| <∞, (1.6)

where Qτ = [0, τ]× IR× IR.
Second, we prove that the linear system

zt(t, x) = ∆z(t, x)+1ωu(t, x)+az+ cu(t, x) in (0, τ]×Ω,
z = 0, on (0, τ)×∂Ω,
z(0, x) = z0(x), x ∈Ω,

(1.7)

is approximately controllable.
After that, we write the system(1.1) as follows

zt(t, x) = ∆z(t, x)+1ωu(t, x)+az+ cu(t, x)+g(t,z,u) in (0, τ]×Ω,
z = 0, on (0, τ)×∂Ω,
z(0, x) = z0(x), x ∈Ω,

(1.8)

where g(t,z,u) = f (t,z,u)−az− cu is an smooth and bounded function.
The technique we use here to prove the controllability of the linear equation (1.7) is based
in the following results:

T 1.1. (see Theorem 1.23 from [2], pg. 20) Suppose Ω ⊂ IRn is open, non-empty and
connected set, and f is real analytic function in Ω with f = 0 on a non-empty open subset
ω of Ω. Then, f = 0 in Ω.

L 1.1. (see Lemma 3.14 from [6], pg. 62) Let {α j} j≥1 and {βi, j : i = 1,2, . . . ,m} j≥1 be
two sequences of real numbers such that: α1 > α2 > α3 · · · . Then

∞∑
j=1

eα jtβi, j = 0, ∀t ∈ [0, t1], i = 1,2, · · · ,m

iff
βi, j = 0, i = 1,2, · · · ,m; j = 1,2, · · · ,∞.

Finally, the approximate controllability of the system (1.8) follows from the control-
lability of (1.7), the compactness of the semigroup generated by the Laplacean operator
∆ and the uniform boundedness of the nonlinear term g by applying Schauder fixed point
Theorem.

2 Abstract Formulation of the Problem.

In this section we choose a Hilbert space where system (1.1) can be written as an abstract
differential equation; to this end, we consider the following notations:
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Let us consider the Hilbert space Z = L2(Ω) and 0 < λ1 < λ2 < ... < λ j −→∞ the eigenval-
ues of −∆, each one with finite multiplicity γ j equal to the dimension of the corresponding
eigenspace. Then we have the following well known properties
(i) There exists a complete orthonormal set {φ j,k} of eigenvectors of A = −∆.
(ii) For all z ∈ D(A) we have

Az =
∞∑
j=1

λ j

γ j∑
k=1

< ξ,φ j,k > φ j,k =

∞∑
j=1

λ jE jz, (2.9)

where < ·, · > is the inner product in Z and

Enz =
γ j∑

k=1

< z,φ j,k > φ j,k. (2.10)

So, {E j} is a family of complete orthogonal projections in Z and z =
∑∞

j=1 E jz, z ∈ H.
(iii) −A generates an analytic semigroup {T (t)} given by

T (t)z =
∞∑
j=1

e−λ jtE jz. (2.11)

Consequently, systems (1.1), (1.7) and (1.8) can be written respectively as an abstract
differential equations in Z:

z′ = −Az+Bωu+ f e(t,z,u), z ∈ Z t ≥ 0, (2.12)

z′ = −Az+Bωu+az+ cu, z ∈ Z t ≥ 0, (2.13)

z′ = −Az+Bωu+az+ cu+ge(t,z,u), z ∈ Z t ≥ 0, (2.14)

where u ∈ L2([0, τ];U), U = Z, Bω : U −→ Z, Bωu = 1ωu is a bounded linear operator,
f e : [0, τ]×Z ×U → Z, is defined by f e(t,z,u)(x) = f (t,z(x),u(x)), ∀x ∈ Ω and ge(t,z,u) =
f e(t,z,u)−az− cu. On the other hand, the hypothesis (1.2) implies that

sup
(t,z,u)∈Zτ

‖ f e(t,z,u)−az− cu‖Z <∞, (2.15)

where Zτ = [0, τ]×Z×U. Therefore, ge : [0, τ]×Z×U→ Z is bounded and smooth enough.

