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1. Introduction

The most classical Bäcklund theorem is the Bäcklund theorem for surfaces in Eu-
clidean space

Theorem 1. Let f, f̂ : M → R3, be a pair of surfaces in the Euclidean space R3

satisfying the following conditions

i) for every p ∈M f(p) 6= f̂(p), the vector f̂(p)− f(p) is tangent to f(M) at
f(p) and is tangent to f̂(M) at f̂(p)

ii) the length L := |f̂(p)− f(p)| of f̂(p)− f(p) is independent of p

iii) the angle σ between the Euclidean normals n and n̂ (of f(M) and f̂(M)
respectively) is constant and sinσ 6= 0.

Then both surfaces are of constant negative Gaussian curvature κ = κ̂ = −sin2 σ

L2
·

The second fundamental forms h and ĥ of f and f̂ are proportional.

In this article we will present analogues of Bäcklund theorem in affine differential
geometry of surfaces. We recall Chern–Terng theorem and prove some other affine
Bäcklund theorem, concerning surfaces with locally symmetric induced connec-
tion.

Our aim was to generalize Bäcklund theorem to the situation, when in ambient
space there is only the volume form, and we cannot measure length or angle. The
volume form is parallel with respect to the standard linear connection D in R3.
We study two immersions f and f̂ , which are focal surfaces of a rectilinear con-
gruence. Each of them is endowed with an equiaffine transversal vector field, ξ
and ξ̂ respectively. Unlike the Euclidean normals, those transversal fields are not
determined by the immersions. Of course, one may use the affine normal, and this
particular case will be also considered. We will impose on (f, ξ) and (f̂ , ξ̂) some
conditions which guarantee that both induced connections ∇ and ∇̂ are locally
symmetric. Our idea was to consider the volume of the parallelepiped spanned by
f̂ − f and both transversal fields. In Euclidean case this volume is a non-zero con-
stant. The conjecture that condition of constant volume together with some other
conditions about the values of conormal map enforce both Blaschke connections
to be locally symmetric turned out to be true. Some partial result, with Blaschke
normal of f tangent to f̂ and vice versa, is contained in [7]. However, in case of
arbitrary equiaffine transversal fields ξ and ξ̂ one should admit also non-constant
volume det(f̂ − f, ξ, ξ̂).
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Our result seems to be a common generalization of the classical Bäcklund theorem
(see for example [2] or [9]) and Minkowski space Bäcklund theorem ( [1], [7]). It
also includes the case of non-metrizable connections with dim imR = 1, studied
by Opozda in [6]. The theorem is complementary to Chern and Terng analogue of
Bäcklund’s theorem in affine geometry [2], because in [2] the affine normals Rξ
and Rξ̂ were assumed to be parallel, hence det(f̂ − f, ξ, ξ̂) = 0.

2. Preliminaries

We recall the basic notions of affine differential geometry. More details can be
found in [5]. Here we consider only two-dimensional manifolds immersed into
affine space R3. The standard connection in R3 is denoted by D.

Let f : M → R3 be an immersion of a two-dimensional manifold M into R3.
Let ξ : M → R3 be a transversal vector field. For each p ∈ M we have the
decomposition R3 = f∗(TpM) ⊕ Rξp. The induced connection ∇, the affine
fundamental form h (relative to the transversal vector field ξ), the affine shape
operator S and the transversal connection form τ are defined by the following
Gauss and Weingarten formulae

DXf∗(Y ) = f∗(∇XY ) + h(X,Y ) ξ, DXξ = − f∗(SX) + τ(X) ξ. (1)

The volume element induced by (f, ξ) on M is

θ(X,Y ) = det(f∗X, f∗Y, ξ). (2)

The determinant detθh of a symmetric covariant tensor h of degree 2 relative to
θ is, by definition, equal to det[hij ], where hij = h(Xi, Xj) and X1, X2 is a
unimodular basis for θ: θ(X1, X2) = 1. Let (R3)∗ be the dual space of the vector
space R3. For immersion f : M → R3 with transversal vector field ξ : M → R3

the conormal map ν :M → (R3)∗ is defined as follows

νp(f∗(Xp)) := 0 and νp(ξp) := 1 for p ∈M, Xp ∈ TpM. (3)

The rank of the affine fundamental form is independent of the choice of transversal
vector field. If h is nondegenerate, then we say that the surface is nondegenerate.
If f is nondegenerate, then for each point p ∈ M there exists a transversal vector
field defined in a neighbourhood of p satisfying the conditions

I) ∇θ = 0
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II) θ coincides with the volume element of the nondegenerate metric h.

Such a transversal vector field is unique up to a sign and is called the affine normal
field or Blaschke normal field. The connection induced by the affine normal vector
field is called the Blaschke connection and h is called the affine metric. The condi-
tion I) is equivalent to τ = 0 and the condition II) is equivalent to |detθh| = 1. An
equiaffine transversal field is a transversal field satisfying the condition τ = 0.

Bäcklund theorem is usually formulated for two focal surfaces of some rectilinear
congruence. A rectilinear congruence is a two-parametric family of straight lines.
Under some additional assumption about the congruence one can find two families
of ruled developable surfaces with rulings belonging to the congruence. Each line
of the congruence is contained in one developable surface of each family and is
tangent to the edge of regression of this developable surface at the point which is
called the focal point. Except of some particular degenerate cases the set of all
focal points forms two focal surfaces. We parametrize the focal surfaces in such
a way that f(p) and f̂(p) belong to the same straight line of congruence. We may
consider the mapping f(p) 7→ f̂(p) between the two focal surfaces. If this mapping
preserves the asymptotic lines, a rectilinear congruence is called a W -congruence.

More details about rectilinear congruences one can find for example in [3].

3. A Necessary and Sufficient Condition for Rectilinear Congruence
with Non-Degenerate Focal Surfaces to be a W-congruence

In this section we will study the condition that the affine fundamental forms h and
ĥ, of (f, ξ) and (f̂ , ξ̂) respectively, are proportional. In Euclidean or Minkowski
space Bäcklund theorem this condition is a part of the assertion, whereas in affine
case it is an assumption.

Proposition 2. Let f :M → R3 and f̂ :M → R3 be non-degenerate immersions
of a two-dimensional manifold M into affine space R3 such that for every p ∈ M
f(p) 6= f̂(p), the vector f̂(p)− f(p) is tangent to f(M) at f(p) and is tangent to
f̂(M) at f̂(p).

Let ξ and ξ̂ be some transversal vector fields for f and f̂ respectively. We denote by
h and ĥ the corresponding affine fundamental forms, and by ν and ν̂ the conormal
maps. Then
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i) If det(f̂ − f, ξ, ξ̂) = 0, then 1− ν(ξ̂) ν̂(ξ) = 0.

ii) If 1 − ν(ξ̂) ν̂(ξ) = 0 at some point p and f∗(TpM) 6= f̂∗(TpM), then
det(f̂(p)− f(p), ξp, ξ̂p) = 0.

iii) If ξ and ξ̂ are such that det(f̂ − f, ξ, ξ̂) 6= 0 and ξ̃ = λ ξ + f∗Z,
ξ = µ ξ̂ + f̂∗V , then

1− ν̃(ξ) ν(ξ̃) = 1− ν(ξ̂) ν̂(ξ)
λµdet(f̂ − f, ξ, ξ̂)

det(f̂ − f, ξ̃, ξ).

iv) If moreover det(f̂ − f, ξ̃, ξ) 6= 0, then(
1− ν̃(ξ) ν(ξ̃)
det(f̂ − f, ξ̃, ξ)

)4
1

det
θ̃
h̃ detθh

=

(
1− ν(ξ̂) ν̂(ξ)
det(f̂ − f, ξ, ξ̂)

)4
1

detθh det
θ̂
ĥ
·

Proof: i) There exist nowhere vanishing vector fields X1 and X̂1 on M such that

f̂ − f = f∗X1 (4)

and
f̂ − f = f̂∗X̂1. (5)

Since f∗X1 and ξ are linearly independent, from det(f̂ − f, ξ, ξ̂) = 0 it follows
that ξ̂ = α f∗X1 + β ξ for some α and β. Here β 6= 0, because f∗X1 = f̂∗X̂1 is
tangent to f̂ . We have ν(ξ̂) = β and from ξ̂ = α f̂∗X̂1+β ξ we obtain 1 = β ν̂(ξ).

ii) Conversely, if ν(ξ̂) ν̂(ξ) = 1, then ξ̂ = f∗T + Aξ and ξ = f̂∗U + 1
A ξ̂ with

some A 6= 0. It follows that f∗T = ξ̂ − Aξ = − f̂∗(AU). Therefore f∗T
is tangent to f and is tangent to f̂ . By assumption f∗TpM 6= f̂∗TpM , hence
f∗TpM ∩ f̂∗TpM = Rf∗X1p and ξ̂ ∈ span{f∗X1p, ξp}.

iii) Let W = det(f̂ − f, ξ, ξ̂), A = ν(ξ̂) and Â = ν̂(ξ). For every p ∈ M ,
dim f∗TpM = 2, dim span{ξp, ξ̂p} = 2 and f∗TpM 6= span{ξp, ξ̂p}, because
ξp /∈ f∗TpM . Therefore dim

(
f∗TpM ∩ span{ξp, ξ̂p}

)
= 1 and we can find the

vectorX2p ∈ TpM such that f∗X2p ∈ span{ξp, ξ̂p} and det(f∗X1p, f∗X2p, ξp) =
1. In this way we define the vector field X2 such that

f∗X2 = a11 ξ + a21 ξ̂ (6)
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with some functions a11 and a21, and

det(f∗X1, f∗X2, ξ) = 1. (7)

Similarly we may define the vector field X̂2 such that

f̂∗X̂2 = a12 ξ + a22 ξ̂ (8)

and
det(f̂∗X̂1, f̂∗X̂2, ξ̂) = 1. (9)

From (7), (4) and (6) it follows that a21 = − 1
W and from (9), (5) and (8) we obtain

a12 = 1
W . Since, by (6), a11 + a21 ν(ξ̂) = 0, and by (8) a12 ν̂(ξ) + a22 = 0, we

have a11 = A
W and a22 = − Â

W . It follows that

f̂∗X̂1 = f∗X1, f̂∗X̂2 = Â f∗X2 +
1−AÂ
W

ξ, ξ̂ = −W f∗X2 +Aξ. (10)

We have
ξ̃ = λ ξ + f∗Z, ξ = µ ξ̂ + f̂∗V. (11)

Let Z = z1X1 + z2X2 and V = w1 X̂1 + w2 X̂2. Let W̃ := det(f̂ − f, ξ̃, ξ).

W̃ = det(f̂ − f, λ ξ + z1 f∗X1 + z2 f∗X2, µ ξ̂ + w1 f̂∗X̂1 + w2 f̂∗X̂2)

= det(f̂ − f, λ ξ + z2 f∗X2, µ ξ̂ + w2 f̂∗X̂2)

= det
(
f̂ − f, λ ξ + z2

( A
W

ξ − 1

W
ξ̂
)
, µ ξ̂ + w2

( 1

W
ξ − Â

W
ξ̂
))

= det
(
f̂ − f,

(
λ+ z2

A

W

)
ξ − z2

W
ξ̂,
w2

W
ξ +

(
µ− w2 Â

W

)
ξ̂
)

=
((
λ+ z2

A

W

)(
µ− w2 Â

W

)
+
z2w2

W 2

)
det(f̂ − f, ξ, ξ̂)

= λµW + z2Aµ− w2Âλ+ z2w2 1−AÂ
W

·

To compute ν̃(ξ) we have to write ξ in the basis f∗X1, f∗X2, ξ̃.

ξ = µ ξ̂ + w1 f̂∗X̂1 + w2 f̂∗X̂2

= µ (−W f∗X2 +Aξ) + w1 f∗X1 + w2
(
Â f∗X2 +

1−AÂ
W

ξ
)

=
(
µA+ w2 1−AÂ

W

)
ξ + f∗

(
w1X1 +

(
w2Â− µW

)
X2

)
=
(
µA+ w2 1−AÂ

W

)( 1
λ
ξ̃ − 1

λ
f∗Z

)
+ f∗

(
w1X1 +

(
w2Â− µW

)
X2

)
.



On Analogues of Bäcklund Theorem in Affine Differential Geometry of Surfaces 85

It follows that

Ã := ν̃(ξ) =
1

λ

(
µA+ w2 1−AÂ

W

)
. (12)

Similarly we obtain

A := ν(ξ̃) =
1

µ

(
λÂ− z2 1−AÂ

W

)
. (13)

Consequently

1− ÃA =
1−AÂ
λµW

W̃ . (14)

iv) Since det
θ̃
h̃ = 1

λ4
detθh and detθh = 1

µ4
det

θ̂
ĥ [5], we obtain from iii)

(1− ÃA
W̃

)4 1

det
θ̃
h̃detθh

=
(1−AÂ
λµW

)4 λ4µ4

detθhdetθ̂ĥ
=
(1−AÂ

W

)4 1

detθhdetθ̂ĥ
·

From iv) of Proposition 2 it follows that

ψ(f, f̂) :=
( 1− ν(ξ̂) ν̂(ξ)
det(f̂ − f, ξ, ξ̂)

)4 1

detθh det
θ̂
ĥ

(15)

is a well defined function on M .

Throughout the paper we will make some assumption about the rank of the spher-
ical representation of f̂ − f . The following lemma explains the technical signifi-
cance of this assumption: the forms ω2

1, ω3
1 constitute a local frame of T ∗M .

Lemma 3. (cf [8] page 6 in the metric case) Let ϕ : M → GL(3,R). For p ∈
M we denote by v1p, v2p, v3p the columns of the matrix ϕ(p). We consider the
mappings v1 : M → R3 \ {0} and π ◦ v1 : M → P2(R), where π : R3 \ {0} →
P2(R) denotes the canonical projection. The forms ωi1 are defined by the equality

dv1 = ω1
1 v1 + ω2

1 v2 + ω3
1v3. (16)

At each point of M the following conditions are equivalent

i) rank(π ◦ v1) = 2

ii) ω2
1 ∧ ω3

1 6= 0.
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Proof: Let (v1i , v
2
i , v

3
i ) be the coordinates of vi. Assume for example that v31 6= 0.

Then on P2(R) we use the chart (t1 : t2 : t3) 7→
(
t1

t3
, t

2

t3

)
. The composi-

tion of π ◦ v1 with this chart is
(
v11
v31
,
v21
v31

)
and its rank equals two if and only if

d
(
v11
v31

)
∧ d

(
v21
v31

)
6= 0. Let Z(p) be the inverse matrix of ϕ(p) and let Z =

(zij). Using (16) we easily obtain d
(
v11
v31

)
=

detϕ

(v31)
2

(
z32ω

2
1 − z22ω3

1

)
, d
(
v21
v31

)
=

detϕ

(v31)
2

(
− z31ω2

1 + z21ω
3
1

)
and

d

(
v11
v31

)
∧ d

(
v21
v31

)
=

(detϕ)2

(v31)
4

∣∣∣∣ z21 z22
z31 z32

∣∣∣∣ ω2
1 ∧ ω3

1

=
(detϕ)2

(v31)
4

detZ v31 ω
2
1 ∧ ω3

1 =
detϕ

(v31)
3
ω2

1 ∧ ω3
1

hence d
(
v11
v31

)
∧d
(
v21
v31

)
6= 0 is equivalent to ω2

1∧ω3
1 6= 0. If at some point v31 = 0,

then we have to use another chart and one of the equalities d
(
v11
v21

)
∧ d

(
v31
v21

)
=

− detϕ

(v21)
3
ω2

1 ∧ ω3
1, d

(
v21
v11

)
∧ d

(
v31
v11

)
=

detϕ

(v11)
3
ω2

1 ∧ ω3
1.

Theorem 4. Let f and f̂ be as in Proposition 2. Assume that the spherical repre-
sentation of f̂ − f , M 3 p 7→ π(f̂(p)− f(p)) ∈ P2(R), has rank 2 at every point
of M . Then

i) f∗TpM 6= f̂∗TpM for every p ∈M

ii) f̂(p)− f(p) is not an asymptotic vector

iii) the affine fundamental forms h and ĥ are conformal to each other if and only
if ψ(f, f̂) = 1.

Proof: We choose transversal fields ξ and ξ̂ satisfying det(f̂ − f, ξ, ξ̂) 6= 0. We
retain the notation of Proposition 2 and Lemma 3. We take

v1 = v̂1 = f̂ − f, v2 = f∗X2, v̂2 = f̂∗X̂2, v3 = ξ and v̂3 = ξ̂.

Together with f and f̂ we consider moving frames F and F̂ fromM to ASL(3,R),

F =

(
1 0
f (v1, v2, v3)

)
, F̂ =

(
1 0

f̂ (v̂1, v̂2, v̂3)

)
.
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We can now rewrite (4) and (10) as F̂ = Fa with

a =


1 0 0 0
1 1 0 0

0 0 Â −W
0 0 1−AÂ

W A

 .