3 Interior Controllability of the Linear Equation

In this section we shall prove the interior controllability of the linear system (2.13). But,
before we shall give the definition of approximate controllability for this system. To this
end, for all z0 ∈ Z and u ∈ L2(0, τ;U) the initial value problem{

z′ = −Az+Bωu(t)+az(t)+ cu(t), z ∈ Z,
z(0) = z0,

(3.16)

where the control function u belong to L2(0, τ;U), admits only one mild solution given by

z(t) = eatT (t)z0+

∫ t

0
ea(t−s)T (t− s)(Bω+aI)u(s)ds, t ∈ [0, τ]. (3.17)
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D 3.1. (Approximate Controllability) The system (2.13) is said to be approxi-
mately controllable on [0, τ] if for every z0, z1 ∈ Z, ε > 0 there exists u ∈ L2(0, τ;U) such
that the solution z(t) of (3.17) corresponding to u verifies:

‖z(τ)− z1‖ < ε.

D 3.2. For the system (2.13) we define the following concept: The controllability
map (for τ > 0) Ga : L2(0, τ;U) −→ Z is given by

Gau =
∫ τ

0
easT (s)(Bω+aI)u(s)ds. (3.18)

whose adjoint operator G∗a : Z −→ L2(0, τ;Z) is given by

(G∗az)(s) = (B∗ω+aI)easT ∗(s)z, ∀s ∈ [0, τ], ∀z ∈ Z. (3.19)

The following lemma holds in general for a linear bounded operator G : W → Z between
Hilbert spaces W and Z.

L 3.1. (see [6], [7], [1] and [14]) The equation (2.13) is approximately controllable
on [0, τ] if, and only if, one of the following statements holds:

a) Rang(Ga) = Z.

b) Ker(G∗a) = {0}.

c) 〈GaG∗az,z〉 > 0, z , 0 in Z.

d) limα→0+ α(αI+GaG∗a)−1z = 0.

e) supα>0 ‖α(αI+GaG∗a)−1‖ ≤ 1.

f) (B∗ω+aI)eatT ∗(t)z = 0, ∀t ∈ [0, τ], ⇒ z = 0.

g) For all z ∈ Z we have Guα = z−α(αI+GaG∗a)−1z, where

uα =G∗a(αI+GaG∗a)−1z, α ∈ (0,1].

So, limα→0 Gauα = z and the error Eαz of this approximation is given by

Eαz = α(αI+GaG∗a)−1z, α ∈ (0,1].

R 3.1. The Lemma 3.1 implies that the family of linear operators Γα : Z→ L2(0, τ;U),
defined for 0 < α ≤ 1 by

Γαz = (B∗ω+aI)ea(·)T ∗(·)(αI+GaG∗a)−1z =G∗a(αI+GaG∗a)−1z, (3.20)

is an approximate inverse for the right of the operator Ga in the sense that

lim
α→0

GaΓα = I. (3.21)
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T 3.1. The system (2.13) is approximately controllable on [0, τ]. Moreover, a se-
quence of controls steering the system (2.13) from initial state z0 to an ε neighborhood of
the final state z1 at time τ > 0 is given by

uα(t) = (B∗ω+aI)eatT ∗(t)(τ− t)(αI+GaG∗a)−1(z1−T (τ)z0),

and the error of this approximation Eα is given by

Eα = α(αI+GaG∗a)−1(z1−T (τ)z0).

Proof . It is enough to show that the restriction Ga,ω = Ga|L2(0,τ;L2(ω)) of Ga to the space
L2(0, τ; L2(ω)) has range dense. i.e., Rang(Ga,ω) = Z or Ker(G∗a,ω) = {0}. Consequently,
Ga,ω : L2(0, τ; L2(ω))→ Z takes the following form

Ga,ωu =
∫ τ

0
easT (s)(1+ cI)Bωu(s)ds.

whose adjoint operator G∗a,ω : Z −→ L2(0, τ; L2(ω)) is given by

(Ga,ωz)(s) = (1+ c)B∗ωeasT ∗(s)z, ∀s ∈ [0, τ], ∀z ∈ Z.

To this end, we observe that Bω = B∗ω and T ∗(t) = T (t). Suppose that

(1+ c)B∗ωeatT ∗(t)z = 0, ∀t ∈ [0, τ].

Then, since 1+ c , 0, this is equivalents to

B∗ωT ∗(t)z = 0, ∀t ∈ [0, τ].

On the other hand,

B∗ωT ∗(t)z =

∞∑
j=1

e−λ jtB∗ωE jz =
∞∑
j=1

e−λ jt
γ j∑

k=1

< z,φ j,k > 1ωφ j,k = 0.

⇐⇒

∞∑
j=1

e−λ jt
γ j∑

k=1

< z,φ j,k > 1ωφ j,k(x) = 0, ∀x ∈ ω.

Hence, from Lemma 1.1, we obtain that

E jz(x) =
γ j∑

k=1

< z,φ j,k > φ j,k(x) = 0, ∀x ∈ ω, j = 1,2,3, . . . .

Since φ j,k are analytic functions on Ω, from Theorem 1.1, we obtain that

E jz(x) =
γ j∑

k=1

< z,φ j,k > φ j,k(x) = 0, ∀x ∈Ω, j = 1,2,3, . . . .

Therefore, E jz = 0, j = 1,2,3, . . . , which implies that z = 0. So, Rang(Ga,ω) = Z, and
consequently Rang(Ga) = Z. Hence, the system (2.13) is approximately controllable on
[0, τ], and the remainder of the proof follows from Lemma 3.1.
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4 Controllability of the Semilinear System

In this section we shall prove the main result of this paper, the interior controllability of the
semilinear nD heat equation given by (1.1), which is equivalent to prove the approximate
controllability of the system (2.14). To this end, for all z0 ∈ Z and u ∈ L2(0, τ;U) the initial
value problem {

z′ = −Az+Bωu+az+ cu+ge(t,z,u), z ∈ Z t ≥ 0
z(0) = z0

(4.22)

where the control function u belong to L2(0, τ;U) admits only one mild solution given by

zu(t) = eatT (t)z0+

∫ t

0
ea(t−s)T (t− s)(Bω+ cI)u(s)ds (4.23)

+

∫ t

0
ea(t−s)T (t− s)ge(s,zu(s), (s))ds, t ∈ [0, τ].

D 4.1. (Approximate Controllability) The system (2.14) is said to be approxi-
mately controllable on [0, τ] if for every z0, z1 ∈ Z, ε > 0 there exists u ∈ L2(0, τ;U) such
that the solution z(t) of (4.23) corresponding to u verifies:

‖z(τ)− z1‖ < ε.

D 4.2. For the system (2.14) we define the following concept: The nonlinear con-
trollability map (for τ > 0) Gg : L2(0, τ;U) −→ Z is given by

Ggu =
∫ τ

0
easT (s)(Bω+ cI)u(s)ds+

∫ τ
0

easT (s)ge(s,zu(s), (s))ds =G(u)+H(u), (4.24)

where H : L2(0, τ;U) −→ Z is the nonlinear operator given by

H(u) =
∫ τ

0
easT (s)ge(s,zu(s), (s))ds, u ∈ L2(0, τ;U) (4.25)

The following lemma is trivial:

L 4.1. The equation (2.14) is approximately controllable on [0, τ] if and only if
Rang(Gg) = Z.