The pull-back of the Maurer-Cartan form ϑ on ASL(3,R) by F is

F ∗ϑ = F−1 dF =


0 0 0 0
ϑ1 ω1

1 ω1
2 ω1

3

ϑ2 ω2
1 ω2

2 ω2
3

ϑ3 ω3
1 ω3

2 ω3
3

 .

Then

df = ϑ1 v1 + ϑ2 v2 + ϑ3 v3, dv1 = ω1
1 v1 + ω2

1 v2 + ω3
1 v3

dv2 = ω1
2 v1 + ω2

2 v2 + ω3
2 v3, dv3 = ω1

3 v1 + ω2
3 v2 + ω3

3 v3.

Since d ◦ d = 0, the one-forms ϑi and ωjk satisfy the structure equations

dϑs = −
3∑

k=1

ωsk ∧ ϑk, s = 1, 2, 3 (17)

and

dωij = −
3∑

k=1

ωik ∧ ωkj , i, j = 1, 2, 3. (18)

Similar equalities one can write for the dashed one-forms ϑ̂i and ω̂jk.

From
F̂−1dF̂ = a−1 (F−1dF ) a+ a−1da (19)

we obtain

ϑ̂2 = Aϑ2 +W ϑ3 +Aω2
1 +W ω3

1 (20)

ϑ̂3 = − 1−AÂ
W

ϑ2 + Â ϑ3 − 1−AÂ
W

ω2
1 + Â ω3

1. (21)

Since the frames (v1, v2, v3) and (v̂1, v̂2, v̂3) are adapted to f and f̂ respectively,
we have ϑ3 = 0 and ϑ̂3 = 0. From (21) we obtain

0 = − 1−AÂ
W

(
ϑ2 + ω2

1

)
+ Â ω3

1. (22)
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Suppose that 1 − AÂ = 0. Then (22) and ω2
1 ∧ ω3

1 6= 0 imply Â = 0, which

contradicts 1−AÂ = 0. Therefore 1−AÂ 6= 0 and from (10) we obtain i).

From (22) and (20) it follows that

ϑ2 = −ω2
1 +

ÂW

1−AÂ
ω3

1, ϑ̂2 =
W

1−AÂ
ω3

1. (23)

From (19) we obtain also

ω̂2
1 = Aω2

1 +W ω3
1, ω̂3

1 = −
1−AÂ
W

ω2
1 + Â ω3

1. (24)

Comparing (23) with (24) yields

ϑ2 =
W

1−AÂ
ω̂3

1. (25)

Our next goal is to check that X1 and X̂1 are at each point linearly independent.
We only need to show that ϑ2 ∧ ϑ̂2 6= 0 and it suffices to use (23) to obtain

ϑ2 ∧ ϑ̂2 = − W

1−AÂ
ω2

1 ∧ ω3
1.

We may now find the matrices of h and ĥ in the basisX1, X̂1. Since for k ∈ {1, 2}
h(Y,Xk) = ω3

k(Y ) and ĥ(Y, X̂k) = ω̂3
k(Y ), we obtain from (23) and (25)

h(X̂1, X1) = 0 and ĥ(X1, X̂1) = 0. (26)

It follows that h(X1, X1) 6= 0 and ĥ(X̂1, X̂1) 6= 0, for otherwise f or f̂ would be
degenerate. We thus get ii).

Let hij = h(Xi, Xj) and ĥij = ĥ(X̂i, X̂j). Let X̂1 = c11X1 + c21X2. Here

c21 = ϑ2(X̂1) =
W

1−AÂ
ω̂3

1(X̂1) =
W

1−AÂ
ĥ11

and consequently

h(X̂1, X̂1) = h(X̂1, c11X1 + c21X2) = c21 h(X̂1, X2) =
W ĥ11

1−AÂ
ω3

2(X̂1).

In a similar way we obtain

ĥ(X1, X1) =
W h11

1−AÂ
ω̂3

2(X1).
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Since h(X1, X̂1) = 0 and ĥ(X1, X̂1) = 0, the affine fundamental form ĥ is confor-
mal to h if and only if there exists a function λ such that ĥ(X1, X1) = λh(X1, X1)

and ĥ(X̂1, X̂1) = λh(X̂1, X̂1), which is equivalent to∣∣∣∣∣
W h11
1−AÂ

ω̂3
2(X1) h11

ĥ11
W ĥ11
1−AÂ

ω3
2(X̂1)

∣∣∣∣∣ = 0. (27)

The left-hand side of (27) equals 0 if and only if( W

1−AÂ

)2
ω̂3

2(X1)ω
3
2(X̂1) = 1 (28)

because h11 ĥ11 6= 0. Let H := detθh and Ĥ := det
θ̂
ĥ. We have

H ϑ1 ∧ ϑ2(X1, X2) = H = h11 h22 − h12 h12
= ω3

1(X1)ω
3
2(X2)− ω3

1(X2)ω
3
2(X1) = ω3

1 ∧ ω3
2(X1, X2)

hence
ω3

1 ∧ ω3
2 = H ϑ1 ∧ ϑ2. (29)

Similarly
ω̂3

1 ∧ ω̂3
2 = Ĥ ϑ̂1 ∧ ϑ̂2. (30)

Using (23) and (25) we obtain

ω3
1 ∧ ω3

2(X̂1, X̂2) =
1−AÂ
W

ϑ̂2 ∧ ω3
2(X̂1, X̂2) = −

1−AÂ
W

ω3
2(X̂1) (31)

ω̂3
1 ∧ ω̂3

2(X1, X2) =
1−AÂ
W

ϑ2 ∧ ω̂3
2(X1, X2) = −

1−AÂ
W

ω̂3
2(X1). (32)

Combining (31) with (29) and (32) with (30) gives

ω3
2(X̂1) = −

WH

1−AÂ
ϑ1 ∧ ϑ2(X̂1, X̂2) (33)

and

ω̂3
2(X1) = −

WĤ

1−AÂ
ϑ̂1 ∧ ϑ̂2(X1, X2). (34)

Condition (28) now becomes( W

1−AÂ

)4
HĤ ϑ1 ∧ ϑ2(X̂1, X̂2) ϑ̂

1 ∧ ϑ̂2(X1, X2) = 1. (35)
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But ϑ1 ∧ ϑ2(X̂1, X̂2) ϑ̂
1 ∧ ϑ̂2(X1, X2) = 1, because the matrix (ϑ̂i(Xj)) is the

inverse of (ϑk(X̂l)). We thus get iii).

As a supplement we give here another similar criterion, applicable when we want
to use parallel transversal fields ξ and ξ̂. The equality in iii) corresponds to (3.22)
in [2].

Theorem 5. Let f , f̂ be as in Proposition 2 and let X1, X̂1 satisfy (4) and (5).
Assume that ξ and ξ̂, transversal fields for f and f̂ respectively, are parallel.

We choose arbitrary X2 such that X1, X2 is a local frame unimodular with re-
spect to θξ. Let X̂2 be defined by the following two conditions: for every p ∈ M
f̂∗(TpM) ∩ span{f∗(X2 p), ξp} = R f̂∗(X̂2 p) and θ̂

ξ̂
(X̂1, X̂2) = 1. Then

i) f̂∗(X̂2) = λ f∗(X2) + β ξ, ξ̂ = 1
λ ξ for some functions λ, β

ii) λ, β do not depend on X2 (X̂2 does)

iii) if the spherical representation π ◦ (f̂ − f) of f̂ − f has rank 2 at every point
of M , then affine fundamental forms h and ĥ are proportional if and only if
detθh · detθ̂ĥ = β 4.

Proof: By assumption, f̂∗(X̂2) = λ f∗(X2) + β ξ and ξ̂ = µ ξ for some functions
λ, µ and β. From θ̂

ξ̂
(X̂1, X̂2) = 1 we obtain µ · λ = 1 and i) follows.

If we replace X2 by X2 + tX1, then X̂2 should be replaced by X̂2 + λt X̂1. We
have then f̂∗(X̂2 + λt X̂1) = λf∗(X2 + tX1) + β ξ.

Note that β 6= 0, because β = 0 would imply ω3
1 = 0, which contradicts the

non-degeneracy of f .