D 4.3. The following equation will be called the controllability equations associ-
ated to the non linear equation (2.14)

uα = Γα(z−H(uα)) =G∗a(αI+GaG∗a)−1(z−H(uα)), (0 < α ≤ 1). (4.26)

Now, we are ready to present and prove the main result of this paper, which is interior
approximate controllability of the semilinear nD heat equation (1.1)
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T 4.1. The system (2.14) is approximately controllable on [0, τ]. Moreover, a se-
quence of controls steering the system (2.14) from initial state z0 to an ε neighborhood of
the final state z1 at time τ > 0 is given by

uα(t) = (B∗ω+ cI)ea(τ−t)T ∗(τ− t)(αI+GaG∗a)−1(z1−T (τ)z0−H(uα)),

and the error of this approximation Eα is given by

Eα = α(αI+GaG∗a)−1(z1−T (τ)z0−H(uα)).

Proof For each z ∈ Z fixed we shall consider the following family of nonlinear operators
Kα : L2(0, τ;U)→ L2(0, τ;U) given by

Kα(u) = Γα(z−H(u)) =G∗a(αI+GaG∗a)−1(z−H(u)), (0 < α ≤ 1). (4.27)

First, we shall prove that for all α ∈ (0,1] the operator Kα has a fixed point uα. In fact,
since the semigroup {T (t)}t≥0 given by (2.11) is compact (see [4],[5]), then using the result
from [3], the smoothness and the bounddeness of the non linear term ge we obtain that the
operator H is compact and Rang(H) is compact.

On the other hand, since ge is bounded and ‖T (t)‖ ≤ReWt, t ≥ 0, there exists a constant
R > 0 such that

‖H(u)‖ ≤ M, ∀u ∈ L2(0, τ;U).

Then,
‖Kα(u)‖ ≤ ‖Γα‖(‖z‖+M), ∀u ∈ L2(0, τ;U).

Therefore, the operator Kα maps the ball Br(0) ⊂ L2(0, τ;U) of center zero and radio r ≥
‖Γα‖(‖z‖+M) into itself. Hence, applying the Schauder fixed point Theorem we get that the
operator Kα has a fixed point uα ∈ Br(0) ⊂ L2(0, τ;U).
Since Rang(H) is compact, without loss of generality, we can assume that the sequence
H(uα) converges to y ∈ Z. So, if

uα = Γα(z−H(u)) =G∗a(αI+GaG∗a)−1(z−H(uα)).

Then,

Gauα = GaΓα(z−H(u)) =GaG∗a(αI+GaG∗a)−1(z−H(uα))

= (αI+GaG∗a−αI)(αI+GaG∗a)−1(z−H(uα))

= z−H(uα)−α(αI+GaG∗a)−1(z−H(uα))

Hence,
Gauα+H(uα) = z−α(αI+GaG∗a)−1(z−H(uα)).

To conclude the proof of this Theorem, it enough to prove that

lim
α→0
{−α(αI+GaG∗a)−1(z−H(uα))} = 0
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From Lemma 3.1 pat d) we get that

lim
α→0
{−α(αI+GaG∗a)−1(z−H(uα))} = − lim

α→0
{−α(αI+GaG∗a)−1H(uα)}

= − lim
α→0
−α(αI+GaG∗a)−1y − lim

α→0
−α(αI+GaG∗a)−1(H(uα)− y)

= lim
α→0
−α(αI+GaG∗a)−1(H(uα)− y).

On the other hand, from Lemma 3.1 pat e) we get that

‖α(αI+GaG∗a)−1(H(uα)− y)‖ ≤ ‖(H(uα)− y)‖.

Therefore, since H(uα) converges to y, we get that

lim
α→0
{−α(αI+GaG∗a)−1(H(uα)− y)} = 0.

Consequently,
lim
α→0
{−α(αI+GaG∗a)−1(z−H(uα))} = 0

So, putting z = z1−T (τ)z0 and using (4.23), we obtain the nice result:

z1 = lim
α→0+
{eaτT (τ)z0+

∫ τ
0

e(τ−s)T (τ− s)(Bω+ cI)uα(s)ds

+

∫ τ
0

e(τ−s)T (τ− s)ge(s,zuα(s),uα(s))ds}

5 Final Remark

Our technique is simple and can be apply to those system involving compact semigroups
like some control system governed by diffusion processes. For example, the Benjamin
-Bona-Mohany Equation, the strongly damped wave equations, beam equations, etc.