Proof of iii) is similar to the proof of iii) in Theorem 4. We have now F̂ = F a

with a =


1 0 0 0
1 1 0 0
0 0 λ 0
0 0 β 1

λ

 and from (19) we obtain in particular

ω3
1 = β ϑ̂2, ω̂3

1 = β ϑ2, ϑ2 ∧ ϑ̂2 = − 1

β
ω2

1 ∧ ω3
1 6= 0. (36)

The rest of the proof runs as before, with
1−AÂ
W

replaced by β.
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We may also compute ψ(f, f̂) using ξ and ̂̂ξ = f∗(X2) =
1
λ f̂∗(X̂2) − β ξ̂ as lin-

early independent transversal fields for fand f̂ respectively, and apply Theorem 4.

Note that ν(̂̂ξ) = 0 and det̂̂
θ

̂̂
h = 1

β4 detθ̂ĥ.

4. Chern–Terng Theorem

Theorem 6. [2] Let dimM = 2 and f, f̂ :M → R3, be a pair of non-degenerate
immersions, satisfying the following conditions

i) for every p ∈ M : f(p) 6= f̂(p), the vector f̂(p) − f(p) is tangent to f(M)

at f(p) and is tangent to f̂(M) at f̂(p)

ii) the affine fundamental forms of f and f̂ are conformal to each other

iii) the affine normals of both surfaces at corresponding points f(p) and f̂(p)
are parallel.

Then the surfaces are both affine minimal.

Proof: We give here a proof which in some details will be different from that
in [2], because we want to use local frames with the last vector field equal to
corresponding affine normal vector field.

At first we consider the set of points where the rank of the spherical representation
of f̂ −f equals 2. We use the same local frame as in Theorem 5. From assumption
ii) and from Theorem 5 we have H · Ĥ = β4. Since ξ and ξ̂ are affine normal
vector fields, |H| = 1 and |Ĥ| = 1. It follows that |β| = 1. If we replace ξ̂ by − ξ̂,
then X̂2 should be replaced by − X̂2, λ by −λ and β by −β. Therefore without
loss of generality we may assume that β = 1. Moreover, H = Ĥ =: εh, because
H · Ĥ > 0.

From (19) we obtain ϑ̂3 = −βϑ2 − β ω2
1 + λω3

1 and ω̂3
3 = − β

λ ω
2
3 − dλ

λ . Then
ϑ̂3 = 0, ω̂3

3 = 0 together with β = 1 give

ϑ2 + ω2
1 = λω3

1, dλ+ ω2
3 = 0 (37)

which corresponds to γ = 0 and β = 0 in (3.8) of [2]. We will next assume that
εh + λ2 6= 0 and prove the equality corresponding to α = 0, that is

ϑ1 + ω1
1 = −λω3

2. (38)
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Application of (19) gives

ϑ̂1 = ϑ1+ω1
1, ω̂

3
2 = −λβ ω2

2+λ
2 ω3

2− β(β ω2
3+dλ)+λ dβ = λω1

1+λ
2 ω3

2.

Let ϕ = ϑ1 + ω1
1 + λω3

2. We have

ϑ̂1 = ϕ− λω3
2, ϑ̂2 = ω3

1, ω̂3
1 = ϑ2, ω̂3

2 = λ (ϕ− ϑ1).

Then

0 = ω̂3
1 ∧ ϑ̂1 + ω̂3

2 ∧ ϑ̂2 = ϑ2 ∧ (ϕ− λω3
2) + λ (ϕ− ϑ1) ∧ ω3

1

= (ϑ2 − λω3
1) ∧ ϕ+ λ(ω3

1 ∧ ϑ1 + ω3
2 ∧ ϑ2) = (ϑ2 − λω3

1) ∧ ϕ

and

0 = ω̂3
1 ∧ ω̂3

2 − εh ϑ̂1 ∧ ϑ̂2 = ϑ2 ∧ λ (ϕ− ϑ1)− εh (ϕ− λω3
2) ∧ ω3

1

= (λϑ2 + εh ω
3
1) ∧ ϕ+ εh λ(εh ϑ

1 ∧ ϑ2 − ω3
1 ∧ ω3

2) = (λϑ2 + εh ω
3
1) ∧ ϕ.

If εh + λ2 6= 0, then the one-forms ϑ2 − λω3
1 and λϑ2 + εh ω

3
1 are linearly

independent, because (ϑ2−λω3
1)∧(λϑ2+εh ω3

1) = (εh+λ
2)ϑ2∧ω3

1 6= 0 (recall
that in the considered case h11 6= 0). Consequently the equalities (ϑ2−λω3

1)∧ϕ =
0 and (λϑ2 + εh ω

3
1) ∧ ϕ = 0 imply ϕ = 0.

It follows that

0 = dω̂3
3 = − ω̂3

1 ∧ ω̂1
3 − ω̂3

2 ∧ ω̂2
3 = −ϑ2 ∧

1

λ
ω1

3 + λϑ1 ∧ 1

λ2
ω2

3

=
1

λ
(−ϑ2 ∧ ω1

3 + ϑ1 ∧ ω2
3)

which implies trS = 0, and

0 = dω3
3 = −ω3

1 ∧ ω1
3 − ω3

2 ∧ ω2
3 = − ϑ̂2 ∧ λ ω̂1

3 +
1

λ
ϑ̂1 ∧ λ2 ω̂2

3

= λ (− ϑ̂2 ∧ ω̂1
3 + ϑ̂1 ∧ ω̂2

3)

hence also tr Ŝ = 0.

We thus get trS = 0 and tr Ŝ = 0 on the set of points where rank (π ◦ (f̂−f)) = 2
and εh + λ2 6= 0, and also on its closure, by continuity.

Assume now that εh + λ2 = 0 on some open set, contained in the set where
rank (π ◦ (f̂ − f)) = 2 holds. In this case dλ = 0, hence ω2

3 = 0. We have

0 = dω2
3 = −ω2

1 ∧ ω1
3 − ω2

2 ∧ ω2
3 = −ω2

1 ∧ ω1
3

0 = dω3
3 = −ω3

1 ∧ ω1
3 − ω3

2 ∧ ω2
3 = −ω3

1 ∧ ω1
3
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and it follows that

ϑ2 ∧ ω1
3 − ϑ1 ∧ ω2

3 = ϑ2 ∧ ω1
3 = (−ω2

1 + λω3
1) ∧ ω1

3 = 0 (39)

and
ϑ̂2 ∧ ω̂1

3 − ϑ̂1 ∧ ω̂2
3 = ω3

1 ∧
1

λ
ω1

3 − ϑ̂1 ∧
1

λ2
ω2

3 = 0. (40)

Finally, we consider the interior of the set where rank (π ◦ (f̂ − f)) < 2. Since
ω3

1 6= 0, rank (π ◦ (f̂ − f)) 6= 0. By Lemma 3, ω2
1 ∧ ω3

1 = 0. We will show that
also in this case proportionality of h and ĥ implies |β| = 1, dλ = 0 and ω2

3 = 0
as in the preceding case.

From (19) we get β ϑ2 + β ω2
1 = λω3

1. Then ω2
1 ∧ ω3

1 = 0 and β 6= 0 imply
ω3

1 ∧ ϑ2 = 0, in particular h11 = h(X1, X1) = ω3
1 ∧ ϑ2(X1, X2) = 0. Since ξ is

an affine normal vector field

1 = |H| = |h11 h22 − h212| = |h12|2

hence h(X1, X2) = h12 = ε1 ∈ {1,−1} and we see that

ω3
1 = ε1 ϑ

2 and ω3
2 = ε1 ϑ

1 + h22 ϑ
2. (41)

From (41) and (19) we have ε1 ϑ2 = ω3
1 = β ϑ̂2 and it follows that X̂1 = c11X1

for some function c11. Then

ĥ11 = ĥ(X̂1, X̂1) = c211 ĥ(X1, X1) = 0,

because h11 = 0 and ĥ is proportional to h. Now from |Ĥ| = 1 we easily obtain

ω̂3
1 = ε2 ϑ̂

2 (42)

and consequently

ϑ2 = ε1 ω
3
1 = ε1 β ϑ̂

2 = ε1 β ε2 ω̂
3
1 = ε1 ε2 β

2 ϑ2

hence |β| = 1 and ε1 = ε2. Without loss of generality we may assume that β = 1.