E 5.1. The original Benjamin -Bona-Mohany Equation is a non-linear one, in [15]
the authors proved the approximate controllability of the linear part of this equation, which
is the fundamental base for the study of the controllability of the non linear BBM equation.
So, our next work is concerned with the controllability of non linear BBM equation{

zt −a∆zt −b∆z = 1ωu(t, x)+ f (t,z,u(t)), t ∈ (0, τ), x ∈Ω,
z(t, x) = 0, t ≥ 0, x ∈ ∂Ω,

(5.28)

where a ≥ 0 and b > 0 are constants, Ω is a domain in IRN , ω is an open nonempty
subset of Ω, 1ω denotes the characteristic function of the set ω, the distributed control
u ∈ L2(0, τ; L2(Ω)) and f (t,z,u(t)) is a nonlinear perturbation.
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E 5.2. We believe that this technique can be applied to prove the interior controlla-
bility of the strongly damped wave equation with Dirichlet boundary conditions

wtt +η(−∆)1/2wt +γ(−∆)w = 1ωu(t, x)+ f (t,z,u(t)), in (0, τ)×Ω,
w = 0, in (0, τ)×∂Ω,
w(0, x) = w0(x), wt(0, x) = w1(x), in Ω,

in the space Z1/2 = D((−∆)1/2)× L2(Ω), where Ω is a bounded domain in IRn, ω is an open
nonempty subset of Ω, 1ω denotes the characteristic function of the set ω, the distributed
control u ∈ L2(0, τ; L2(Ω)) and η, γ are positive numbers.

E 5.3. Another example where this technique my be applied is a partial differential
equations modeling the structural damped vibrations of a string or a beam:

ytt −2β∆yt +∆
2y = 1ωu(t, x)+ f (t,z,u(t)), on (0, τ)×Ω,

y = ∆y = 0, on (0, τ)×∂Ω,
y(0, x) = y0(x), yt(0, x) = y1(x), in Ω,

(5.29)

where Ω is a bounded domain in IRn, ω is an open nonempty subset of Ω, 1ω denotes
the characteristic function of the set ω, the distributed control u ∈ L2(0, τ; L2(Ω)) and
y0,y1 ∈ L2(Ω).

Moreover, Our result can be formulated in a more general setting. Indeed, we can
consider the following semilinear evolution equation in a general Hilbert space Z{

ź = −Az+Bu(t)+ f e(t,z,u), z ∈ Z, t ∈ (0, τ],
z(0) = z0,

(5.30)

where, A : D(A) ⊂ Z → Z is an unbounded linear operator in Z with the following spectral
decomposition:

Az =
∞∑
j=1

λ j

γ j∑
k=1

< z,φ j,k > φ j,k,

with the eigenvalues 0< λ1 < λ2 < · · ·< · · ·λn→∞ of A having finite multiplicity γ j equal to
the dimension of the corresponding eigenspaces, and {φ j,k} is a complete orthonormal set of
eigenfunctions of A. The operator −A generates a strongly continuous compact semigroup
{TA(t)}t≥0 given by

TA(t)z =
∞∑
j=1

e−λ jt
γ j∑

k=1

< z,φ j,k > φ j,k.

The control u ∈ L2(0, τ;U), with U = Z, B : Z → Z is a linear and bounded operator(linear
and continuous) and the function f e : [0, τ]×Z×U → Z is smooth enough and

sup
(t,z,u)∈Zτ

‖ f e(t,z,u)−az− cu‖Z <∞, (5.31)

where Zτ = [0, τ]×Z×U. In this case the characteristic function set is a particular operator
B, and the following theorem is a generalization of Theorem 4.1.

T 5.1. If vectors B∗φ j,k are linearly independent in Z, then the system (5.30) is
approximately controllable on [0, τ].



CONTROLLABILITY OF SEMILINEAR HEAT EQUATION 11

Acknowledgments

This work was supported by MCTI under project ConCiencia-3827 and by BCV.