Differentiating both sides of ω3
1 = ε1 ϑ

2, using fundamental equations and the
equality ω2

2 = −ω1
1 we obtain

ω3
1∧ω1

1+ω
3
2∧ω2

1 = ε1 ω
2
1∧ϑ1+ ε1 ω2

2∧ϑ2, ω3
2∧ω2

1 = ε1 ω
2
1∧ϑ1. (43)
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We have also

ω2
1 ∧ ϑ2 = ω2

1 ∧ (−ω2
1 + λω3

1) = 0 (44)

ω3
2 ∧ ω2

1 = (ε1 ϑ
1 + h22 ϑ

2) ∧ ω2
1 = − ε1 ω2

1 ∧ ϑ1. (45)

Comparing (43) with (45) we see that ω2
1 ∧ ϑ1 = 0, which together with (44)

implies ω2
1 = 0. We have now ϑ2 = λω3

1 and ϑ2 = ε1 ω
3
1, therefore λ = ε1 =

const.

5. Bäcklund Theorem Concerning Locally Symmetric Surfaces

Theorem 7. Let f : M → R3 and f̂ : M → R3 be non-degenerate immersions
of a two-dimensional connected manifold M into affine space R3, endowed with
equiaffine transversal vector fields ξ and ξ̂ respectively.

We denote by h and ĥ the corresponding affine fundamental forms, and by ν and ν̂
the conormal maps.

If f , f̂ , ξ and ξ̂ satisfy the following conditions

1◦ for every p ∈M f(p) 6= f̂(p), the vector f̂(p)− f(p) is tangent to f(M) at
f(p) and is tangent to f̂(M) at f̂(p)

2◦ the spherical representation of f̂ − f , M 3 p 7→ π(f̂(p)− f(p)) ∈ P2(R),
has rank 2 at every point of M

3◦ det(f̂ − f, ξ, ξ̂) 6= 0 everywhere

4◦ the functions ν(ξ̂) and ν̂(ξ) are constant and ν(ξ̂) 6= 0 or ν̂(ξ) 6= 0

5◦
(
det(f̂ − f, ξ, ξ̂)

)4 · detθh · detθ̂ĥ =
(
1− ν(ξ̂) ν̂(ξ)

)4
6◦ for every Y ∈ TM det(f∗(Y ), ξ, ξ̂) = det(f̂∗(Y ), ξ, ξ̂)

7◦ d(det(f̂ − f, ξ, ξ̂)) ∧ d(detθh) = 0

then affine fundamental forms h and ĥ are conformal to each other, the connec-
tions∇ and ∇̂ induced by (f, ξ) and (f̂ , ξ̂) respectively, are locally symmetric and
dim imR = dim imR̂.
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Proof: We continue analysis from the proof of Theorem 4 with the same notation.
From 3◦ and 5◦ we conclude that 1−AÂ 6= 0 and

ψ(f, f̂) =
(1−AÂ

W

)4 1

H Ĥ
= 1 (46)

hence h and ĥ are conformal to each other, by Theorem 4.

It remains to prove that∇R = 0 and ∇̂R̂ = 0.

From (19) with constant A, Â we obtain in particular

ϑ̂1 = ϑ1 + ω1
1

ω̂3
2 = −

Â(1−AÂ)
W

ω2
2 −

(1−AÂ)2

W 2
ω2

3 + (Â)2 ω3
2

+
Â(1−AÂ)

W
ω3

3 −
Â(1−AÂ)

W 2
dW

(47)

ω̂3
3 = (1−AÂ)ω2

2 − ÂW ω3
2 −

A(1−AÂ)
W

ω2
3 +AÂω3

3 +
1−AÂ
W

dW.

For equiaffine vector fields ξ and ξ̂ we have ω3
3 = 0 and ω̂3

3 = 0, therefore (47)
yields

ω2
2 =

ÂW

1−AÂ
ω3

2 +
A

W
ω2

3 −
dW

W
(48)

and substituting (48) into (47) we obtain

ω̂3
2 = −

1−AÂ
W 2

ω2
3. (49)

From (19) we have also

ω̂2
3 = −AW ω2

2 +A2 ω2
3 −W 2 ω3

2 +AW ω3
3 −AdW

= −AW
(
ω2

2 −
A

W
ω2

3 +
dW

W

)
−W 2 ω3

2 = −AW
ÂW

1−AÂ
ω3

2 −W 2 ω3
2

and it follows that

ω̂2
3 =

−W 2

1−AÂ
ω3

2. (50)

The structural equation (17) with ϑ3 = 0 and dϑ3 = 0 becomes

0 = ω3
1 ∧ ϑ1 + ω3

2 ∧ ϑ2. (51)
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Let ϑ1 = s ω2
1 + t ω3

1 and ω3
2 = uω2

1 + v ω3
1 with some functions s, t, u and v.

Applying (51), (23) and ω2
1 ∧ ω3

1 6= 0 yields

s =
ÂWu

1−AÂ
+ v. (52)

From (29) we obtain

ω3
1 ∧ (uω2

1 + v ω3
1) = H (s ω2

1 + t ω3
1) ∧

(
−ω2

1 +
ÂW

1−AÂ
ω3

1

)
which implies

t = − u

H
− ÂWs

1−AÂ
= −

( 1

H
+

Â2W 2

(1−AÂ)2
)
u− ÂW

1−AÂ
v. (53)

Consequently

ϑ1 =
( ÂWu

1−AÂ
+ v
)
ω2

1 −
( u
H

+
Â2W 2 u

(1−AÂ)2
+

ÂW v

1−AÂ

)
ω3

1. (54)

We use now the assumption 6◦. Since

f̂∗(Y )− f∗(Y ) = DY (f̂ − f) = DY f∗X1 = ω1
1(Y ) f∗X1 + ω2

1(Y ) f∗X2

+ω3
1(Y ) ξ = ω1

1(Y ) f∗X1 + ω2
1(Y )

( A
W

ξ − 1

W
ξ̂
)
+ ω3

1(Y ) ξ

det(f̂∗(Y )− f∗(Y ), ξ, ξ̂) = ω1
1(Y ) det(f∗(X1), ξ, ξ̂) = ω1

1(Y )W

the equality
det(f∗(Y ), ξ, ξ̂)− det(f̂∗(Y ), ξ, ξ̂) = 0

gives ω1
1 = 0 and consequently ω2

2 = 0, because differentiating the equality (7)
we obtain ω1

1 + ω2
2 + ω3

3 = 0. Similarly from (9) we obtain ω̂1
1 + ω̂2

2 + ω̂3
3 = 0

and from (19) it follows that ω̂1
1 = ω1

1, therefore ω̂1
1 = 0, ω̂2

2 = 0 and ϑ̂1 = ϑ1.

Let ω̂3
2 = xω2

1+y ω
3
1 with some functions x, y. Then from the structural equation

ω̂3
1 ∧ ϑ̂1 + ω̂3

2 ∧ ϑ̂2 = 0, (24), (54) and (23) we obtain

x = − (1−AÂ)2

W 2H
u.

Using (30) we obtain

y =
1−AÂ
WH

Âu− ĤW 3

(1−AÂ)3
Âu− ĤW 2

(1−AÂ)2
v.
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But W 4HĤ = (1−AÂ)4, by 4◦, hence y = − (1−AÂ)2

HW 2
v and

ω̂3
2 = −

(1−AÂ)2

HW 2
ω3

2. (55)

Comparing (55) with (49) we obtain

ω2
3 =

1−AÂ
H

ω3
2 (56)

and from (48) with ω2
2 = 0

dW =
( ÂW 2

1−AÂ
+
A(1−AÂ)

H

)
ω3

2. (57)

It follows that ω2
3 ∧ ω3

2 = 0. From the fundamental equation

0 = dω2
2 = −ω2

1 ∧ ω1
2 − ω2

2 ∧ ω2
2 − ω2

3 ∧ ω3
2

we obtain ω2
1 ∧ ω1

2 = 0, which means that

ω1
2 = αω2

1 (58)

for some function α. Similarly ω1
3 = β ω3

1, which follows from

0 = dω3
3 = −ω3

1 ∧ ω1
3 − ω3

2 ∧ ω2
3 − ω3

3 ∧ ω3
3.

In the same way we obtain ω̂2
1 ∧ ω̂1

2 = 0. From (19) we have

ω̂1
2 = Â ω1

2 +
1−AÂ
W

ω1
3, ω̂1

3 = −W ω1
2 +Aω1

3. (59)

Using (24) and (59) we obtain

ω̂2
1 ∧ ω̂1

2 = (Aω2
1 +W ω3

1) ∧
(
Â αω2

1 +
1−AÂ
W

βω3
1

)
=
(A(1−AÂ)

W
β − ÂW α

)
ω2

1 ∧ ω3
1.

(60)

At first we consider the case A 6= 0. It follows that

β =
ÂW 2

A(1−AÂ)
α (61)
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and

ω1
3 =

αÂW 2

A(1−AÂ)
ω3

1. (62)

We have now

ω̂1
2 =

Â

A
α ω̂2

1 (63)

and

ω̂1
3 =

αW 2

1−AÂ
ω̂3

1. (64)

We can already find the curvature tensors of∇ and ∇̂. We have

∇YX1 = ω1
1(Y )X1 + ω2

1(Y )X2 = ω2
1(Y )X2 (65)

and
∇YX2 = ω1

2(Y )X1 + ω2
2(Y )X2 = αω2

1(Y )X1. (66)

The Gauss equation

dωkl + ωk1 ∧ ω1
l + ωk2 ∧ ω2

l = −ωk3 ∧ ω3
l, k, l ∈ {1, 2}

now leads to
R(X,Y )X1 = −ω2

3 ∧ ω3
1(X,Y )X2 (67)

and
R(X,Y )X2 = −ω1

3 ∧ ω3
2(X,Y )X1. (68)

In particular
R(X1, X2)X1 = (1−AÂ)X2 (69)

and

R(X1, X2)X2 = −α
ÂW 2H

A(1−AÂ)
X1. (70)

The Ricci tensor is

Ric(X1, X1) = − (1−AÂ), Ric(X1, X2) = 0, Ric(X2, X2) = −
αÂW 2H

A(1−AÂ)
·

Applying (65), (66), (69) and (70) we obtain

(∇YR)(X1, X2)X1 = (1−AÂ)α
( ÂW 2H

A(1−AÂ)2
+ 1
)
ω2

1(Y )X1
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and

(∇YR)(X1, X2)X2

= −Y
( αÂW 2H

A(1−AÂ)

)
X1 − (1−AÂ)α

( ÂW 2H

A(1−AÂ)2
+ 1
)
ω2

1(Y )X2.

For ∇̂ we obtain

∇̂Y X̂1 = ω̂2
1(Y ) X̂2, ∇̂Y X̂2 =

Â α

A
ω̂2

1(Y ) X̂1

R̂(X̂1, X̂2)X̂1 = − ω̂2
3 ∧ ω̂3

1(X̂1, X̂2) X̂2 =
−HW 4

(1−AÂ)3
ω̂3

2 ∧ ω̂3
1(X̂1, X̂2) X̂2

=
W 4HĤ

(1−AÂ)3
X̂2 = (1−AÂ) X̂2,

R̂(X̂1, X̂2)X̂2 = − ω̂1
3 ∧ ω̂3

2(X̂1, X̂2) X̂1 =
−αW 2

1−AÂ
ω̂3

1 ∧ ω̂3
2(X̂1, X̂2) X̂1

=
−αW 2Ĥ

1−AÂ
X̂1 = −

α (1−AÂ)3

W 2H
X̂1

R̂ic(X̂1, X̂1) = − (1−AÂ), R̂ic(X̂1, X̂2) = 0, R̂ic(X̂2, X̂2) =
−α (1−AÂ)3

W 2H

(∇̂Y R̂)(X̂1, X̂2)X̂1 =
α (1−AÂ)3

W 2H

(
ÂW 2H

A(1−AÂ)2
+ 1

)
ω̂2

1(Y ) X̂1

(∇̂Y R̂)(X̂1, X̂2)X̂2 =− (1−AÂ)3Y
( α

W 2H

)
X̂1

− α (1−AÂ)3

W 2H

(
ÂW 2H

A(1−AÂ)2
+ 1

)
ω̂2

1(Y ) X̂2.

Next we want to use the assumption 7◦: dW ∧ dH = 0.

Diferentiating (56) we obtain

dω2
3 = −

1−AÂ
H2

dH ∧ ω3
2 +

1−AÂ
H

dω3
2.
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From the fundamental equations and from (58) and (62) we get

dω2
3 = −ω2

1∧ω1
3 = −

αÂW 2

A(1−AÂ)
ω2

1∧ω3
1, dω3

2 = −ω3
1∧ω1

2 = αω2
1∧ω3

1.

It follows that

dH

H
∧ ω3

2 = α
( ÂW 2H

A(1−AÂ)2
+ 1
)
ω2

1 ∧ ω3
1 (71)

and consequently, by (57)

dH ∧ dW = A(1−AÂ)α
( ÂW 2H

A(1−AÂ)2
+ 1
)2
ω2

1 ∧ ω3
1. (72)

If Â = 0 (and still A 6= 0), then (72) and dH ∧ dW = 0 imply α ≡ 0.

If Â 6= 0 we may compute dα in the following way.

Differentiating (58) and (62) we obtain

dω1
2 = dα ∧ ω2

1 + α dω2
1

dω1
3 =

ÂW 2

A(1−AÂ)
dα ∧ ω3

1 +
2αÂW

A(1−AÂ)
dW ∧ ω3

1 +
αÂW 2

A(1−AÂ)
dω3

1

and next, after using the fundamental equations, (57) and ω3
2 = uω2

1 + v ω3
1

dα ∧ ω2
1 = α

( ÂW 2H

A(1−AÂ)2
+ 1
)1−AÂ

H
uω2

1 ∧ ω3
1

dα ∧ ω3
1 = −α

( ÂW 2H

A(1−AÂ)2
+ 1
)1−AÂ

H

(2A
W

u+
A(1−AÂ)
ÂW 2

v
)
ω2

1 ∧ ω3
1.

It follows that

dα = −α
( ÂW 2H

A(1−AÂ)2
+ 1
)1−AÂ

H

((2A
W

u+
A(1−AÂ)
ÂW 2

v
)
ω2

1 + uω3
1

)
.

(73)

From (72) and dH ∧ dW = 0 it follows that α
(

ÂW 2H

A(1−AÂ)2
+ 1
)
≡ 0 on M . Then

from (73) we conclude that α is constant, because M is connected.

Now we consider the case A = 0. Then, by assumption 4◦, Â 6= 0. We return to
(60) and obtain α ≡ 0.
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Thus in each case α = const.

If α = 0, then imRp = R (X2)p, imR̂p = R (X̂2)p, dim imR = dim imR̂ = 1

and signRic = sign R̂ic = − sign(1−AÂ).

Let α 6= 0. Then ÂW 2H

A(1−AÂ)2
+ 1 ≡ 0, which implies

H = − A(1−AÂ)
2

ÂW 2
·

From (57) it follows that W is constant. This clearly forces H to be constant.

In both cases (α = 0, α 6= 0) we obtain∇R = 0 and ∇̂R̂ = 0.

We shall show that the case of α 6= 0 corresponds to the situation described in the
classical Bäcklund theorem or in the Bäcklund theorem for surfaces in Minkowski
space.

Theorem 8. If f , f̂ , ξ, ξ̂ satisfy the assumptions of Theorem 7 and the induced
connections ∇, ∇̂ satisfy the condition dim imR = dim imR̂ = 2, then det(f̂ −
f, ξ, ξ̂) and detθh are constant, Rξ and Rξ̂ are the corresponding affine normals
and there exists a scalar or pseudoscalar product on R3 such that ξ and ξ̂ are or-
thogonal to the corresponding surfaces with constant, non-zero, length. Moreover
the length of f̂ − f is constant, the angle between ξ and ξ̂ is constant and f and f̂
have the same constant sectional curvature.

Proof: We define Gp ∈ (R3)∗ by the equalities

Gp(f∗(X1)p, f∗(X1)p) :=− δ(1−AÂ), Gp(ξp, ξp) := δα
Â

A
W 2

Gp(f∗(X1)p, f∗(X2)p) :=0

Gp(f∗(X2)p, f∗(X2)p) :=δα(1−AÂ), Gp(f∗Xp, ξp) := 0

with some δ ∈ {1,−1}. We have

SY = −ω1
3(Y )X1 − ω2

3(Y )X2

= − α ÂW 2

A(1−AÂ)
ω3

1(Y )X1 −
1−AÂ
H

ω3
2(Y )X2

= − α ÂW 2

A(1−AÂ)
ω3

1(Y )X1 +
ÂW 2

A(1−AÂ)
ω3

2(Y )X2

=
ÂW 2

A(1−AÂ)
(
−αω3

1(Y )X1 + ω3
2(Y )X2

)
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and

G(f∗X, f∗SY ) =
ÂW 2

A(1−AÂ)
G
(
ω1(X) f∗(X1) + ω2(X) f∗(X2),

− αω3
1(Y )f∗(X1) + ω3

2(Y ) f∗(X2)
)

=
ÂW 2

A(1−AÂ)
(
ω1(X)ω3

1(Y ) + ω2(X)ω3
2(Y )

)
α δ (1−AÂ)

=δ α
Â

A
W 2 h(Y,X).