References

[1] J. APPELL, H. LEIVA, N. MERENTES ANDA A. VIGNOLI, Un espectro de com-
presión no lineal con aplicaciones a la controlabilidad aproximada de sistemas semi-
lineales, preprint

[2] S. AXLER, P. BOURDON AND W. RAMEY, Harmonic Fucntion Theory. Graduate
Texts in Math., 137. Springer Verlag, New york (1992).

[3] D.BARCENAS, H. LEIVA AND Z. SIVOLI, A Broad Class of Evolution Equations
are Approximately Controllable, but Never Exactly Controllable. IMA J. Math. Con-
trol Inform. 22, no. 3 (2005), 310–320.

[4] D.BARCENAS, H. LEIVA AND W. URBINA, Controllability of the Ornstein-
Uhlenbeck Equation. IMA J. Math. Control Inform. 23 no. 1, (2006), 1–9.

[5] D. BARCENAS, H. LEIVA, Y. QUINTANA AND W. URBINA, Controllability of
Laguerre and Jacobi Equations. International Journal of Control, Vol. 80, N. 8, August
2007, 13071315.

[6] R.F. CURTAIN, A.J. PRITCHARD, Infinite Dimensional Linear Systems. Lecture
Notes in Control and Information Sciences, 8. Springer Verlag, Berlin (1978).

[7] R.F. CURTAIN, H.J. ZWART, An Introduction to Infinite Dimensional Linear Systems
Theory. Text in Applied Mathematics, 21. Springer Verlag, New York (1995).

[8] J.I. DIAZ, J.HENRY AND A.M. RAMOS, “On the Approximate Controllability of
Some Semilinear Parabolic Boundary-Value Problemas”, Appl. Math. Optim 37-71
(1998).

[9] E. FERNANDEZ-CARA, “ Remark on Approximate and Null Controllability of
Semilinear Parabolic Equations” ESAIM:Proceeding OF CONTROLE ET EQUA-
TIONS AUX DERIVEES PARTIELLES, Vol.4, 1998, 73-81.

[10] E. FERNANDEZ-CARA AND E. ZUAZUA,“Controllability for Blowing up Semi-
linear Parabolic Equations”, C.R. Acad. Sci. Paris, t. 330, serie I, p. 199-204, 2000.

[11] LUIZ A. F. de OLIVEIRA “On Reaction-Diffusion Systems” E. Journal of Differential
Equations, Vol. 1998(1998), N0. 24, pp. 1-10.

[12] H. LEIVA, “A Lemma on C0-Semigroups and Applications PDEs Systems” Quaes-
tions Mathematicae, Vol. 26, pp. 247-265 (2003).

[13] H. LEIVA“Controllability of a System of Parabolic equation with non-diagonal diffu-
sion matrix”. IMA Journal of Mathematical Control and Information; Vol. 32, 2005,
pp. 187-199.



12 H. Leiva, N. Merentes and J.L. Sanchez

[14] H. LEIVA and Y. QUINTANA, “Interior Controllability of a Broad Class of Reaction
Diffusion Equations”, Mathematical Problems in Engineering, Vol. 2009, Article ID
708516, 8 pages, doi:10.1155/2009/708516.

[15] H. LEIVA, N. M AND J.L. SANCHEZ “Interior Controllability of the Benjamin-
Bona-Mahony Equation”. Journal of Mathematis and Applications, N 33,pp. 51-59
(2010).

[16] XU ZHANG, A Remark on Null Exact Controllability of the Heat Equation. IAM J.
CONTROL OPTIM. Vol. 40, No. 1(2001), pp. 39-53.

[17] E. ZUAZUA, Controllability of a System of Linear Thermoelasticity, J. Math. Pures
Appl., 74, (1995), 291-315.

[18] E. ZUAZUA, Control of Partial Differential Equations and its Semi-Discrete Approx-
imation. Discrete and Continuous Dynamical Systems, vol. 8, No. 2. April (2002),
469-513.