Now it is easy to check that DG = 0, hence we have well defined scalar product
on R3, which also will be denoted by G. The Riemannian or pseudo-Riemannian
metric g induced on M by f , g(X,Y ) = G(f∗(X), f∗(Y )), has the sectional
curvature

κ =
g(R(X1, X2)X2, X1)

g(X1, X1) g(X2, X2)− g(X1, X2) g(X1, X2)

=
g(α (1−AÂ)X1, X1)

−α δ2 (1−AÂ)2
=
− δ α (1−AÂ)2

−α δ2 (1−AÂ)2
= δ

and the same curvature has the metric ĝ induced by f̂

κ̂ =
ĝ(R̂(X̂1, X̂2)X̂2, X̂1)

ĝ(X̂1, X̂1) ĝ(X̂2, X̂2)− ĝ(X̂1, X̂2) ĝ(X̂1, X̂2)
=
ĝ
(
− α (1−AÂ)3

W 2H
X̂1, X̂1

)
−α δ2 (1−AÂ)2 ÂA

=
A(1−AÂ)
ÂW 2H

ĝ(X̂1, X̂1) = −
A(1−AÂ)
ÂW 2H

δ (1−AÂ) = δ

because

ĝ(X̂1, X̂1) = G(f̂∗(X̂1), f̂∗(X̂1)) = G(f∗(X1), f∗(X1)) = − δ (1−AÂ)

ĝ(X̂1, X̂2) = G(f̂∗(X̂1), f̂∗(X̂2)) = G

(
f∗(X1), Â f∗(X2) +

1−AÂ
W

ξ

)
= 0

ĝ(X̂2, X̂2) = G(f̂∗(X̂2), f̂∗(X̂2))

= G

(
Â f∗(X2) +

1−AÂ
W

ξ, Â f∗(X2) +
1−AÂ
W

ξ

)

= Â2 δ α (1−AÂ) + (1−AÂ)2

W 2
δ α

Â

A
W 2 = δ α (1−AÂ) Â

A



On Analogues of Bäcklund Theorem in Affine Differential Geometry of Surfaces 103

and
A(1−AÂ)2

ÂW 2H
= − 1.

We compute

G(f̂ − f, f̂ − f) = G(f∗(X1), f∗(X1)) = − δ(1−AÂ)

G(ξ, ξ̂) = G(ξ,−Wf∗(X2) +Aξ) = AG(ξ, ξ) = δ α ÂW 2

G(ξ̂, ξ̂) = G(−Wf∗(X2) +Aξ,−Wf∗(X2) +Aξ)

=W 2 δ α (1−AÂ) +A2 δ α
Â

A
W 2 = δ αW 2.

There are five possibilities and we will consider the corresponding cases separately.

i) Euclidean case

If 0 < AÂ < 1 and α < 0, then we take δ = − 1 and obtain positively definite G.
Then the square of the length L of f̂ − f is equal to the positive constant 1− AÂ
and the angle ](ξ, ξ̂) between ξ and ξ̂ is constant too, with

cos](ξ, ξ̂) = signÂ ·
√
AÂ.

Note that

− sin2(](ξ, ξ̂))
L2

= − 1− cos2(](ξ, ξ̂))
L2

= − 1−AÂ
1−AÂ

= − 1 = δ = κ = κ̂.

ii) Lorentzian case with timelike congruence f̂ − f and timelike focal surfaces f
and f̂

If 0 < AÂ < 1 and α > 0, then we take δ = 1. We obtain G(f̂ − f, f̂ − f) =

− (1−AÂ) =: −L2. The plane spanned by ξp and ξ̂p is spacelike, hence

cos](ξ, ξ̂) =
G(ξ, ξ̂)√

G(ξ, ξ)

√
G(ξ̂, ξ̂)

= signÂ ·
√
AÂ.

We obtain
sin2(](ξ, ξ̂))

L2
= 1 = δ = κ = κ̂.

This case corresponds to (A) of Theorem 2.2 in [1].
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iii) Lorentzian case with spacelike congruence f̂ − f and timelike focal surfaces f
and f̂

If AÂ > 1 and α > 0, then we take δ = 1 and obtain G(f̂ − f, f̂ − f) =

− (1 − AÂ) =: L2. Both ξp and ξ̂p are spacelike, but the plane span{ξp, ξ̂p} =

span{f∗(X2p), ξp} is timelike. The hyperbolic angle ](ξ, ξ̂) between two space-
like vectors satisfies the equality

cosh2(](ξ, ξ̂)) =

(
G(ξ, ξ̂)

)2
G(ξ, ξ)G(ξ̂, ξ̂)

which follows from the definition given in [4]. We obtain cosh2(](ξ, ξ̂)) = AÂ
and

sinh2(](ξ, ξ̂))
L2

=
cosh2(](ξ, ξ̂))− 1

L2
=
AÂ− 1

L2
= 1 = δ = κ = κ̂.

This case corresponds to (B) of Theorem 2.2 in [1].

iv) Lorentzian case with spacelike congruence f̂ − f and spacelike focal surfaces
f and f̂

If AÂ > 1 and α < 0, then we take δ = 1. We have G(f̂ − f, f̂ − f) =

− (1 − AÂ) =: L2 as before, the hyperbolic angle between two timelike vectors
satisfies the same equality as above and we obtain again

sinh2(](ξ, ξ̂))
L2

= 1 = δ = κ = κ̂.

This result is in contradiction with that of Theorem 2.1 in [1], where the curvature
was claimed to be negative. (It seems that in [1] there is a mistake in going from
(2.18) to (2.19), probably dω13 and dω23 were incorrect. Moreover, (2.9) on page
43 is in contradiction with K = −dethij on page 44.)

v) Lorentzian case with spacelike congruence f̂ − f and focal surfaces f and f̂ of
different kinds

If AÂ < 0, then we take δ = − 1. Now G(f̂ − f, f̂ − f) = 1 − AÂ =: L2

is positive, whereas G(ξ, ξ) and G(ξ̂, ξ̂) have opposite signs, because Â
A < 0.

According to the definition of the hyperbolic angle between timelike vector and
spacelike vector, given in [4], ](ξ, ξ̂) satisfies now the equality

sinh2(](ξ, ξ̂)) = −

(
G(ξ, ξ̂)

)2
G(ξ, ξ)G(ξ̂, ξ̂)

·
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We obtain sinh2(](ξ, ξ̂)) = −AÂ and

− cosh2(](ξ, ξ̂))
L2

= − 1 + sinh2(](ξ, ξ̂))
L2

= − 1−AÂ
1−AÂ

= − 1 = δ = κ = κ̂.

The Bäcklund theorem for surfaces of different kinds in Minkowski space can be
found in [7].

Remark. In case when both ν(ξ̂) and ν̂(ξ) both equal zero we obtain W = const,
dW = 0, the assumption 7◦ is satisfied, but we get therefrom no information
about relation between α and β. This case may be characterized by the following
proposition.

Proposition 9. Let f , f̂ , ξ, ξ̂ satisfy assumptions 1◦, 2◦, 3◦, 5◦ and 6◦ of Theorem
7 and let ν(ξ̂) ≡ 0 and ν̂(ξ) ≡ 0. Then there exist local coordinates x, y and
functions H = detθh, α, β, γ satisfying the system of equations

α =W 2Hy e
−2γ γy +W 2H(e−2γ γy)y + (e2γ γx)x

β = −W 2(e−2γ γy)y −
1

H
(e2γ γx)x +

Hx

H2
e2γ γx (74)

αy = (α+ βH) γy, βx = − 1

H
(α+ βH) γx

such that ϑi, ϑ̂i, ωjk and ω̂jk have the following form

ϑ1 = ϑ̂1 = dγ = γx dx+ γy dy

ϑ2 = e− γ dx, ϑ̂2 = eγ dy

ω2
1 = − e− γ dx, ω3

1 =
eγ

W
dy, ω1

2 = −α e− γ dx, ω1
3 =

β eγ

W
dy

ω3
2 = H ω2

3 = HW e− 2γ γy dx−
e2γ

W
γx dy

ω̂2
1 = eγ dy, ω̂3

1 =
e− γ

W
dx, ω̂1

2 =
β eγ

W 2
dy, ω̂1

3 = αW e− γ dx

ω̂2
3 = HW 4 ω̂3

2 = −HW 3 e− 2γ γy dx+W e2γ γx dy.

Moreover, γx 6= 0, γy 6= 0 and W = det(f̂ − f, ξ, ξ̂) is a non-zero constant.

The connection∇ is locally symmetric if and only in α is constant, and ∇̂ is locally
symmetric if and only if β is constant.
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Note that from (74) we obtain

α+ βH =W 2Hy e
−2γ γy +

Hx

H
e2γ γx. (75)

Proof: If we insert A = 0 and Â = 0 into (22) – (25) and (49) – (59), then we
obtain

ϑ2 + ω2
1 = 0, ϑ̂2 =W ω3

1 = ω̂2
1, ϑ2 =W ω̂3

1, W 4H Ĥ = 1

ω1
2 = αω2

1, ω1
3 = β ω3

1, ω̂1
2 =

1

W
ω1

3, ω̂1
3 = −W ω1

2

ω3
2 = uω2

1 + v ω3
1, ω̂2

3 = −W 2 ω3
2, ω̂3

2 =
− 1

HW 2
ω3

2, ω2
3 =

1

H
ω3

2

ϑ̂1 = ϑ1 = v ω2
1 −

u

H
ω3

1, ω1
1 = ω2

2 = ω̂1
1 = ω̂2

2 = 0, dW = 0.

From structural equations with ω2
1 = −ϑ2 and ω1

2 = αω2
1 it follows that dϑ1 =

0. Hence locally there exists function γ such that ϑ1 = dγ. It is easy to check that
d(eγ ϑ2) = 0 and d(e− γ ϑ̂2) = 0. Moreover (eγ ϑ2) ∧ (e− γ ϑ̂2) 6= 0. Therefore
there exist local coordinates x, y such that eγ ϑ2 = dx and e− γ ϑ̂2 = dy. Next
we find the basic one-forms ω2

1 = −ϑ2 = − e− γ dx and ω3
1 = 1

W ϑ̂2 = eγ

W dy.
Looking at ϑ1 we may find u and v, and the rest of one-forms is easy to obtain. The
system of differential equations for α, β, γ and H we get from the fundamental
equations. Since ϑ1 ∧ ϑ2 6= 0 and ϑ̂1 ∧ ϑ̂2 6= 0, we have γx 6= 0 and γy 6= 0.

We have also

R(X1, X2)X1 = X2, R(X1, X2)X2 = −β H X1

(∇YR)(X1, X2)X1 = − (α+ β H)ϑ2(Y )X1

(∇YR)(X1, X2)X2 = −Y (β H)X1 + (α+ β H)ϑ2(Y )X2

and

R̂(X̂1, X̂2)X̂1 = X̂2, R̂(X̂1, X̂2)X̂2 =
−α
W 2H

X̂1

(∇̂Y R̂)(X̂1, X̂2)X̂1 =
α+ β H

W 2H
ϑ̂2(Y ) X̂1

(∇̂Y R̂)(X̂1, X̂2)X̂2 = Y
( α

W 2H

)
X̂1 −

α+ β H

W 2H
ϑ̂2(Y ) X̂2.

If ∇R = 0 then α + β H = 0 and β H = const, hence α = −β H is also
constant. Conversely, if α = const, then αy = 0 and from the system of differential
equations we obtain α+ β H = 0, next β H = −α = const and∇R = 0.

If ∇̂R̂ = 0, then α + β H = 0 and α
H is constant, and now β = −α

H . Conversely,
if β is constant, then from βx = 0 we obtain α + β H = 0, hence α

H = −β is
constant and ∇̂R̂ = 0.
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6. The Particular Case when Connections are Induced by Affine
Normal Vector Fields

Theorem 10. Let f : M → R3 and f̂ : M → R3 be non-degenerate immersions
of a two-dimensional real manifold M into affine space R3.

We denote by ξ and ξ̂ the affine normal vector field for f and f̂ respectively, by h
and ĥ the corresponding affine fundamental forms, and by ν and ν̂ the conormal
maps. Let ε = sign dethij and ε̂ = sign detĥij .

Let f and f̂ satisfy the following conditions

i) for every p ∈ M f(p) 6= f̂(p), moreover the vector f̂(p) − f(p) is tangent
to f(M) at f(p) and is tangent to f̂(M) at f̂(p)

ii) the spherical representation of f̂ − f , M 3 p 7→ π(f̂(p)− f(p)) ∈ P2(R),
has rank 2 at every point of M

iii) the functions ν(ξ̂) and ν̂(ξ) are constant

iv) det(f̂ − f, ξ, ξ̂) is a non-zero constant

v)
∣∣det(f̂ − f, ξ, ξ̂)∣∣ = ∣∣1− ν(ξ̂) ν̂(ξ)∣∣

vi) ε = ε̂.

Then affine fundamental forms h and ĥ are conformal to each other.

If moreover

vii) ν̂(ξ) + ε ν(ξ̂) = 0

then the Blaschke connections ∇ and ∇̂, of f and f̂ respectively, are locally sym-
metric.

Proof: Without loss of generality we may assume that det(f̂ − f, ξ, ξ̂) = 1 −
ν(ξ̂) ν̂(ξ), because affine normal vector field ξ̂ may be replaced by − ξ̂. We retain
our previous notation, so we have now W = 1 − AÂ. The case A = Â = 0 is
described in Theorem 1.5 of [7]. We may also use (75) with constant H and next
use Proposition 9.

If A 6= 0 or Â 6= 0, then (f, ξ) and (f̂ , ξ̂) satisfy the assumptions 1◦ – 5◦ and 7◦ of
Theorem 7. It suffices to check whether they satisfy 6◦.
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We will show that the assumption Â+εA = 0 implies ω1
1 = 0, which is equivalent

to 6◦. We proceed as in the first part of the proof of Theorem 7 and obtain the
formulae corresponding to (47), (25), (49), (48) and (23), when W = 1 − AÂ =
constant

ϑ̂1 = ϑ1 + ω1
1, ϑ̂2 = ω3

1, ω̂3
1 = ϑ2

ω̂3
2 =
− 1

W
ω2

3, −ω1
1 = Â ω3

2 +
A

W
ω2

3, ϑ2 = −ω2
1 + Â ω3

1.
(76)

If we bring together ω̂3
2 and −ω1

1, then we obtain

ω̂3
2 =

Â

A
ω3

2 +
1

A
ω1

1. (77)

Note, that if Â+ εA = 0 and (A, Â) 6= (0, 0), then A 6= 0.

Substituting (76) and (77) into

ω̂3
1 ∧ ϑ̂1 + ω̂3

2 ∧ ϑ̂2 = 0, ω̂3
1 ∧ ω̂3

2 = ε̂ ϑ̂1 ∧ ϑ̂2 = ε ϑ̂1 ∧ ϑ̂2

we obtain

ω1
1 ∧
(
−ϑ2 + 1

A
ω3

1

)
−

(
ϑ1 ∧ ϑ2 + Â

A
ω3

1 ∧ ω3
2

)
= 0

ω1
1 ∧
(
− 1

A
ϑ2 − ε ω3

1

)
+

(
ε ω3

1 ∧ ϑ1 −
Â

A
ω3

2 ∧ ϑ2
)

= 0.

But
Â

A
= − ε, therefore

ϑ1 ∧ ϑ2 + Â

A
ω3

1 ∧ ω3
2 = ε

(
ε ϑ1 ∧ ϑ2 − ω3

1 ∧ ω3
2

)
= 0

ε ω3
1 ∧ ϑ1 −

Â

A
ω3

2 ∧ ϑ2 = ε
(
ω3

1 ∧ ϑ1 + ω3
2 ∧ ϑ2

)
= 0

and consequently

ω1
1 ∧
(
−ϑ2 + 1

A
ω3

1

)
= 0, ω1

1 ∧
(
− 1

A
ϑ2 − ε ω3

1

)
= 0.

The one-forms

−ϑ2 + 1

A
ω3

1 = ω2
1 +

1−AÂ
A

ω3
1

− 1

A
ϑ2 − ε ω3

1 =
1

A
ω2

1 −
Â+ εA

A
ω3

1 =
1

A
ω2

1

are linearly independent, hence ω1
1 = 0 and we may apply Theorem 7.
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7. Conclusion

It is possible to formulate the Bäcklund theorem in R3 without using notions de-
pending on the metric. The conditions of constant length and constant angle may
be replaced by some conditions involving the volume form and the conormal map-
ping. If we impose such requirements on the affine normal vector fields, then both
induced connections are locally symmetric (Theorem 10). It seems to be a com-
mon generalization of Euclidean and Minkowski space Bäcklund theorems. One
may also consider a pair of surfaces endowed with arbitrary equiaffine transversal
vector fields. Some sufficient conditions under which the induced connections are
locally symmetric are given in Theorem 7.
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